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1. Introduction. A necessary and sufficient condition that a space H

Frechet have the Borel-Lebesgue covering property is that each monotonic

collection of closed point sets in it have a nonvacuous product(*). Thus, if

such a space is not perfectly compact, there exists in it a monotonic collec-

tion of closed sets, E, with a vacuous product; E is an example of what we

call a boundary element. With the help of E we may define a boundary point,

P(E); if P(E) is added to the basic space and a suitable topology is intro-

duced, the closures of the set of elements of E contain P(E); and the defi-

ciency of the elements of E, that their product is vacuous, no longer holds

for the aggregate of their closures in the extended space. By adding to 5 an

aggregate of boundary points which satisfy suitable conditions we achieve the

embedding of 5 in a perfectly compact Hausdorff space (cf. Theorem 16.1).

In Chapter I we introduce the class of point elements; these include the

boundary elements. We define the relation of the intersection of two point ele-

ments; in terms of this we give an ordering which makes the aggregate of all

point elements a quasi-partially ordered system. A repetition of this algorithm

gives the quasi-partially ordered system M of all collections of point elements.

By a process identifying the equivalent elements of M we obtain a partially

ordered system whose elements we call portions of our basic space 5, or S-por-

tions; these are our ideal points. A relation of an open set D in S and an ideal

point P is expressed by saying that D is an S-neighborhood of P; the 5-neigh-

borhoods are used in topologizing collections of ideal points. The relation P

is an end of M between the ideal point P and the closed point set of S, M,

Presented to the Society, in three parts: September 9, 1937, under the title Perfectly com-

pact Hausdorff spaces in which a normal space may be embedded; December 28, 1937, under the

title Concerning upper semi-continuous collections and the decomposition of points of normal

spaces; and September 6, 1938, under the title The extension of homeomorphisms of normal

spaces to topologically related spaces; received by the editors July 18, 1938, and, in revised form,

September 9, 1940.

0) Cf. Moore, (II) (the bibliography is at the end of the paper). Kuratowski and Sierpin-

ski, loc. cit., show that the Borel-Lebesgue property is equivalent to the condition that each

infinite point set have a complete limit point. Frechet, (II), calls this property perfect com-

pactness; several years later Alexandroff and Urysohn, (I), call it bicompactness.

A collection of sets is said to be monotonic provided that if K and L are two of its elements,

then either K~^L or LZ)K; Moore, loc. cit.
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suggests an analogy between Caratheodory's theory of ends and ours in that

both are concerned with methods of approach or accessibility. Our end-theory

is used as a technique in developing that of the 5-neighborhoods.

We shall now indicate some of the ideas underlying the methods which

we discussed in the preceding paragraph. The theory of point elements and

that of ends suggest our regarding a point not as a static entity but rather as

that of a relation of the point to the remainder of space, that involves methods

of approach. Secondly, a point need not necessarily be indivisible. We have a

conception according to which our space S consists of a quantity of basic

matter; this may be decomposed and put together in various ways, and the

same applies for each portion of this matter. In particular, the points of 5

are subject to such operations. There exists a maximal portion, that of all

the matter; there prove to be atomic portions.

These ideas may be described by means of our ordered system of ideal

points; let "A <B" be the ordering relation of this system. Let P be an ideal

point and M be a collection of ideal points; if both P <M and M<P, we shall

think of P as a summation or an amalgamation of M, and of M as a breaking

up or a decomposition of P; we think of M and P as describing different struc-

tures of the same portion of the basic matter of 5. Let X and Y be collections

of S-portions and uy = a(x)" be a transformation from X to Y such that for

yi£T, yi is the amalgamation of the elements of a_1(yi)(2); m proceeding

from a_1(yi) to yi we are involved in a change of structure, only; and, thus,

this transformation may be said to preserve S-portions or to leave S-portions

invariant.

If we were concerned with order relations, only, the system of all our ideal

points would afford a satisfactory basis for the amalgamation and decomposi-

tion theory. From a topological standpoint, however, we require systems of

elements for which the 5-portion preserving transformations, y — a(x), which

describe the amalgamation and the decomposition processes, satisfy continu-

ity conditions. As illustrations of systems which meet this requirement we

refer to a result by Stone (3). Of particular interest is the case where X and Y

are perfectly compact Hausdorff spaces; this case leads us to apply a mapping

theory by Kolmogoroff, which, for our purposes, finds a summary in Theorem

VIII, p. 98, Alexandroff and Hopf, loc. cit. The adaption of this theory to the

5-portion preserving transformations leads to the introduction of a special

class of ideal points, the amalgamation points. It is interesting to note that

since in applications we are to use both order and continuity relations, such

relations are used in defining these points. Chapter II is devoted mainly to a

development of the properties of amalgamation points; such properties have

striking analogies to those of closed point sets in perfectly compact Hausdorff

spaces. For instance, a decomposition of an amalgamation point into atomic

(2) The symbol, a_1(yi) means all elements of X, Xi, such that yi = a(xC).

(3) Loc. cit., p. 476, Theorem 88; we discuss this in §§16 and 20.
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S-portions is a perfectly compact set (cf. Theorem 14.4). In §15 this analogy

is shown to be fundamental; here we show that the decomposition M of an

amalgamation point P into regular amalgamation points is perfectly compact

if and only if it is upper semi-continuous relative to S; we develop an elabora-

tion of the Kolmogoroff-AlexandrofT-Hopf theory of the S-portion preserving

continuous transformations of such decompositions.

The sections following §15 are devoted to applying these results. In Chap-

ter III we investigate systems of such applications. In §19 we consider the

ordered system 6(P) of all perfectly compact decompositions of P into regular

amalgamation points; the ordering UX<Y," which means that X may be

mapped on Fby a continuous, S-portion preserving mapping y = a(x), makes

5(P) a complete lattice. If 5 is a sublattice of 5(P), the sum of the elements

of 5, is(4), becomes a lattice of amalgamation points. The zero of 5, coa, is

the system of atomic elements of La, and may be mapped on each element of 8.

Such cos's may be described as universal inverse mapping spaces relative to

the elements of 5. Particularly important is the case for which P is the maxi-

mal amalgamation point; that is, P is the amalgamation of all our ideal

points. Then we let 5(S) = 5(P); in §20 we show that the completely regular

spaces S are characterized by the property that there exist elements of 8(S)

in which the decomposition of S has proceeded to elements at least as small

as the points of S. For such a space we have the interesting subsystem of 6(S),

8=H(S), which consists of the images of all immediate extensions of S which

are perfectly compact Hausdorff spaces. The zero of H(S), X(S), is the topo-

logical image of the space considered by Stone in his Theorem 88 (loc. cit.,

p. 476). In §17 the space X(S) enters into an interesting characterization of

the normality of S; this is given by the condition that each upper semi-con-

tinuous decomposition of S into a collection of closed point sets can be ex-

tended to a similar decomposition of X(S). Further, only the topological

images of X(S) have this property.

In Chapter II we introduce the concept of a semi-completely normal

space. For such a space the theory of Chapter III is especially simple; such

a space is characterized by the property that the zero of 5(P), co(P), is a set

of atomic ideal points. Similarly, the normal space is characterized by the con-

dition that the only boundary points which are elements of anoj(P) are atomic

points. In Chapter II we give characterizations of various types of normal

and regular spaces.

Chapter I. An ordered system of ideal points

At the beginning of the preceding section we discussed the methods and

the underlying ideas which occur in the development of our theory of point

(4) It may be necessary to add a zero to La to make it a lattice; such is not the case for ä(P),

or for S.
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elements and ideal points. It may be mentioned that methods similar to those

used in this chapter may be used to extend a partially ordered system K to

a complete partially ordered system, granting that K satisfies suitable condi-

tions.

2. Concerning a topological background. We refer the reader to treatises

by Frechet, Hausdorff, Menger, Moore, Sierpinski, and Alexandroff and

Hopf (cf. Bibliography). Throughout the paper the symbol 5 will denote

a basic Hausdorff space. We shall consider only spaces H, Frechet (cf.

Frechet, (I), p. 186). Alexandroff and Hopf call such spaces T\ spaces (loc.

cit., p. 59).

Definitions. D 2.1. The symbol MT', the derived set of M relative to T,

means the set of all points of T which are limit points of M-T. The symbol

MT denotes the closure of M relative to T; that is, M-T+(M-T)T' ■

D 2.2. If T and R are_spaces (I) such that TZ)R and (2) such that if M

is a point set in R then MR = R- MT, then we say that R is a subspace of T,

that R is embedded in T, and that T is an extension of R; if, in addition, T is a

Hausdorff space, it is a Hausdorff extension of R. If T = Rt, Tis an immediate

extension of R (cf. Stone, loc. cit., p. 420).

D 2.3. If T is an immediate Hausdorff extension of S, the points of T — S

are called frontier points of S. If P is a point of T, TD 5, D is an open set of S,

and P does not belong to the closure in T of S — D, we call D an S-neighbor-

hood of P. Two frontier points of 5 are said to intersect provided that each

5-neighborhood of the one contains points in common with each 5-neighbor-

hood of the other.

3. Partially ordered and quasi-partially ordered systems. We refer the

reader to a treatise by Birkhoff and an article by MacNeille for discussions,

examples, and references to the literature (cf. Bibliography).

D 3.1. By a partially ordered system (s) is meant a system X in which an

(ordering) relation "x^y" is defined which satisfies the following conditions:

(Pi) For x(£X, x <x; (P2) if x <y and y <x, then x=y; (P3) if x <y and y <z,

then x<z. If the condition P2 is omitted, then X is a quasi-partially ordered

system. The notation "x<y" will be read "y includes x," "x precedes y," or

ux is a part of y." If x<y but not y<x, we say that x is a proper part of y.

D 3.2. If x <y and y <x, we say that x and y are equivalent (relative to the

ordering "<"). Note that P2 rules out distinct equivalent elements. In this

paper we shall have many examples of quasi-partially ordered systems for

which P2 does not hold.

D 3.3. An element of X is said to be atomic, if no element of X is a proper

part of it.

D 3.4. An element of X is a lower bound of a subcollection of X, N, if it is

a part of each element of TV. The set of all lower bounds of N is called the

(5) Cf. Hausdorff, (I), p. 139 and Birkhoff, pp. 5, 7.
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intersection I(N) of the elements of N. A greatest element of I(N) is called a

greatest lower bound of the elements of N. The terms upper bound and least

upper bound have analogous definitions. A zero and a unit of X are, respec-

tively, a lower and an upper bound of all the elements of X.

D 3.5. If two elements of X have a lower bound in X, they are said to in-

tersect (in X).

D 3.6. A subcollection of X, N, is said to be monotonic if for x£iV and

y(^N either x <y or y <x.

D 3.7. If A7" is partially ordered and each subcollection of X has a greatest

lower bound in X, X is a complete multiplicative system.

D 3.8. A lattice is a partially ordered system X such that any two of its

elements have both a greatest lower bound and a least upper bound in A7"; if

each subset of X has such bounds, X is complete.

4. The point elements. In §1 we discussed the origin of our concept of a

boundary element. This discussion applies also to a decomposition point ele-

ment which satisfies (A) of D 4.1. If M = a{E) is a non-isolated point of S,

(4) of D 4.1 guarantees that E assist in the decomposition of M according to

the theory we are to develop. For Case (A) the elements of E are subsets of

S — a(E); this is desirable for technical reasons in expressing relations of a

point element to its S-neighborhoods (cf. D 4.5 and D 11.1). The fact that the

topological relations of M = a(E) to point sets in 5 depend on subsets of 5 — M

gives reasons that 5 — M should contain 5-neighborhoods of E.

D 4.1. A boundary element of S is a nonvacuous collection E such that (1)

each of its elements is a nonvacuous, closed point set of S, (2) the product of

any two elements of E contains an element of E, and (3) the product of all

elements of E is vacuous. A collection of sets E is called a point element of S

if either (A) or (B) is satisfied: (A) Either £ is a boundary element of S, or

there exists a non-isolated point of 5, M, such that £ is a boundary element

of the subspace of S, S—M, and the following condition holds: (4) each open

set in 5 that contains M contains an element of £(6). (B) There exists an

isolated point of S, M, which is an element of £; each element of £ is a closed

point set of 5 which contains M. If £ satisfies (B) it is said to be degenerate.

For Case (B) E satisfies conditions (1), (2), and (4), and the product of all

elements of £ is M. For Case (A) the product of all elements of E is vacuous,

and (4) implies (3).

D 4.2. Let a(E) = M be the product of the closures in S of the elements

of £. We say that a(E) is attached to £, and conversely.

(6) The two cases under (A) may be combined as follows; this is the form of (A) we shall use

in our applications: There exists an M, which is either a non-isolated point of 5 or is the null

set, such that (1) each element of E, e, is a nonvacuous, closed point set in the space S — M,

and its closure in 5 is M-\-e; (2) the product of two elements of E contains an element of E;

(3) the product of all elements of £ is a subset of M; (4) if if is a point of S, any open set of 5

which contains M contains an element of e.
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D 4.3. If a(E) is a point of S, E is called a decomposition point element. If

£ is a boundary element, a(E) is vacuous.

D 4.4. Two point elements are said to intersect, provided that each ele-

ment of the one has points in common with each element of the other.

D 4.5. An open set in S which contains an element of a point element E

is called an S-neighborhood of E. A point or a frontier point of 5 is said to in-

tersect E, provided that each S-neighborhood of the point has points in com-

mon with each 5-neighborhood of E. (Cf. D 2.3.)

D 4.6. If E and F are point elements and each point element which inter-

sects E intersects F, we say that "£ < F"; we read this UE is a portion of F

(relative to S)."

D 4.7. Let the aggregate of all point elements be ordered by the relation

"£ is a portion of F." It is easy to see that Pi and P3 of D 3.1 are satisfied but

that P2 is not. Thus, this system is quasi-partially ordered.

Examples. E 4.1. Let 5 be the Euclidean plane, M be the origin, and Pn

be the point with coordinates (l/n, 0). Let e„k = (Pn, Pn+k, Pn+2k, • • • ), and

Ejk = (ejk, ej+k,k, ej+2k,k, • • • )• Then the E's are decomposition point elements

of 5 and are attached to M; also, they are boundary elements of S — M.

£12 and £22 do not intersect, but each is a portion of En. £33 intersects each

of £12 and £22; none of these point elements is a portion of any of the others.

£66 is a greatest lower bound of £22 and £33; and £36 is a greatest lower bound

of £12 and £33-

E 4.2. Let 5 be a space with infinitely many points, all of which are iso-

lated. Then all decomposition point elements are degenerate. Any monotonic

collection of point sets whose elements have a vacuous product is a boundary

element.

E 4.3. Let H be a continuum in the plane whose points have coordinates

(x, y) which satisfy one of the following conditions: (1) O^x^l, y = 0;

(2) x = l/k and 0<y^l/k, where k = l, 2, 3, • • • . Let £ be the aggregate of

all subcontinua of H which contain the origin and at least one point with a

positive ordinate. Let M be the origin and £ be the aggregate of all sets/— M,

where /££. Let G be the aggregate of all sets obtained by reflecting elements

of £ in the X axis. Then £ and G are equivalent point elements. However,

no element of either G or E is a subset of an element of the other.

5. The intersection of point elements; atomic elements. Because of Theo-

rem 5.1 the definitions which are given for the intersection of point elements

in D 3.5 and D 4.4 are logically equivalent. An analogous state of affairs shows

that such a consistency should not be considered obvious: Let Zbea partially

ordered system; define for K a new order by an application of Definitions

D 3.5, D 4.6, and D 4.7; the new order need not be consistent with the basic

order of K.

Theorem 5.1. In order that two point elements E and F should intersect, it
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is necessary and sufficient that there exist a point element which is a portion of

both; if this condition is satisfied and G is the aggregate of all sets which are the

product of an element of E with an element of F, then (a) G is a point element and

a greatest lower bound of E and F, and (b) a(E) =a(F) =a(G).

Proof. Let H be a common portion of E and F. Since H intersects itself,

it intersects each of E and F. Since E intersects H and H is a portion of F,

E intersects F.

Conversely, let E and F intersect. Suppose that a(E) is a point of 5 and

a(E) ^a(F). By D 4.1, (3), there exists/GEsuch that/does not contain a(E).

Since f=f+a(F), a(E) E.S— f; by D 4.1, (4), 5— /DeG-E; since e f is vacuous,
we are involved in a contradiction. Thus, either a(E) and a(F) are the same

point of S, or both are the null set. If E and F are degenerate, the conclusion

in (a) is obvious; cf. D 4.1, (B). Suppose, therefore, that neither is degen-

erate. Let gi = ei-/i and gi = e2-f-i be elements of G, and K = a(E). Then

gi-g2=(ei-/i)-(e2-/2) = (ci-e2)-(/i-/s)Dcs-/8=gsGG; thus, Condition (2) of

D 4.1 is satisfied; clearly the same holds for (3) and (4). Because of (2)

and (4) £Ogi+-K; the converse is true, since ei = ex-\-K and fi=f-\-K. Thus,

G satisfies all the conditions of D 4.1, (A), and it is a point element. Let H

be a point element which intersects G, h(E_H, eG£, and/GE. Then h- («•/)

is nonvacuous. It follows that each of e h and f-h is nonvacuous. Thus,

H intersects each of E and F, and G is a common portion of E and F.

Let X be a point element which is a common portion of E and F, and Y

be a point element which intersects X. Let e, f, x, and y be elements, respec-

tively, of E, F, X, and Y. Let Z be the aggregate of all products of an element

of X by an element of F; similarly define T in terms of E and Z. By the pre-

ceding paragraph Z is a point element and Z<X; since X <E, Z intersects E,

and T is a point element. Then T<Z <X and T intersects X. Since x-y ■ e£f

and X < F, f ■ (x ■ y ■ e) is nonvacuous. Then y ■ (e •/) is nonvacuous; since c /£G,

Y intersects G. Thus, X <G, and G is a greatest lower bound of E and F.

Theorem 5.2. No decomposition point element intersects a boundary element.

Theorem 5.3. A degenerate point element is atomic.

Theorem 5.4. // M is a collection of point elements and each finite subcollec-

tion of M has a lower bound, then M has a greatest lower bound.

This lower bound may not belong to M. The theorem has an analogy to

conditions for perfect compactness; cf. Moore, (II), and Frechet, (I), p. 231.

Proof. Let H be the aggregate of all point elements E such that £ is a

greatest lower bound of a finite subcollection of M; if m(E.M, m<m; thus,

mGif and HZ)M. Let K be the sum of the elements of H, and e and/ be ele-

ments of K. There exist EGiTand FSH such that eG-E and/GE- There exist

two finite subcollections of M, Hg and HF, such that E and F are greatest
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lower bounds, respectively, of HE and of HF. By our condition T = HE+HF

has a lower bound; let ß be any lower bound of T. Then ß is a lower bound of

HE, of £, of HF, of F, and of G, where G is a greatest lower bound of E and F

(by Theorem 5.1 £ and F have a greatest lower bound). Since ß is any lower

bound of T, G<E, and G<F, then G is a greatest lower bound of T; then

G£H and K~Z)G. By Theorem 5.1 e-/G#. Thus, Condition (2) of D 4.1 is

satisfied by K. By Theorem 5.1 a(E) =a(F)=a(G). It follows readily that the

other conditions of D 4.1 are satisfied. Since each element of M is a subset

of K, K is a portion of each of these elements. Thus, K is a lower bound of M.

If the point element F is a lower bound of M, it follows from the definition

of H that F is a portion of each element of H. If a point element intersects F,

it intersects each element of H, and thus intersects K. Thus, F<K, and i£

is a greatest lower bound of M.

Theorem 5.5. If E is a point element, there exists an atomic point element

which is a portion of E.

Proof. There exists a monotonic collection of point elements, M, of which

£ is an element, which is not a proper subcollection of any monotonic collec-

tion of point elements; cf. Hausdorff, (I), p. 140. Let F be a greatest lower

bound of M, and G be a point element such that G<F (cf. Theorem 5.4).

Then G + Mis monotonic, GQ.M, and F<G; since G<F, by D 3.3 Fis atomic.

5A. Historical. In §§16, 17, and 20 we discuss the space \(S)=S+M,

where 5 is a completely regular space, if is a collection of regular boundary

points which are the atomic elements of a certain system, and X(5) is per-

fectly compact. This space has been studied by Stone, Wallman, and Cech(7).

Cech, on page 833, has a result which is equivalent to the following: In order

that S be normal, it is necessary and sufficient that if Fi and F2 are mutually

exclusive closed point sets in S, and ß£E\(S) — S, then ß is not a limit point of

both. An analogous condition on one of our ideal points ß is necessary and

sufficient that ß be atomic(8); this is true even if 5 is irregular. By Theorem

16.1 it is characteristic of a normal space that the elements of \(S)—S be

atomic boundary points. Thus, Cech encounters the atomic points only in the

case of the normal space, while we have them at our disposal for any Haus-

dorff space. This difference seems to be characteristic of the difference of our

methods; here Cech seems to follow Tychonoff and Urysohn. Stone's methods

involve an extensive use of algebra, but seem to have elements in common

with those of Cech.

Wallman's methods most nearly resemble ours. He constructs the points

(7) Cf. bibliography. Stone's paper appeared in May, 1937. The author's first report before

the Society was given in September, 1937; it included most of the results of the first two chapters

of the present paper for the case of the normal and semi-completely normal spaces. The papers

of Cartan, Wallman, and Cech appeared later.

(8) Compare the comment on Theorem 11.7 and Theorem 12.3.
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of by means of collections of sets; for the case of the boundary points

he uses what we should call atomic boundary elements. For the other type

of points, those corresponding to the points of S, he uses definitions which

are not suitable for our decomposition theory. Since he does not consider such

a theory, his definitions are adequate for his purposes.

Cartan, on the other hand, has a basis for a decomposition theory, based

on order, resembling that developed in our §5; however, he fails to develop

the topological applications, and has nothing like the order-continuity theory

of our Chapters 2 and 3. His filter bases and filtres correspond to our point

elements and composition points; he proves the existence of ultra-filtres which

correspond to our atomic points. He has the theorem: In order that two filter

bases should generate the same filter, it is necessary and sufficient that each

element of the one should contain an element of the other. By Example E 4.3

such a theorem is not true for our point elements. Thus, formally his defini-

tions are not quite adequate for our treatment.

For a domain in the plane Caratheodory has a theory of chains, ends, and

prime ends, which correspond to our boundary elements, boundary points,

and atomic boundary points. His treatment of accessibility corresponds to our

sections 6 and 10.

6. A Theory of accessibility. The overlapping of a point element and a

closed set in 5, which we define in D 6.1, resembles the intersection of two

point elements (cf. D 4.4). Similarly, Theorem 6.1 is an analogue of Theorem

5.1. The discussion at the end of §5A suggests an interpretation of the results

of Theorem 6.1 according to which a point element involves methods of ap-

proach or of accessibility. A boundary element may be regarded as a "way"

for escaping from the basic space; the corresponding boundary point serves

as a barrier for such an exit, and may be approached by such a way. In D 6.2

we formulate these ideas.

D 6.1. If E is a point element, if is a point set in S, and each element of £

has points in common with if, then E and if are said to overlap.

D 6.2. Let E and F be point elements and if be a point set in S. If each

point element which intersects E also intersects F or overlaps if, respectively,

we say that Eis a way in F, or that Eis a way in if, respectively. Clearly, the

former is equivalent to the relation UE<F"; the latter is analogous.

Examples. E 6.1. Let 5 be the plane, if be a line, Q be a point of if,

and E be the aggregate of all sets I — Q, where I is an interval on M and Q is

its midpoint. Then £ is a maximal common way of if and E, and also of 5

and E. If Ri and R2 are the two rays on if from Q, then any way common to

Ri and E fails to intersect any way common to R2 and E. We might say that

there are many more ways of approach to Q in 5 than there are in if; and

there are more in if than in Ru

E 6.2. In the notation of Example E 4.1 the point element £36 is a maxi-

mal common way of the set e33 and the point element £12.
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Theorem 6.1. Let if be a closed point set in S and E be a point element.

(1) In order that there exist a way common to if and to E, it is necessary and

sufficient that if and E overlap; (2) if this condition is satisfied and E(M) is

the aggregate [e- if], where eG£, then E(M) is a maximal common way of E

and M and iOcz(£(if)).

The content of the theorem and its proof are similar to those of Theorem

5.1. In particular, replace the "F" and the "/" of that proof by "M," and re-

place "G" by UE(M)."

Theorem 6.2. If F is a portion of E and G is a way common to if and F,

then G is a way common to if and E.

7. The quasi-partial ordering of collections of point elements. As in §4

we first define intersection and then define order in terms of intersection. The

definitions of the two sections 4 and 7 are similar and the system of §4 is a sub-

system of the one we consider here. In §1 we have explained how the results

of §§7 and 8 afford a basis for a summation or an amalgamation theory, and

how those of §4 yield a decomposition theory.

D 7.1. If a point element intersects one of a collection of point elements,

the point element and the collection are said to intersect. Two collections of

point elements are said to intersect if one of them intersects an element of

the other.

D 7.2. Let A be the aggregate whose elements are (1) the point elements

and (2) the collections of point elements. If if and N are elements of A and

each element of A that intersects if also intersects N, we say that if is a

portion of N {relative to S), or M<N. Clearly, this relation is reflexive and

transitive.

D 7.3. Let the relation UM<N" order the elements of A. Clearly D 7.3

and D 4.6 are equivalent if both if and N are point elements. Thus the

ordered system of the point elements of D 4.7 is a subsystem of A.

Example. E 7.1. Adopt the notation of E 4.1. Let M=En, N= (E12, £22),

K = (£14, £24, £34, £44), and L = (Eu, £34). Then if, N, and K are equivalent,

and so are L and £i2. Also, L is a portion of if, but the converse is not true.

L does not intersect £22. L intersects (£14, £24) but neither of these is a portion

of the other.

D 7.4. If if is a point element or a collection of point elements, let 2(if)

denote the set of all point elements that are portions of if; let a (if) denote

the set of atomic elements of 2(if).

Theorem 7.1. If if and N are collections of point elements, then if is a

portion of N if and only if each point element that intersects an element of if

also intersects an element of N.

Theorem 7.2. (1) If N is a collection of point elements and either if GA7"
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or NZ)M, then M <N; (2) if ifis a collection of point elements and each element

of Mis a portion of N, then M<N; (3) 2(iV)DJV.

Proof. Consider (2). Let EGif, and Fbe a point element which intersects

E. By Theorem 5.1 there exists a point element G which is a lower bound of E

and F. Since G<E<N, G<N, by D 7.2 there exists «Gesuch that G and n

intersect; since G<F, n intersects F. By Theorem 7.1 M<N. Clearly each

element of N is a portion of N; the conclusion of (1) of the theorem follows

from (2).

The following theorem shows that the ordering relation < is equivalent

to the aggregate-inclusion relation C, if applied to the sets 2(A>") and a(X); cf.

D 7.4. It brings out the importance of the atomic elements in the ordering

theory.

Theorem 7.3. Let M and N each be point elements or collections of point

elements: (1) M<~Z{M) <a(M) <M; (2) the conditions (a) M<N, (b) 2(JV)

I)2(if), and (c) a(N)Z)(x(M) are logically equivalent; (3) the conditions (a) M

intersects N, (b) the product 2 (if) ■ 2 (iV) is nonvacuous, and (c) the product

a (if) -a(N) is nonvacuous are logically equivalent; (4) 2 (If+N) Z)2(if) +2 (A7),

and a(M+N) =a(M) +a(N); each of these four sets is equivalent in our ordering

to M+N.

Condition (3) is an analogue of Theorem 5.1. Cf., also, Theorem 7.4. Con-

dition (3) brings out the equivalence of D 7.1 and D 3.5.

Proof. Let the point element E belong to if, and let F be a point element

which intersects E. By Theorems 5.1 and 5.5 there exists an atomic point ele-

ment G which is a lower bound of E and F. By Theorem 7.2 (1), E < M; since

G <E, G <M, and GG«(M). By Theorem 7.1 M<a(M). Since 2 (if) Da (if),
a(if)<2(if); cf. Theorem 7.2 (1). By Theorem 7.2 (2), 2(if)<if.

Let if be a portion of N and XG2(if); since X<M<N, X <N, and

XG2(iV); thus, 20/V)D2(if). Conversely, if 2 (iV) 1)2 (if), it follows by part
(1) and Theorem 7.2 (1) that if <2(if)<2(A7) < N. Thus (2a) and (2b) are

equivalent. In the same way we can show that (2a) and (2c) are equivalent.

If if and N intersect, there exist intersecting point elements E and F

which belong to if and N, respectively (cf. D 7.1). By Theorems 5.1 and 5.5

there exists an atomic point element G which is a lower bound of E and F.

By Theorem 7.2 (1), E<M and F<N. It follows that G<M and G<N, or,

that GE.a(M)-a(N). Since 2(if)-2(N)Da(M)-a(N), (3a) implies each of

(3b) and (3c). By D 7.1 and Theorem 5.1 each of these implies (3a).

By Theorem 7.2 (1), 2(if)Dif; the proof of part (4) follows with the

help of this theorem and parts (1) and (2).

Theorem 7.4. Let if be a collection of point elements, and of aggregates of

point elements: (1) The set of all the point elements which belong to elements of if

is a least upper bound of if; (2) if the elements of if have lower a bound, the
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product of the sets a(m) and that of the sets where m ranges over M, are

greatest lower bounds of M.

Proof. Let K be the product of all the sets a(m) and L that of all the sets

S(w). By our hypothesis and Theorem 5.5 neither K nor L is vacuous. By

Theorem 7.2 (2), and Theorem 7.3 (1), each of K and L is a lower bound of

the elements of M. Let X be a lower bound of M, and Y be an element of M.

By Theorem 7.3 a(Y)Da(X); it follows that KZ)a(X). Since LZ)K, it fol-

lows from Theorems 7.2 and 7.3 that X <a(X) <K<L. The conclusion of (2)

follows. Part (1) may be proved by similar methods.

8. The S-portions, our ideal points. If £ is a nondegenerate point element

and we remove a finite number of the elements of E, the remainder is a point

element which is equivalent to E. Thus, the condition P2 for partially ordered

systems does not hold for the quasi-partially ordered system of collections

of point elements A, which we considered in the preceding section. In our

applications to topology we find it desirable to remove the ambiguity which

is involved in having equivalent, non-identical elements. We achieve this by

a procedure which is essentially that of identifying equivalent elements; this

yields a partially ordered system (9); its elements are our ideal points. For rea-

sons given in §1 we call these S-portions.

D 8.1. Let A be the ordered system of all point elements and collections

of point elements (cf. D 7.2 and D 7.3). If EGA, let P(E) be the collection

of all elements of A, X, such that X <E and E<X. We call P(E) an S-portion

or an ideal point. Clearly, EGP(E); if XGP(E), then P(X)=P(E); for, if
YGP(X), E<X<Y, and Y<X<E.

D 8.2. Let P and Q be 5-portions, EGP, and FGQ. If E<F according

to D 7.2, we shall say that P <Q, or that P is a portion of Q; also, we shall

say that P < F and E<Q.

D 8.3. Let K(S) be the system of all 5-portions; let it be ordered by the

relation P <Q of D 8.2. It is obvious that K{S) is a partially ordered system;

in particular, Condition P2 holds.

D 8.4. If one of the elements of an S-portion is a point element, the S-por-

tion is called a composition point; if the point element is a boundary element or

a decomposition point element, respectively, the point is called a boundary

point or a decomposition point, respectively; cf. D 4.3. The theory of composi-

tion points corresponds to that of §§4 and 5, while that of S-portions in gen-

eral requires that of §7. We shall see in §14 that the composition points are

included among the amalgamation points; these are a special class of the ideal

points, and they are a basis for our topological applications. We shall see, also,

that regular points and frontier points of S may be identified with composition

points; cf. Theorem 13.7.

Examples. E 8.1. Let £ be a finite collection of point elements such that

(9) Cf. Birkhoff, p. 7, Theorem 1.2.
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if Ei and E2 are elements of E then a(Ei) = a(E2); cf. D 4.2. Then P(E) is a

composition point. This follows from Theorems 14.11 and 14.8; or, it may be

proved directly.

E 8.2. Let P be a fixed point in the plane and R be a ray with initial point

P. Let I(n, R) be I — P, where I is the interval on R with endpoint P and

length l/n. Let £(F) = (/(1, R), 7(2, R), ■ ■ • ), and let E be the set of all

E(R)'s. Let Ri, R2, r3, ■ ■ ■ be an infinite sequence of distinct F's. Let

Fn = I(n, Rn)+I(n+1, Rn+i)+ • • • ; let F=(FU F2, Fit ■ • • ). Then F is a
point element but does not intersect any element of E; by Theorem 8.1 P(F)

does not intersect P(E), and not P(F) <P(E). Suppose that H is a point ele-

ment and H<E<H; then each E(Rn) intersects H, and F intersects H; cf.

D 4.4. Since H<E, F intersects E, and we have a contradiction. Thus, H does

not exist, and P(E) is not a composition point.

E 8.3. If E contains a boundary element and a decomposition point ele-

ment, P(E) is not a composition point.

D 8.5. If M is a point or a point set let 2(Af) and a(M) denote, respec-

tively, all composition points and all atomic ideal points which are portions

of M (cf. D 7.4). Let Ep denote an element of the ideal point P.

D 8.6. A degenerate composition point is one which has degenerate ele-

ments. (Cf. D 4.1.)

Theorem 8.1. Let P and Q be ideal points. (1) Z,(EP)EP, a(EP)GP, and

~2(EP)Z)Ep. (2) The following are equivalent: (a) P<Q; (b) ~2,(Eq)Z)2(Ep) ;

(c) a(£(j)Da(£p). (3) The following are equivalent: (a) P intersects Q;

(b) Ep intersects Eq\ (c) a{Ep)-a{Eo) is nonvacuous. (4) If P intersects Q,

P(a(EP) -a(EQ)) is their greatest lower bound in K{S).

(Cf. D 3.5 and the theorems of §7.)

Theorem 8.2. An atomic S-portion is a composition point. A composition

point is atomic if and only if its elements contain only atomic point elements.

Proof. Let F<=EP and GEct(F); by Theorem 7.2 F<EP. Since G<F<EP,
P(G)<P(EP)=P. If Pis atomic, P = P(G), G£P, and F<EP<G; since G is

atomic, so is F. The sufficiency may be proved by similar methods.

Theorem 8.3. Two atomic S-portions do not intersect.

Theorem 8.4. A degenerate S-portion is atomic.

The latter follows from Theorem 5.3. Let P and Q be atomic points which

intersect in X. Then X<P; since P is atomic, P = X; similarly, Q = X.

9. Intersections and orderings of collections of points. We extend the con-

cepts of intersection and of order to the class of all points and all collections

of points. Our definitions, methods, and results are similar to those of preced-

ing sections. We introduce the concepts of the summation and the decomposi-
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tion of points. Example E 9.2 gives an indication of the complicated relations

that may hold in our theory; some of the results in it may seem paradoxical.

D 9.0. The term, a real point is to mean a point of S. Hereafter, if the

term point is used without any explicit or implicit qualifications, it may mean

a real, an ideal, or a frontier point; cf. D 2.3.

D 9.1. If a real point or a frontier point intersects(10) a point element

which belongs to an element of an 5-portion, the point and the 5-portion are

said to intersect. Two 5-portions are said to intersect if they have a lower

bound in the system of ideal points; cf. D 3.5. If a point intersects one of a

collection of points, it and the collection are said to intersect; similarly define

the intersection of two collections.

D 9.2. Let B be the aggregate whose elements are the points and the col-

lections of points. If if and N are elements of B and each ideal point that

intersects if also intersects N, we say that if is a portion of N, or that M<N.

Clearly, this relation gives a quasi-partial ordering for B. The formulation of

our definition is similar to the condition of Theorem 7.1. By Theorem 8.1

K(S) is a subsystem of B (cf. D 8.2 and D 8.3).

D 9.3. If P is a point and if is a collection of points, P<M, and if <P,

we say that P is a summation of the elements of if; if, in addition, no two

elements of if intersect, if is said to be a decomposition of P. P(if) means

an ideal point which is a summation of the elements of if.

D 9.4. If if is the set of all point elements, P(if) is the maximal 5-portion.

Clearly, the term is justified, and P(if) is the summation of all composition

points. It follows from Theorems 8.3 and 5.5 that the set of all atomic ideal

points is a decomposition of P(if).

Examples. E 9.1. Let 5 be completely regular and R be a perfectly com-

pact Hausdorff space which is an immediate extension of 5. Then R is a de-

composition of the maximal 5-portion; cf. Theorem 16.1. Let if and N be the

sets of all decomposition points and of all boundary points, respectively. Then

S<M and if <5; however, if and N fail to intersect. (Cf. Theorem 5.2.)

E 9.2. Let 5 be the plane and if be the set of all points of 5. If F is a

closed set, let E(F) be the set of all point elements X such that each element

of X is a subset of F; let Q(F) be the ideal point of which E(F) is an element.

Let H be the aggregate of all <2(L)'s, where L is a line; and let K be the set

of all <3(C)'s, where C is the circumference of a circle with a positive radius.

Since no point of 5 is isolated, all point elements in E(C) and in E(L) are

nondegenerate; it follows from D 4.1, Theorem 5.1 and D 7.1 that E(C) and

E(L) do not intersect; by Theorem 8.1 Q(C) and Q(L) do not intersect; by

D 9.1 and D 9.2 H and K do not intersect. Hence, neither H<K nor K <H.

If P is a real point common to C and L it follows from D 4.5 that P intersects

elements of E(C) and EiL); it may be shown that P intersects 1(C) and I(L).

(10) Cf. D 4.5.
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Since 1(C) intersects L but does not intersect I(L),'L is not a portion of

I(L); similarly, C is not a portion of 1(C), and M is a portion of neither H

nor K. By Theorem 10.3 E(L) contains boundary elements, but E(C) does

not; it follows that Q(C)<C, but not Q(L)<L; similarly, K<M, but not

H<M.
Because of the similarity of the ideas involved in §§7 and 9 we can prove

theorems analogous to those of §7 for collections of points, and can use similar

proofs. We give several theorems about summations and decompositions.

Theorem 9.1. If P is an S-portion, a(P) is a decomposition of P, and P

is a summation of Z(P); P<a(P) <2(P) <P.

(2) If M is a collection of ideal points, there exists one ideal point, P(M),

which is the summation of the elements of M; and P(M) is the least upper bound

of M in the system of the ideal points.

Proof. By D 8.5 S(P)D«(P) and each element of S(P) is a portion of P-

By the analogue of Theorem 7.2 for the case of points, a(P) <S(P) <P-

Let X and Y be ideal points such that Y<X and F<P. By Theorem 8.1

a(Ep) ■ a(Ex)Z)oc(Ey)■ If FGa(Ey), F is an atomic point element; by Theo-

rems 8.1 and 8.2 P(F) is atomic, P(F) <X, and P(F) <P. Hence P(F)E<x(P),

and X intersects an element of a(P). By D 9.2 P<a(P). By Theorem 8.3

a(P) is a decomposition of P. This completes the proof of (1).

Consider (2). Let E be the sum of all sets a(Em), where m£zM. Then E is

a collection of point elements; let P = P(E). Since EZ)oc(Em), by Theorem 7.2

a(Em) <E; by Theorem 7.3 and D 8.2 m<P; by the analogue of Theorem 7.2

for the case of points, M<P. By Theorem 8.1 if the ideal point A intersects P

then Ea intersects E. By Theorems 7.3 and 7.1 Ea intersects an element of E,

X; then X belongs to one of the sets, a(Em), and Ea intersects this set; by

Theorem 8.1 A intersects m; by D 9.2 ?<if. Let the ideal point Y be an

upper bound of the elements of M. Then, for m(£-M, a(Ey)Z)ct(Em) (cf. Theo-

rem 8.1). Then a(EY)DEZ)a(Em). By Theorem 7.3 and D 8.2 m<P<Y.

Thus, P is a summation of the elements of M and is a least upper bound of

them. Since the system of ideal points is partially ordered, P is unique.

Theorem 9.2. In the partially ordered system of ideal points each collection

M which has a lower bound has one greatest lower bound, ßnt', and a(ßiu) is the

product of all the sets a(m), where m£L-M.

Proof. Let Y be an ideal point which is a lower bound of the elements

of M; K be the product of all the sets a (m); ßM = P (K); and w £M. If X £a( F),

then X< Y<m, and X£a(m); thus a(m)Z)a(Y), and KZ)a(Y). Let the ideal

point X intersect Y; by Theorem 9.1 Y<a(Y), and by D 9.2 X intersects

an element of a(Y); since this element belongs to K, it follows from D 9.2

that Y<ßiu. Similarly, we can prove that ßni<m. By Theorem 9.1 K = a(ßu).

We have established the conclusion.
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10. Accessibility and ends. We develop a theory for the accessibility of

5-portions; this involves an extension of the theory of §6, where we deal with

point elements. The discussion and the examples which were given there are

appropriate here. The ends may be regarded as barriers at the terminations

of the corresponding ways. We borrow the term end from Caratheodory; in

§5A we indicate similarities between his treatment and ours. Theorem 11.3

brings out a dualism of the theories of the ends and of the 5-neighborhoods;

both are applied in the topologization of our ideal points, and in the develop-

ment of this topology. The concepts of the present section, of overlapping and

of being a common way, are analogous, respectively, to those of intersecting

and of being a common portion; this may be seen by comparing the results of

Theorem 10.1 with those of Theorems 5.1, 7.1, 7.4, and 9.2.

D 10.1. If M is a set of real points, if is a collection of point elements,

and M and some element of K overlap(n), we say that M and K overlap;

also, P(K) and M overlap; if P(K) is a portion of the real or the frontier point

Q, we say that M and Q overlap.

D 10.2. If P and Q are points and each 5-portion that intersects P over-

laps M (and intersects Q), we say that P is an end of M (in Q). If P and Q

are ideal points, E£P, F(E.Q, and P is an end of M in Q, we say that E is a

way to P (in F and in M) (cf. D 6.2). Clearly, the latter implies that P <Q.

Examples and comment. Adopt the notation of E 4.1; the composition

point P(E3b) is an end of the point set e33 in the point P(En) (cf. also E 6.2).

Consider E 9.2; the point P(F) may be characterized as the summation of all

composition points which are ends of F, and it is an end of F; E(F)^P(F),

and each point element of E(F) consists of subsets of F; Theorem 10.1 shows

that it is characteristic of an end of a closed set of 5 that it have an element E

such that any point element which belongs to E consists of subsets of the

closed set. Such is not the case for all the elements of an end; for, consider

E 4.3; here P(E) is an end of the x-axis, but no element of £ is a subset of the

x-axis. If, in E 9.2, we let C and L' be the sums of all the E(C)'s and of all

the E(L)'s, respectively, we have two ways in S which have no common way;

the ends of these ways, P(C') and P(L'), do not intersect.

If A is a point of a linear interval and M is a countable sequence of points

on the interval which converges to A, according to our theory there exist

many more methods of approach to A in the arc than there exist in the se-

quence. The end of the arc is to be regarded as vastly smaller than A, but

is much greater than the end of the sequence; the latter is capable of further

subdivision. Similar interpretations hold for the other examples.

Theorem 10.1. Let Mbea closed point set in S and P be an S-portion. (1) In

order that there exist an end of M in P, it is necessary and sufficient that M and P

should overlap. (2) Let P and M overlap, G£P, and G(M) be the collection of all

(") Cf. D 6.1.
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E(M)'s(12), where E is a point element which belongs to G;letQ be the ideal point

P(G(M)); then Q is the maximal end of M in P.

Proof. Let the ideal point A be an end of M in P. Since A intersects itself,

by D 10.2 A overlaps M; and A <P. Since A overlaps M, there exists EAGA

which overlaps M (D 10.1). Since A<P, by Theorem 8.1 2(EP)2>EA; by

D 10.1 M overlaps each of S(£p) and P. The necessity of the condition in (1)

follows.

Conversely, suppose that P and M overlap; by D 10.1 there exist GG.P

and a point element X, which belongs to G, such that X overlaps M; by Theo-

rem 6.1 X(M) is a point element; thus, G(M) and Q = P(G(M)) exist. Let Z

be an ideal point which intersects Q. By Theorem 8.1 Ez intersects G(M);

by D 7.1 there exist point elements Ex and E(M) which belong to Ez and to

G(M), respectively, and which intersect. Since each element of E(M) is a

subset of M, it follows by D 4.4 that each element of E\ has points in common

with M. By D 6.1 and D 10.1 M overlaps each of Eu Ez, and Z. There exists

an element of G, E, such that each element of E(M) is a subset of an element

of E; then Ex intersects E; by D 7A Ez intersects G; by Theorem 8.1 Z inter-

sects P. Since, also, Z overlaps M, Q is an end of M in P (cf. D 10.2).

Let Gi be any element of P, whatever. Since each element of E(M) is a

subset of an element of E, it follows from D 4.4 and D 4.6 that E(M) <E; by

Theorem 7.2 G(M) <G, and thus G{M) <GX; by Theorem 7.1 E(M) intersects

an element, K, of Gi; since each element of E(M) is a subset of M, it follows

that K overlaps M. By the results of the preceding paragraph it follows that

Gi(Af) is nonvacuous; and, if Qi = P(Gi(M)), then <2i is an end of Min P.

Let ß be an end of M in P, and Y be an ideal point which intersects ß.

Then ß<P; by Theorem 8.1 a(G)Da(£j), and K = a(Eß)-a(EY) is nonvacu-

ous. Let FGK; by Theorems 7.3 and 7.2 F<Eß; by D 8.2 P(F) <ß;by D 10.2
P(F) overlaps M; by the result of the preceding paragraph, F overlaps M;

by Theorem 6.1 F{M) exists; by arguments we have used before, F(M)<F

<Eß<G. By D 7.2 F(M) intersects an element E of G. Since each element

of F(M) is a subset of M, it follows by an argument we used in the next-

to-the-last paragraph that E(M) exists and F(M) and E(M) intersect. Since

a(EY)DK, FGK, and F(M)<F, it follows by Theorems 7-2 and 7.3 that
F{M)<F<K<EY, and that F(M)G^(EY). Thus, S(£y) and G(M) inter-

sect, since their respective elements F(M) and E(M) intersect. By Theorem

8.1 Y and Q intersect. Thus, by D 9.2 ß<Q. Since ß is an end of M in P,

Q is the maximal end of M in P. Since <2i<<2> and Q<Qi, Q=~Qi- Thus, Q is

independent of the particular element G of P. We have established the truth

of (2) and the sufficiency of the condition in (1).

Theorem 10.2. Let M be a closed point set in S, P be an end of M, and Q

(12) Cf. Theorem 6.1. For example, E(M) is the set of all products e ■ M, where e G.E-
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be an ideal point which intersects P; there exists an end of if which is common

to P and Q. If Q <P, Q is an end of if.

Theorem 10.3. In order that the closed point set in 5, if, be perfectly com-

pact in itself, it is necessary and sufficient that no boundary point be an end of if.

Proof. Suppose that if is not perfectly compact in itself; there exists in if

a monotonic collection of closed point sets, K, which have no point in common

(cf. Moore, (II)). By D 4.1, K is a boundary element. By Theorem 10.1,

P(K) is an end of if.

Conversely, let if be perfectly compact in itself, and E be a boundary ele-

ment. Let K be the aggregate of all products e-M, where e£E. If E over-

lapped if, no element of K would be vacuous; then the product of the ele-

ments of K would be nonvacuous (cf. Frechet, (I), p. 231). Then the product

of the elements of E would be nonvacuous; by D 4.1 this is impossible. Since E

does not overlap if, there exists no end of if in P{E) (cf. Theorem 10.1)

Theorem 10.4. If the point set M of S is perfectly compact in itself and P

is a point and a limit point of if, there exists a composition point which is an

end of if in P.

Proof. If R is a neighborhood of P relative to if, let e(R) = Rm — P. Let E

be the aggregate of all the e(R)'s. Since if is a closed point set in S, Rm is

closed in 5, and e{R) is closed in S — P. Let U be an open set in 5 which con-

tains P; then U- if is a neighborhood of P relative to if. if may be regarded

as a regular subspace of 5 (cf. Alexandroff and Hopf, p. 89, Theorem IX).

It follows that U-M and U contain an element of E. If we let P = a(E),

E satisfies condition (4) of D 4.1. It may readily be verified that E satisfies

the remaining conditions. Thus, E is a point element, and Q = P(E) is a com-

position point. By Theorem 10.1 Q is an end of if.

Let the ideal point X intersect Q; by D 10.2 X overlaps if. By Theorem

8.1 Ex intersects E; by D 7.1 there exists a point element, F, which belongs

to Ex and intersects E. Since each 5-neighborhood of P contains an element

of E, and each element of F has points in common with each element of E, it

follows that Fand P intersect; cf. D 4.5. By D 9.1 X intersects P; by D 10.2

Q is an end of if in P.

11. The 5-neighborhoods. These are applied in the topologization of our

ideal points. The condition of "being separated by 5-neighborhoods" of D 11.2

is analogous to the separations which are involved in Hausdorff's Axiom D

and in the definition of normality; it finds analogous applications; cf. Theo-

rem 11.5. The end theory of the preceding section is closely related to the

5-neighborhood theory; duality of the two is brought out in Theorem 11.3. An

important characterization of the atomic points is given in Theorem 11.7.

D 11.1. An open set in 5, D, is called an S-neighborhood of if if one of the

following conditions holds: (1) if is a point or a subset of D; (2) if is a point
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element and D contains an element of M; (3) M is an ideal point, a collection

of points, or an aggregate of point elements, and D is an 5-neighborhood of

each element of M. Thus, to see whether D is an 5-neighborhood of the 5-por-

tion P, first apply (2) for each point element which belongs to some element

of P, then apply (3) for each element of P; then apply (3) for P. (Cf. D 2.3.)

D 11.2. If U and V are mutually exclusive open sets in 5 which are

5-neighborhoods of M and of N, respectively, we say that they separate M

and N (relative to 5).

Theorem 11.1. If K is an S-portion or a collection of point elements, and D

is an open set in S, then D is an S-neighborhood of K if and only if K and S — D

do not overlap.

Proof. Let D be an 5-neighborhood of the 5-portion P, PGP, and X££.

By D 11.1 D is an 5-neighborhood of X and of E; and there exists ß£X such

that DDß. Then ß- (S-D) is vacuous; by D 6.1, Theorem 10.1, and D 10.1,

neither A, E, nor P overlaps M. The converse may be established by reversing

this argument.

Theorem 11.2. If E is an element of the ideal point P, then E and P have

the same 5-neighborhoods.

Proof. Let D be an open set in 5. By Theorem 10.1 if some element of P

overlaps S — D, so does every other element. The conclusion follows from

Theorem 11.1 and D 11.1.

Theorem 11.3. Let D be an open set in S and P be an ideal point. (1) In

order that D be an S-neighborhood of P it is necessary and sufficient that S—D

have no end in P; (2) in order that P be an end of S — D it is necessary and suffi-

cient that D fail to be an S-neighborhood of any portion of P.

Proof. If D is an 5-neighborhood of P, by Theorem 11.1 P does not

overlap S — D. By Theorem 10.1, S — D has no end in P. A similar argument

proves the converse.

Let P be an end of S — D and X be a portion of P. Since X intersects P,

by D 10.2 X overlaps S — D; by Theorem 11.1 D is not an 5-neighborhood

of X. Conversely, suppose that D is not an 5-neighborhood of any portion of

P. Let Z be an ideal point which intersects P. By Theorem 8.1 P(cx(EP) -a(Ez))

is a lower bound of P and Z. By our hypothesis and Theorem 11.1 S — D

overlaps P(a(EP)-a(Ez)); by Theorem 10.1 and D 10.1 S — D overlaps

a(EP)-a(Ez), a(Ez), and Z. By D 10.2 P is an end of S-D.

Theorem 11.4. Let D be an S-neighborhood of the ideal point X, and P be

a non-isolated point of D; then D—P is an S-neighborhood of X.

Proof. If £ is a point element which belongs to an element of X, by D 11.1

there exists ei££ such that JOd. If a(E)=P, it follows from the fact that P
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is non-isolated that S-PDei (cf. D 4.1 and D 4.2). If a(E)^P there exist

elements of E, e2 and e, such that 5 — PZ)e2 and ei-e2Z)e (cf. D 4.1). Then

D-PZ)e. By D 11.1 D-P is an 5-neighborhood of E and of X.

Theorem 11.5. In order that a real or a frontier point should fail to intersect

a composition point, it is necessary and sufficient that the two points be separated

by a pair of their respective S-neighborhoods.

Proof. Let the real point P be separated from the composition point Q

by U and V. Then by D 11.1 V is an 5-neighborhood of any point element

which belongs to an element of Q; by D 4.5 and D 9.1 P intersects neither

the point element nor Q. Conversely, suppose that P and Q do not intersect,

and let the point element E be an element of Q. By D 9.1 P and E do not in-

tersect; by D 4.5 P and E can be separated by a pair of their respective

5-neighborhoods, U and V; by Theorem 11.2 V is an 5-neighborhood of the

point Q.

Theorem 11.6. If each of M and N is an ideal point or a collection of ideal

points and M <N, then each S-neighborhood of N is an S-neighborhood of M.

Proof. Suppose that D is an 5-neighborhood of N but not of M; there

exists PGM such that D is not an 5-neighborhood of P. By Theorem 11.3

S — D has an end in P, say Q; then Q<P. Since Q intersects P and M<N, by

D 9.2 (3 intersects an element Z of N; let ß be a lower bound of Q and Z. If

S(EZ)DX and 2(Ez)<GZ (cf. Theorem 8.1). Since Z<GN, D is an 5-neigh-

borhood of Z, of 2 (Ez) and of X (cf. D 11.1). Since X is an arbitrary element of

ß, D is an 5-neighborhood of ß; since ß<Q, by Theorem 11.3, (2), we are in-

volved in a contradiction. Thus, D does not exist.

Theorem 11.7. An S-portion P is atomic if and only if it satisfies the follow-

ing condition: If the sum of a finite number of open sets in 5 is an S-neighborhood

of P, at least one of them is an S-neighborhood of P.

If P is nondegenerate, the following is an equivalent condition: If M and N

are closed point sets in S and have at most a finite number of common points,

then P is not an end of both M and N.

Proof. Let Di and D2 be open sets whose sum D is an 5-neighborhood of P.

Let 5 — Di = Mi and S — D2 = M2. Suppose that neither Dx nor D2 is an 5-neigh-

borhood of P; by Theorem 11.3 Mi and M2 have ends in P. If P is atomic,

these ends are P. Let £ be a point element such that E£P. There exists e£E

such that DZ)e. By Theorems 6.1 and 10.1 E(Mx) and E(M2) are point ele-

ments and are elements of P. Then e-MiGE(Mi) and e-M2GE(M2). Since

any two elements of P intersect, by D 4.4 (e ■ Mi) ■ (e ■ M2) is nonvacuous.

Since ÖD« and Mi-M2 = S — D, we have a contradiction. Thus, the condition

is necessary.

Suppose that P is not atomic and D is an 5-neighborhood of P. By Theo-
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rems 8.1, 8.2, and 8.3 there exist two atomic point elements, E and F, which

belong to a(EP) but do not intersect. By D 4.4 and D 11.1 there exist e(£-E

and/Gf such that DZ)e+f and e/is vacuous. Let Di = D — e and D2 = Z>—/.

Since D\ does not contain e, it is not an S-neighborhood of E or of P; similarly,

Z>2is not an S-neighborhood of P. By D 4.1 and D 4.2 if a(E) ^a(F), then e-j

is vacuous and D1+D:i = D. By D 4.1 if a(E)=a(F), then e+a(F) = e,

f+a(F)=f, and e-f=a{F); since e /is vacuous, a(F) is non-isolated. Then

D\-\-D2 = D — a(F), and by Theorem 11.4 this sum is an 5-neighborhood of P.

Thus, the condition is sufficient.

Chapter II. Topological properties of the ideal points

In the first chapter we considered intersection and order; our treatment

now requires the introduction of relations which involve continuity. In §12

we introduce a topology with the help of the ^-neighborhoods. As a suggestion

of problems we shall consider and of methods we shall use, we refer the reader

to Alexandroff and Hopf, loc. cit., pp. 95-98; note particularly Theorem VIII.

In this theorem they consider a perfectly compact Hausdorff space X, a de-

composition 2~LA of X into mutually exclusive closed point sets, and a map-

ping y — a(x) of X into a space Fsuch that a(xi) = a(x2) if and only if Xi and x2

are elements of the same element of the decomposition. They develop equiva-

lent conditions, which include: (1) the transformation is continuous and Y is

a perfectly compact Hausdorff space; (2) the transformation is continuous,

and Y is a Hausdorff space; (3) the decomposition is upper semi-continuous.

In our Theorems 15.3, 15.4 and 15.5 we obtain extensive .generalizations

of the results of these authors. These results involve properties which restrict

our attention to a special class of the 5-portions, the amalgamation points.

In §14 we develop a geometric theory of these points in which the amalgama-

tion points have properties similar to those of the perfectly compact point

sets in Alexandroff and Hopfs treatment. In Theorem 15.5 this analogy is

strengthened by a kind of representation theory (13) in which the amalgamation

points are identified with certain perfectly compact collections of amalgama-

tion points, to which Alexandroff and Hopfs results may be applied. Corre-

sponding to the set-theoretic treatment of upper semi-continuity of these

authors our treatment requires the introduction of a geometric upper semi-

continuity theory; cf. D 15.1. The latter part of the paper is devoted to the

application of the basic theorems of §15.

In §13 we give characterizations of various types of regular and normal

spaces in terms of the regular composition points. In §§16 and 17 we find that

these characterizations prove useful in applying the results of §15. Such ap-

plications are particularly simple and extensive for the case of the semi-com-

pletely normal spaces, which we introduce in §13. For them the development

(13) Cf. Birkhoff, p. 76. Our representations involve not merely order but also continuity.
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of Chapter II has a completeness that is attained for more general spaces only

in Chapter III.

12. The topology of our points. We first give the following definition.

D 12.1. If P is a point and if is a point set, and each 5-neighborhood

of P is an 5-neighborhood of infinitely many elements of if, then P is a limit

point of if. Similarly, if P and if are a point element and a collection of point

elements, respectively, P is called a limit element of if.

Theorem 12.1. The space T(M), which is obtained by topologizing if by

D 12.1 is a space H Brechet. Let U be an open set in 5 and let the symbol U(M)

denote any nonvacuous subset of if consisting of all elements of if, with the possi-

ble exception of a finite number, of which U is an S-neighborhood. The collection

of all such U(M)'s may be taken as a system of neighborhoods for defining limit

points in T(M).

If P is the point and A7 is a subset of if, clearly P is a limit of N according

to D 12.1 if and only if each U(M) that contains P contains points of N dis-

tinct from P. By Frechet, (I), pp. 185-186, T(M) is a space H.

Theorem 12.2. If the composition point P neither intersects nor is a limit

point of the set if of composition points, there exists an S-neighborhood of P

which is not an S-neighborhood of any element of if.

Proof. P has an 5-neighborhood D, which is an 5-neighborhood of at most

a finite number of elements of if, X\, Xi, ■ ■ ■ , Xm. Let E and F,- be point

elements which are elements of P and of Xi, respectively. There exist ßiE-E

and/tGFi such that e,-/t- is vacuous. By D 4.1 there exists e££ such that

ei-e2 e3 ■ • • emZ)e. Let U= (5— /0 • (5— f2) ■ ■ ■ (S—fm). Then £Oe and U is

an 5-neighborhood of E and of P; but U is not an 5-neighborhood of F,- or

of Xi. Then D- U satisfies the conclusion.

Theorem 12.3. In order that a composition point be a limit point of a closed

set of 5, it is necessary and sufficient that the point be nondegenerate and contain

an end of the set.

Proof. Let if be the set, P be a point which satisfies the condition, and E

be a point element which is an element of P. By Theorem 10.1 P and E over-

lap if; by D 6.1 each element of E contains points of if. By the hypothesis

and D 8.6 E is nondegenerate; by D 4.1 no point of if is common to all ele-

ments of E; thus, each of these elements contains infinitely many points of if;

by D 11.1 each 5-neighborhood of P contains an element of E. Thus, P is a

limit point of if.

If there exists no end of if in P, by Theorem 11.3 5 —if is an 5-neighbor-

hood of P. Then P is not a limit point of if. If P is degenerate by D 8.6 and

D 4.1 a(E) is an isolated point of 5; then a(E) is an 5-neighborhood of E

and of P, and P is not a limit point of if.
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D 12.2. If M is a collection of point elements, let a(M) be the collection

of all real points which are attached to elements of M (cf. D 4.2). If M is a

real point or a frontier point, let a(M) be M or the null set, respectively. If E

is a set of points, or is an ideal point, let a(M) be the sum of all sets a(m),

where m£M. The concept a(M) is applied in the definition of regularity (cf.

D 13.1). In Example E 9.2, a(Q(F)) = F. The method of the definition involves

an induction similar to that of D 11.1.

Theorem 12.4. Let P and Q be ideal points, P <Q, E£P, and D be an

S-neighborhood of P. Then a(Q)Z)a(P), a(P)=a(E), and DsDa(P).

Proof. By D 8.2 if FEQ, E<F.U X£a(E), there exists X£E such that

a(X) =X. By Theorem 7.1 there exists SGEsuch that X intersects 8; by Theo-

rem 5.1 a(X)=a(5). Thus, a(F)D>a(E). Since a(<2)=2>(E), for FG<2, and

a(P) =!>(£), for EGP, it follows that a(Q)Da(P). If P = £>, then E<F, and

F<E; then a(E)Z)a(F), and a(F)Do(£); thus, a(E) =a(F); since Eis any ele-

ment of Q = P, a(E)=a(P). By D 11.1 D is an S-neighborhood of X£EGP.

If XGS-Ds, by D 4.1 and D 12.2 X is not an element of a(X), of a{E), or

of a(P).
13. Regular points and normal spaces. Since we deal extensively with per-

fectly compact Hausdorff spaces of our ideal points, we find need of the con-

cept "the regularity relative to S of an ideal point." In terms of this concept

we characterize various types of regular and of normal spaces (Theorems 13.1

to 13.3). These characterizations are of interest, since the regularity of a

Hausdorff space does not imply its normality. These characterizations yield

methods for applications of the decomposition and mapping theory of §15;

the most extensive results are given for the semi-completely normal spaces,

which we introduce in this section. Normality proves to be a weaker condition

than semi-complete normality; and the latter is weaker than complete nor-

mality. In Theorem 13.7 we show that regular real or frontier points may be

replaced by regular composition points in questions which involve either con-

tinuity or order. This procedure gives a basis for applying our theory to ques-

tions concerning the embedding of S in other spaces, and to those involving

mappings of S. In general our methods do not require the regularity or the

normality of the basic space; they are applicable locally, so long as they deal

with regular ideal points. For instance, we are in a position to study an infini-

tesimal regular portion of an irregular point. For the plane all composition

points are regular.

D 13.1. A point P is regular (relative to S) provided that if D is an S-neigh-

borhood of P there exists an S-neighborhood of P, R, such that D-\-a(P) D Rs

(cf. D 12.2 and Alexandroff and Hopf, p. 68).

D 13.2. S is said to be semi-completely normal provided that if P is a point

of S, then the subspace of S, S — P, is normal.

Clearly each completely normal space has this property; the plane is an
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example. In Theorem 13.4 we show that each semi-completely normal space

is normal; an example by Tietze shows that the converse is not true (loc. cit.,

pp. 304-306). An example by F. B. Jones shows that if the hypothesis of the

continuum is valid, then there exists a semi-completely normal space which is

not completely normal. He has constructed a space which is normal (loc. cit.,

pp. 673-675). On page 674 he has a point set N, which is uncountable and

contains no limit point of itself. By his Theorem 4 and the continuum hy-

pothesis S is not completely normal. It is obvious from his construction of 5

that if P is a point of S then S — P is normal.

Theorem 13.1. (1) In order that a point of S be regular, it is necessary and

sufficient that it intersect no boundary point. (2) An irregular point of S inter-

sects an irregular boundary point.

Thus, a regular space is characterized by the property that it be a Haus-

dorff space and that none of its points intersect a boundary point.

Proof. Let P be irregular, and U be an open set containing P such that

if R is an S-neighborhood of P, then R-(S—U) is nonvacuous. If M=U — U

were perfectly compact, it would be possible to separate P and M by a pair

of open sets, U\ and t72(14); then U- U\ is an open set which contains P and

is a subset of U; the closure of this set is a subset of U, since it contains no

point of Ui and (TOikf. Thus we are involved in a contradiction; it follows

that there exists a collection of open sets, G, which covers M such that no

finite subcollection of G covers M (cf. Kuratowski and Sierpinski, loc. cit.).

For X(ElM let U(X) and W(X) be a definite pair of mutually exclusive open

sets which contain X and P, respectively, such that U(X) is a subset of some

element of G. Clearly, no finite collection of the U(X)'s covers M. Let D de-

note the sum of a finite collection of the U(X)'s, F = M— M-D, and E be the

set of all F's. It follows that £ is a boundary element; let it be an element of

the boundary point ß. Suppose that ß is regular; by Theorem 11.4 S — P is an

5-neighborhood of ß; since a(ß) is vacuous, by D 13.1 there exists an 5-

neighborhood of ß, V, such that S — PZ)V; then 5— V is an open set con-

taining P. Since V contains an element of E, M — M ■ V can be covered by

a finite collection of the U(X)'s, say U{XX), U(X»), ■ ■ ■ , U(Xn). The

sum of V and this finite collection is an open set which contains M. Let

8 = U- (5-7) ■ W(XX) ■ ■ -_W{Xn). Then 8 is an open set which contains P,

8 ■ M is vacuous, and CO 8. Thus, the supposition that ß is regular involves a

contradiction. Suppose that P and ß did not intersect; then by Theorem 11.5

ß and P can be separated by a pair of their respective 5-neighborhoods, V

and Wi \ by Theorem 11.2 and D 11.1 V contains an element of E; since V

does not contain P we arrive at a contradiction as we did above. Thus, we

have established the truth of (2) and the sufficiency of the condition in (1).

(") Follow the proof of Theorem IX, p. 89, Alexandroff and Hopf.
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Let P be regular, £ be a boundary element, and ß = P(E). By D 4.1 there

exists e££ such that P£S —e. Since e is closed in S, there exists an open

set U, containing P such that S — eZ)U. By D 11.1 and Theorem 11.2 S—U

is an S-neighborhood of £ and of ß. By Theorem 11.5 P and ß do not inter-

sect. Thus, the condition is necessary.

Theorem 13.2. A Hausdorff space is normal if and only if each of its bound-

ary points is regular.

Proof. Let 5 be normal, £ be a boundary element, and D be an S-neighbor-

hood of the boundary point P(£). By D 11.1 there exists e££ such that

DZ)e. Since S — D and e are closed and mutually exclusive, they can be sepa-

rated by a pair of mutually exclusive open sets U and V. Since V"Z)e, by

Theorem 11.2 V is an S-neighborhood of P(£); also PO V.

Conversely, let the condition hold in S and If and N be mutually exclu-

sive closed sets. By Theorem 13.1 each point of 5 is regular. For PGM" let

D(P) be an open set which contains P such that N-D(P) is vacuous. Let D

denote any open set which is the sum of a finite number of the P(P)'s; and

let £ be the aggregate of all the sets M—M-D. If one of the D's contains M,

the complement of its closure contains N; if not, £ is a boundary element.

Since S — NZ)M, S — N is an 5-neighborhood of P(£); by our condition there

exists an 5-neighborhood of P(£), U, such that 5 — AO U; then U contains an

element of £, and there exists a D such that UZ)M—M-D. Then D+ UZ)M,

and N-(D-r-U) is vacuous. Thus, the complement of D+U is an open set

which contains N, and the condition is sufficient.

Theorem 13.3. A Hausdorff space is semi-completely normal if and only if

each of its composition points is regular.

Proof. Let 5 be semi-completely normal, ß be a composition point, and £

be a point element which is an element of ß. If ß is degenerate, then a(ß) is

an isolated point of 5 and is an 5-neighborhood of ß; then ß is regular (cf.

D 8.6 and D 4.1). If a(ß) is a non-isolated point of 5, then by D 13.2 the sub-

space S — a(ß) of 5 is normal; then ß is a boundary point of this subspace; by

Theorem 13.2 ß is a regular boundary point of this subspace. It follows with

the help of Theorem 11.4 that ß is a regular decomposition point of 5. If ß

is a boundary point of 5 let £ be a point element, £G/3; let P be a point of 5;

and let F be the collection of all elements of £ which do not contain P; it

follows that £ is a boundary element of 5 and of 5 —P; also, in 5, £<£,

E<F, and £G|3; by the argument we used above it follows that F is an ele-

ment of a regular boundary point of 5 —P; and, hence, that ß is regular rela-

tive to 5.

Conversely, let all composition points of 5 be regular and let P be a point

of 5. By Theorem 13.2 5 is normal and 5 —P is regular. Methods analogous

to those used for Theorem 13.2 show that 5 —P is normal; by D 13.2 5 is

semi-completely normal.
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Theorem 13.4. A semi-completely normal space is normal.

By Theorem 13.3 all the boundary points are regular; the conclusion fol-

lows from Theorem 13.2.

Theorem 13.5. // F is a finite point set in a semi-completely normal space 5,

then S—F is semi-completely normal.

This may be proved with the help of Theorem 13.3 and the methods used

in establishing that theorem.

Theorem 13.6. Let a regular point P be added to S so that the space S-\-P

is a Hausdorff space. If S is normal, so is 5+P; in order that 5+P be semi-

completely normal, it is necessary and sufficient that S have the same property.

Thus a semi-completely normal space is characterized by the following

property: If we either add or remove a finite number of regular points, or do

both, and the result is a Hausdorff space, it is normal.

Proof. Let Q be a boundary point of the space 5+P. Since P is a regular

point, by Theorem 13.1 Q and P do not intersect relative to 5+P; by Theo-

rem 11.5 there exist in 5+P mutually exclusive open sets U and V which

are (5+P)-neighborhoods of Q and P, respectively. Let E be a point ele-

ment of 5+P such that no element of E contains P and that P£<2; then E

is a point element of 5. Since 5 is normal and U is also an 5-neighborhood

of E, it follows from Theorem 13.2 that there exists an 5-neighborhood of E,

W, such that U~Z)W. Since the closures of Win 5 and in 5+P are identical,

it follows that Q is a regular boundary point of 5+P. By Theorem 13.2 5+P

is normal.

Theorem 13.7. Let P be a real, a frontier, or a composition point which is

regular; if a(P) is a non-isolated point of 5, let F(P) be the aggregate of all sets,

Ds — a(P), where D is an S-neighborhood of P; otherwise, let F(P) be the set of

all the Ds's. Let Q(P) be the composition point of which F(P) is an element.

Then (1) a(P)=a(Q(P)), P <Q(P), and Q(P) <P; (2) if P is a limit point of a
point set, then so is Q(P); and conversely; (3) each S-neighborhood of P is an

S-neighborhood of Q(P) ;if D is an S-neighborhood of Q(P), either D or D-\-a{P)
is an S-neighborhood of P; (4) Q(P) is regular.

Thus, Q{P) is equivalent to P both from the point of view of order and of

continuity. The topological applications of our theory require such a twofold

equivalence; we discuss this in the introductions to Chapter II and to §§14

and 15.

Proof. Let P be a composition point and £ be a point element such that

EG.P- Since each element of P(P) contains an element of E, E<F(P) (cf.

D 4.6). Let H be a point element which does not intersect E; there exist e£P

and hGH such that e h is vacuous. Then S — h^e; by Theorem 11.2 S — h
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is an S-neighborhood of P. By D 13.1 there exists an 5-neighborhood of P,

U, such that a(P) + (5-Ä)DFs. Then Vs-a(P) or Vs is an element of F(P),

and contains no point of h. By D 4.4 F(P) and H do not intersect. (It may

readily be verified by D 4.1 that F(P) is a point element.) It follows that

F(P)<E (cf. D 4.6). Since also E<F(P), it follows by D 8.2 that P <Q(P)
and Q(P) <P; thus, P = Q(P).

Next, let P be a real point or a frontier point. Clearly, F(P) satisfies the con-

ditions of D 4.1 and is a point element. LetX be a composition point which does

not intersect P. By Theorem 11.5 P and X can be separated by a pair of their

respective 5-neighborhoods, U and V. There exists an 5-neighborhood of P,

W, such that UZ)WS. Then U contains an element of F(P). By D 11.1 V con-

tains elements of each point element which belongs to X; by D 4.4, D 7.1,

and Theorem 8.1 Q(P) and X do not intersect. By D 9.2 Q(P)<P. Con-

versely, let X be an ideal point which does not intersect Q(P); by Theorem

8.1, if G is a point element belonging to X, G does not intersect P(P). By

D 4.4 there exist /GF(P) and gGG such that/-g is vacuous. There exists an

5-neighborhood oiP,D, such that either/= 5S or/=25s-P. ByD4.15-7Js

contains g and is an 5-neighborhood of G. By D 4.5 and D 9.1 P intersects

neither G nor X. By D 9.2 P<Q{P).

Since P is regular, each of its 5-neighborhoods contains an element of

F{P) and is an 5-neighborhood of Q(P). If D is an 5-neighborhood of Q(P),

DDfGF(P) (D 11.1 and Theorem 11.2). Then f+a(P) = RS, where R is an
5-neighborhood of P and of Q(P). Then D+a(Q(P))Z)RsDR, and Q(P) is
regular; since a(Q(P)) =a(P), either D-\-a{P) or D is an open set containing

R, and is an 5-neighborhood of P.

If P is a non-isolated point of 5, the conclusion of (2) follows from (3), (4),

D 12.1, and Theorem 11.4. For the other cases, P and Q(P) have the same

5-neighborhoods, and (2) follows.

14. The amalgamation points. Suppose that the regular space T is an im-

mediate extension of 5. By Theorem 13.7 we can replace each point of 5 by

an equivalent decomposition point, and each point of T — 5 by a boundary

point, and thus obtain a space T\ of composition points which is topologi-

cally equivalent to T. We now introduce the amalgamation points in order

to make more general applications, such as those we discuss in the introduc-

tions of Chapter II and of §13. These applications require that the amalgama-

tion points include the composition points and that they have special properties

which do not hold for all ideal points. These properties are similar to those of

closed point sets in perfectly compact Hausdorff spaces. Thus, in Theorems

14.3, 14.4, and 14.5 we establish for amalgamation points a property analo-

gous to the Borel-Lebesgue covering property; this analogy is emphasized in

Theorem 15.3. Theorem 14.11 corresponds to the theorem that a nonvacuous

product of perfectly compact sets is perfectly compact. In Theorems 14.6 and

14.7 we establish a condition for the separation of non-intersecting amalgama-
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tion points; this suggests the condition for the separation of closed sets, which

characterizes the normality of a Hausdorff space.

In Theorems 14.12 and 14.13 we add to the characterizations of the nor-

mal and the semi-completely normal spaces. For such spaces we obtain an

extensive knowledge concerning the atomic elements of the developments of

§§15 and 16. For the Hausdorff spaces in general such a completeness is at-

tained in Chapter III only after the development of a theory of multiplicative

systems and lattices of regular amalgamation points. Theorems 14.10 and

14.11 afford a basic technique for this lattice theory. The examples at the end

of this section give indications of the extent to which our results may find

applications in irregular spaces.

D 14.1. An 5-portion, P which satisfies the following condition is called

an amalgamation point: If ££P and X is a point element which is a limit

element(15) of E, then X and E intersect. In the first chapter we defined order

in terms of intersection. Since both order and continuity relations are used in

our topological applications of the amalgamation points, it may be noted that

the definition involves both order and continuity.

D 14.2. If M is a collection of points, P is an amalgamation point, P <M,

and M<P, we say that P is the amalgamation of the elements of M. That is,

the summation of D 9.3 is called an amalgamation if the result of the summa-

tion process is an amalgamation point.

Examples. E 14.1. Let 5 be the plane, E be the set of all decomposition

point elements, and F be the set of all boundary elements. By Theorems 13.7,

13.1 and 5.2, E does not intersect F. Clearly, each element of F is a limit ele-

ment of E. Thus, P(E) is not an amalgamation point. If X£E, there exists

an 5-neighborhood of X, R, whose closure is perfectly compact in itself; by

Theorems 10.3 and 11.3 S—R is an 5-neighborhood of each boundary ele-

ment. Thus, X is not a limit element of F, and P(F) is an amalgamation point.

E 14.2. The point Q(F) of E 9.2 is an amalgamation point; it is the amal-

gamation of all ends of F.

The point of E 8.3 is an amalgamation point but is not a composition

point. The point P(E) of E 8.2 is not an amalgamation point; here F is a limit

element of E but does not intersect E.

Theorem 14.1. An S-portion P is an amalgamation point if and only if the

following condition holds: If the composition point X is a limit point of the collec-

tion of composition points M and P<M<P, then X intersects M and P.

It may be proved with the help of D 14.1 and Theorems 11.2, 8.1, and 9.1.

Theorem 14.2. A composition point is an amalgamation point.

Proof. Let E and F be non-intersecting point elements; by D 4.4 there

(1S) Cf. D 12.1, and D 7.1.
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exist e£E and /Gesuch that e-fis vacuous. Then i? = 5 —O/- If the point

element G belongs to an element of P{E), it intersects itself and E (cf. D 8.1

and Theorem 7.1). If g£G, e-g is nonvacuous, R does not contain g, and R

is not an 5-neighborhood of G. Thus, F is not a limit element of any element

of P(E). By D 14.1 P{E) is an amalgamation point.

D 14.3. If If is a point set, G is a collection of open sets in 5, and for

mGM there exists gGG such that g is an 5-neighborhood of m, then G is

said to cover M {relative to 5).

Theorem 14.3. Let M be an amalgamable collection of ideal points and let G

cover M relative to S. Then there exists a finite subcollection of G such that the

sum of its elements is an S-neighborhood of M.

Note that the conclusion does not state that the finite subcollection covers

M relative to 5. The latter is the type of conclusion one has where the Borel-

Lebesgue property holds. Theorem 14.3 is used in establishing the Borel-

Lebesgue property for certain decompositions of an amalgamation point (cf.

Theorems 14.4, 14.5, and 15.3).

Proof. Suppose that the conclusion does not hold for G. Let N be the ag-

gregate of all atomic ideal points which are portions of elements of M. If R

is an open set of 5, let N(R) denote the aggregate of all elements of N of which

R is an 5-neighborhood. Let H be the collection of all R's such that N(R)

is covered relative to 5 by a finite subcollection of G, say G(R). Let the symbol

L denote the complement in 5 of an element of H; let E be the aggregate of

all L's, and let K be the product of all the L's.

It follows from Theorems 8.1 and 9.1 that if an ideal point intersects an

element of either M or A7, then it intersects an element of the other; by

D 9.2, M<N and N<M; by Theorem 11.6 each 5-neighborhood of M is an

5-neighborhood of A7, and conversely. Since each element of A7 is a portion

of an element of M, it follows by Theorem 11.6 that G covers A7; if i?£G,

then R covers N(R) relative to 5; thus R(EH, and H~2)G. Suppose that Dx

is the sum of the elements of a finite subcollection of H, say Hi, and Di is an

5-neighborhood of M; then Di is an 5-neighborhood of A7; by Theorem 11.7

Hi covers A7 relative to 5. If RxElHi, G(Ri) covers N(Ri) relative to 5. Since

N is the sum of the finite collection of N(Ri)'s, N is covered by the sum of the

sets G(Ri); this sum, G*, is a finite subcollection of G. If D* is the sum of the

elements of G*, D* is an 5-neighborhood of A7 and of M. This is contrary to

our supposition concerning G. Thus, Di and Hi do not exist. Thus, the hypoth-

esis of our theorem holds for each of G and H, but the conclusion holds for

neither.

Suppose that an element of E, L, were vacuous; then S — L = S would

be an element of H; then A7 = A7(5), and A7 is covered by a finite subcollec-

tion of G, G(S); since HZ)G we are involved in a contradiction (cf. the

preceding paragraph). Thus, L does not exist. If Ri and R2 are elements
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of H, it follows from Theorem 11.7 that NiRi+Rt) = N(R0+N(R2). Since

S — (Ri-\-R2) = {S — Ri) ■ (S — R2), it follows that the product of two elements

of E is an element of E.

Let PG.K. Suppose that Li£E and P is not a limit point of L\. There

exists an open set in S, D, which contains P but contains no element of L\ — P.

Then 5-LOP-Fand A^S-LiO A^P-P). Thus, P-PGiland N(D-P)
is covered relative to 5 by a finite subcollection of G. Since P£f?P, S — D is

not an element of E, D is not an element of H, N{D) is not covered by a finite

subcollection of G, and N(D)^N(D-P). By Theorem 11.4 if P were non-

isolated, we should have N{D) = N{D —P); thus, P is isolated. By Theorem

8.4 there exists one atomic ideal point, ß, such that P = a(ß), and ß is degener-

ate (cf. D 12.2 and Theorem 13.7). Thus, N(D) is either N(D-P) or

ß + N(D — P); in either case it can be covered by a finite subcollection of G,

and P£7P Therefore, we are involved in a contradiction, and Li does not

exist.

Let PE.K. For R an 5-neighborhood of P and LEE let F(R, L)
= (L—P) • Rs, and let F be the aggregate of all F(R, L)'s. Since P is a limit

point of each L, the product of two R's is an R, and the product of two L's

is an L, it follows that the elements of F satisfy conditions (2) and (1) of

D 4.1; if they also satisfy (4) they satisfy (3), and F is a decomposition point

element. Suppose that (4) is not satisfied, and that U is a definite 5-neighbor-

hood of P which contains no element of F. Let T be the aggregate of all sets,

(Ü- U)-F(R, L), where F(R, L)GF and UDR. By the definition of U no
element of T is vacuous. Since the product of two elements of F is an element

of F, the product of two elements of T is an element of T. Let F£ U — U;

since 5 is a Hausdorff space, there exist in it mutually exclusive open sets,

Fand W, which contain FandP. If R = U-PFand L£P, then (77 — U) ■ F(R, L)
does not contain F; thus, the product of the elements of T is vacuous; by D 4.1

T is a boundary element. Similarly, if K is vacuous, E is a boundary element.

Let 2 denote any of the three F, T, or E which is a point element; we have

shown that at least one of them satisfies this condition. 2 has the property

that if L£E then L contains an element of 2. Let ß be the composition point

of which 2 is an element.

Let JGJV and let Y be a point element which is an element of X (cf.

Theorem 8.2 and D 8.4). There exists gxGG such that gx is an 5-neighborhood

of X (for, G covers N relative to S). Since HZ)G, S — gxEE, S—gx contains

an element of 2, and gx contains an element of F; by D 4.4 2 does not inter-

sect F; by Theorem 8.1/3 does not intersect X. Since N<M<N and M is

amalgamable so is N. By Theorems 9.1 and 14.1 ß is not a limit point of N.

By Theorem 12.2 there exists an 5-neighborhood of ß, D, which is an 5-neigh-

borhood of no element of N. There exists 2i£2 such that PO2i. Since N(D)

is vacuous, D^H, 5 —PGP, and S — PZ)22, where 22£2. Since 2i-22 is

vacuous, we are involved in a contradiction.
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Theorem 14.4. An amalgamable collection of atomic ideal points has the

Borel-Lebesgue covering property and is perfectly compact in itself.

By Theorems 14.3 and 11.7 the set has the covering property. It is per-

fectly compact in itself; cf. Theorem 12.1 and Kuratowski and Sierpifiski,

loc. cit., Bibliography.

Theorem 14.5. The aggregate of all atomic ideal points is amalgamable and

is perfectly compact in itself. The amalgamation of this collection is regular,

and it is the maximal ideal point.

Proof. Let M be the collection. By Theorem 9.1 the summation of the

elements of M, ß exists. If P and Q are intersecting ideal points, by Theorem

9.2 a(P) -a(Q) is nonvacuous; then MZ)a(P) a(Q); by Theorems 9.2 and 9.1

Q intersects ß and M; by D 9.2 P <M. By Theorem 14.1 ß is an amalgamation

point. Clearly, a(ß) consists of all points of 5 (cf. D 12.2 and D 9.4). By D 13.1

ß is regular.

Theorem 14.6. Let P be a real point, Q be an amalgamation point, and M

be a collection of composition points such that Q<M<Q. The following condi-

tions are equivalent: (1) P and Q do not intersect; (2) no element of M intersects

P ; (3) P and Q can be separated by S-neighborhoods.

Proof. Let IGMand £ be a point element which belongs to some element

of X. Since X <Q, by Theorem 8.1 £ belongs to an element of Q. By D 9.1

if X intersects P, then so does Q; thus condition (1) implies condition (2).

By condition (2) and Theorem 11.5 X and P can be separated by a pair of

their respective S-neighborhoods, U(X) and V(X). By Theorem 14.3 there

exists a finite collection of the U(X)'s such that the sum of these, U, is an

S-neighborhood of M. If V is the product of the corresponding V(X)'s, Vis

an 5-neighborhood of P, and TJ■ V is vacuous. By Theorem 11.6 U is an 5-

neighborhood of Q. Thus, (2) implies (3). By D 11.1, D 11.2, D 9.1 and D 4.5,
(3) implies (1).

Theorem 14.7. If P and Q are amalgamation points, one of which is regular,

the following are equivalent: (1) P does not intersect Q; (2) P intersects no element

of a(Q); (3) P and Q are separated by S-neighborhoods.

Proof. By D 11.1, D 11.2, D 7.1, and D 4.4, and Theorem 8.1, (3) implies
(1). By Theorem 9.1, (1) and (2) are equivalent; to establish (3) we shall con-

sider the case of Q being regular. Let X^a(P), F£a(<2), and E and F be

point elements such that E^X and F£ Y (cf. Theorem 8.2). By Theorem 8.1

E does not intersect F; there exist e(F)£F and /£F such that f-e(Y) is

vacuous. Then by D 4.1 D(Y)=S-e(Y)sDf, and D( Y) is an 5-neighborhood

of Fand of Y. By Theorems 9.1 and 14.3 there exist Fi, F2, • • • , Y„ such that

D=D(Y1)+D(Y2)+ ■ ■ ■ +D(Yn) is an 5-neighborhood of a(Q) and of Q (cf.

Theorem 11.6). By D 13.1 there exists an 5-neighborhood of Q, R, such that
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D+a(Q)DRs. By Theorem 9.1 Q<a(Q)<Q; the methods of the proof of

Theorem 12.4 show that a(Q) = a(a(Q)). If each element of E contained points

of a(Q), by D 4.1, D 11.1, and D 12.2 X would be a limit point of a(Q); by
Theorem 14.1 X intersects a(Q) and Q. By (1) this is impossible, and there

exists eoG-Esuch thata(O/)-e0 is vacuous. By D 4.1 there exists eGP such that

eo-e(Fi) e(F2) • ■ ■ e(Yn)Z)e. Then e-(D+a(Q)) is vacuous; 5— Rs contains e

and is an S-neighborhood of E and X; X and Q can be separated by S-neigh-

borhoods. The conclusion for (3) follows by methods used for Theorem 14.6.

Theorem 14.8. A regular amalgamation point which is a portion of either a

decomposition point or of a collection of boundary points is a composition point.

Proof. Let P be the amalgamation point and Q be a decomposition point

such that P<Q. Let PGP; let F and G be point elements such that EG(?

and G belongs to E; let F(P) and Q{P) be defined as in Theorem 13.7. By

Theorem 7.2 and D 8.2 G<£<F. By D 7.1 G intersects F. By Theorems 5.1

and 12.4, and D 12.2, a{Q) =a(F) =a(G) =a(E) = a(P). If R is an S-neighbor-

hood of a(P), it is an S-neighborhood of F, Q, and P (cf. D 4.1, D 11.1, and

Theorem 11.6). Since P is regular, it has an S-neighborhood U such that

R+a(P)Z)U~s. Then Fs or Us-a(P) is an element of F(P). By D 4.1 F(P)

is a point element, and a(P) =a(F(P)).

Consider the second hypothesis for P. Let XGS, R = S — X; by an argu-

ment similar to that of the preceding paragraph, it follows that a(P) is vacu-

ous, and F(P) is a boundary element.

Since each element of F(P) contains an S-neighborhood of P, each ele-

ment of F(P) contains elements of each point element which belongs to E.

Thus, E<F(P), and P<Q(P); cf. Theorem 7.1 and D 8.2. Suppose that not

Q(P) <P; by Theorem 9.2 there exists YEa(Q(P))-a(P), and F does not

intersect P. By Theorem 14.7 P and F can be separated by S-neighborhoods

U and V. Since For TJ-a(P) is an element of F(P), and F(P) G(?(P), F(P)

intersects no point element of which Fis an S-neighborhood. By Theorem 8.1

F and Q(P) do not intersect. Thus, the supposition that "not Q(P) <P" in-

volves a contradiction. Since, also, P<Q(P), P = Q(P).

Theorem 14.9. If D is an S-neighborhood of the regular amalgamation point

P, then the set (S-D)-a(P) is finite or vacuous.

Proof. Suppose that M= (S-D)-a(P) is infinite. By Theorems 10.3, 10.4,

and 12.3 there exists a composition point ß which is an end and a limit point

of M; since S-LOM, ß is an end of S-D (cf. D 10.2). By Theorems 10.2

and 11.3 P and ß do not intersect. By Theorem 14.7 P and ß can be separated

by S-neighborhoods U and V. Since ß is a limit point of M, V contains points

of M and of a{P); by Theorem 12.4 COa(P). Thus, the supposition that M

is infinite involves a contradiction.
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Theorem 14.10. (1) A perfectly compact set of regular amalgamation points

is amalgamable. (2) An amalgamation of a collection of regular amalgamation

points is regular.

Proof. By Theorem 9.1, if A7 is the set of (1), then A7 has a summation P;

A7<P <a(P) < A7. If the composition point X intersects no element of a(P),

by D 9.2 X intersects no element of A7. By Theorem 14.7 each element of A7

can be separated from X by ^-neighborhoods. There exists a finite collec-

tion H of open sets which covers A7 relative to 5, and an 5-neighborhood

of X, U, such that U has no point in common with an element of H (cf. the

proof of Theorem IX, p. 89, Alexandroff and Hopf). Let Wbe the sum of the

elements of H; it is an 5-neighborhood of A7 and of a{P) (cf. Theorem 11.6).

Thus, X is not a limit point of a(P). By Theorem 14.1 P is an amalgamation

point.

Let the elements of A7 be regular, and let D be an 5-neighborhood of P. If

X£iV, D is an 5-neighborhood of X and a(P)Z)a(X) (cf. Theorems 11.6 and

12.4). By our hypothesis there exists an 5-neighborhood of X, U(X), such

that D+a(X)Z) U(X). By Theorems 14.3 and 11.6 there exists a finite collec-

tion of the U(X)'s, whose sum U is an 5-neighborhood of A7 and of P. Then

D+a(P)DV.

Theorem 14.11. (1) If a collection H of amalgamation points has a lower

bound, its greatest lower bound is an amalgamation point; (2) if the elements

of H are regular and one of them is the amalgamation of a set of regular composi-

tion points, then their greatest lower bound is regular.

Theorems 14.5, 14.10, and 14.11 are applied in Chapter III in questions

concerned with the existence and the properties of multiplicative systems and

complete lattices of regular amalgamation points. Examples may be given to

show that the conclusion of (2) does not hold if the second part of the hy-

pothesis be omitted.

Proof. Let Fbe the product of all the a(h)'s, where h(EH. If P is the sum-

mation of the elements of F, by Theorem 9.2 P is the greatest lower bound

of the h's. Let the composition point Q be a limit point of F which does not

intersect P. Suppose that no element of a(Q) is a limit point of F. By Theorem

12.2, if ß(E.a(Q), there exists an 5-neighborhood of ß, D(ß), which is not an

5-neighborhood of any element of F. By Theorems 14.2, 14.3, and 11.6 there

exists an 5-neighborhood of «3, P, which is the sum of a finite collection of the

D(ß)'s. By Theorem 11.7 Pis not an 5-neighborhood of any element of P. Thus,

we are involved in a contradiction, and there exists /3£a(<2) such that ß is a

limit point of F. If h{£H, a(A)DF and ß is a limit point of a(h); by Theorem

14.1 ß intersects an element of a(h). Since ß is atomic, /3£a(/z). Thus, ßG.F;

by Theorem 8.1 P and Q intersect. By Theorem 14.1 P is an amalgamation

point.
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We shall first establish (2) for the case where the number of elements of H

is the positive integer n. Clearly (2) holds for w=l. Suppose that (2) holds

for each collection with fewer than n elements. Let A be an element of H

which is the amalgamation of a collection T of regular amalgamation points;

Let B£zH—A, and H' =H—B. By the definition of n, the elements of H' have

a greatest lower bound C, which is a regular amalgamation point. Let Z be

the greatest lower bound of B and C. By Theorem 9.2 Z is the greatest lower

bound of the elements of H; by part (1) Z is an amalgamation point. Let D

be an 5-neighborhood of Z. If X is an amalgamation point, let D(X) denote

the aggregate of all elements of a(X) of which D is not an 5-neighborhood.

By Theorem 14.4 a(X) is perfectly compact in itself. Since D{X) is closed

relative to a(X), it is perfectly compact in itself (cf. Frechet, (I), pp. 229-

230). By Theorem 11.6 D is an 5-neighborhood of a(Z); by Theorem 9.2

a(Z)=a(B)-a(C); it follows that D{B)-D{C) is vacuous. If X£.D(B), by

Theorem 8.1 X does not intersect C. By the definition of n, C is regular; by

Theorem 14.7 X and C can be separated by 5-neighborhoods. By Theorem

11.6 each element of D(B) can be separated from each element of D{C) by

5-neighborhoods. Since each of D(B) and D(C) is perfectly compact in itself,

they can be separated by 5-neighborhoods Di and D2 (apply an argument

similar to that for the proof of Theorem IX, p. 89, Alexandroff and Hopf).

Then D-\-Di and D-\-D2 are 5-neighborhoods, respectively, of a{B) and of B,

and of a(C) and of C, respectively. Since B and C are regular, there exist

5-neighborhoods Ri and R2 of B and C, respectively, such that Ei = D+Di

+a(B)DRu and E2 = D +D2+a(C)DR2. Since Z<B and Z<C, by Theo-

rem 12.1 R = Ri-R2 is an 5-neighborhood of Z. Let Afi = D+Pi, and

A7! =(5-Mi)-a(5); thus, Mi+N^El Let M2 = D+D2, N2=(S-M2)-a(C),

and K = M1-N2 + M2-N1 + N1-N2. By Theorem 14.9 Nu N2, and K are finite

or vacuous. Since D\ D2 is vacuous, M\- M2 = D, and E\-E2= (Mi+Ni)

■(M2 + N2)=D+K. Thus, D+K~Z)R. By Theorem 12.4 iOa(Z) and

a(B) -a(C)Z)a(Z). Let L = K — K a(Z); then L is finite or vacuous. Sup-

pose that there exists IG«(2) and FGL such that X intersects F. Since

X<Z<A, XEa(A). Since A<T, by D 9.2 X intersects an element of T,

say X\. Let the point elements E and Ei be elements of X and of Xu respec-

tively. By Theorem 8.1 E and Ey intersect; by Theorem 5.1 a(E) =a{Ei); by

D 12.2 a(X)=a(X1). Since X<Z, by Theorem 12.4 o(Z)>(Z); thus,

a(Xi) t^Y. By D 4.1 there exists «iGEi such that d does not contain F.

Then 5 — F is an 5-neighborhood of Ex and of X\. Since Xi is regular, there

exists an 5-neighborhood of Xlt U, such that 5— YZ)U; then S—U is an

5-neighborhood of F. Since X is atomic and intersects X\, X <Xx; then U

is an 5-neighborhood of X. By Theorem 11.5 X does not intersect F; thus

the supposition that X and Fexist involves a contradiction. By Theorem 14.6

Z and L can be separated by a pair of their respective 5-neighborhoods, U

and V. Then W = R- U is an 5-neighborhood of Z, RDW, and W L is vacu-
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ous; since D+KDR, D+a(Z)DD + (K-L)DW. Thus, Z is regular. Thus,

by induction we establish the conclusion of (2) for any case where H is finite.

Consider the infinite case. Let Z be the lower bound of the elements of H;

let A, D, and D(X) be defined as in the preceding paragraph. By Theorem 9.2

a{Z) is the product of the sets a(h), where h(^H; by Theorems 9.1 and 11.6

D is an 5-neighborhood of a(Z); hence, the sets D(h) have a vacuous product.

We showed in the preceding paragraph that each of the D(h)'s is perfectly

compact in itself; it follows that there exists a finite subcollection of H,

H' = (hi,h2, • ■ ■, hn), such that the product \ = D(hi) -D(hi) ■ ■ ■ D(hn) is vacu-

ous (cf. Frechet, (I), p. 231). We shall suppose that A £il'; this is permissible,

for if the product X is vacuous, the product of all the elements of X by D(A)

will also be vacuous. Let J be the product a(hi) -a{h2) -a(h3) ■ ■ ■ a(hn). Let

B = C = P(J); by the results of the preceding paragraph B is the greatest

lower bound of the elements of H', and it is a regular amalgamation point.

Clearly D is an 5-neighborhood of each element of / and of J; by Theorem

11.6 D is an 5-neighborhood of B. Let R be an 5-neighborhood of B such that

D+a(B)DR;\etK=(.S-D) a(B) and L = K-K-a{Z). Then D+KZ)R- By
following the argument of the later portion of the preceding paragraph, we

see that Z is a regular amalgamation point.

Theorem 14.12. (1) A Hausdorff space is normal if and only if all its atomic

boundary points are regular; (2) it is semi-completely normal if and only if all

its atomic ideal points are regular.

Proof. By Theorems 13.2 and 13.3 the conditions are necessary. By Theo-

rem 14.2 each composition point is an amalgamation point. If the conditions

hold it follows from Theorems 14.10, 14.2, and 9.1 that each of the composi-

tion points involved in the conditions of Theorems 13.2 and 13.3 is regular.

Thus, the conditions are sufficient.

Theorem 14.13. All the amalgamation points of a semi-completely normal

space are regular, and each of them can be decomposed into a collection of regular

atomic composition points.

This follows from Theorems 9.1, 14.12 and 14.10.

Examples. E 14.3. Urysohn(16) has constructed a countable space R such

that if X and F are points of R and U and V are open sets containing X

and F, respectively, then U- V is nonvacuous; because of this condition no

point of R is isolated. Let P be an amalgamation point which is distinct from

the maximal amalgamation point of R; cf. D 9.4 and Theorem 14.5. Suppose

that P is regular. By D 9.2 and Theorem 8.1 there exists a composition point

Q which does not intersect P. By Theorems 14.2 and 14.7 P and Q can be sepa-

rated by a pair of their respective ^-neighborhoods, U and V. There exists an

(16) Loc. cit., pp. 274-283.
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^-neighborhood of P, W, such that U+a(P)DW. By Theorem 14.9 there ex-

ist at most a finite number of points in (R — U)-a(P), say Pi, P2, • • • , Pn.

Since no point of R is isolated it follows from Theorems 12.3, 11.3, and 11.6

that each of P and Q is a limit point of R. Thus, there exist X^V and F£ W.

For each i let 5, and X, be mutually exclusive open sets which contain Pi and

X respectively. Let X= FXiX2 • • • X„. Then FZ)X, U- V is vacuous, a(P) X

and W-\ are vacuous; we are involved in a contradicion. To summarize: the

maximal ideal point is a regular amalgamation point of R and is the only one;

by Theorem 14.2 no composition point of R is regular.

15. The upper semi-continuity and the perfect compactness of decomposi-

tions. First we shall recall definitions by Moore and by AlexandrofT(17), and

then we shall introduce extensions of these. (I) Let T be a space H Frechet,

K be a point set of P, and M be a collection of mutually exclusive subsets of K

whose sum is K; M is called a decomposition {Zerlegung) of K (cf. D 9.3).

(II) A collection M of mutually exclusive closed point sets of T is said to be

upper semi-continuous (in T) provided that if P£Af and D is an open set of

T which contains P, there exists in P an open set R which contains P such

that if an element of M has a point in common with R then that element is

a subset of P(18). (Ill) If TZ)K and if is a decomposition of K, then T(M),

the (weak) space of the decomposition, is defined as follows: (1) its points are

the elements of M; (2) if Pis an open point set in T, let U(M) be the aggre-

gate of all elements of M which are subsets of U; the U(M)'s are the neigh-

borhoods for T(M)(19) (cf. Theorem 12.1). (IV) A continuous mapping of the

space X on the space F is said to be closed if the image of each closed point

set in X is a closed point set in F(20).

Examples. E 15.1. Let X be the subspace of the plane whose points are

those of a circle and its interior. Let 5 be a definite diameter of the circle;

Let Fi be the decomposition of X which consists of 5 and all chords of the

circle which are parallel to 5; let Z\ be the decomposition whose elements are

the points of 5, and the chords that are parallel to 5. Let Fand Z be the spaces

of the decompositions Fi and Z\ respectively. Let the relations y =f(x) and

z = g(x) mean, respectively, that x£y and x£z. The collection Fi is upper

semi-continuous in X, but Z\ is not. The spaces X and F are perfectly com-

pact, but Z is not. The mapping y=f(x) of X on F is closed. The mapping

(,17) Cf. Moore, (III), and Alexandroff, (I). For treatments of the theory see Moore, (I),

chap. 5, and Alexandroff and Hopf, pp. 61-70 and 95-98.
(ls) Moore, loc. cit.; Alexandroff and Hopf call M a continuous decomposition (stetige Zer-

legung) of the sum of the elements of M (loc. cit., p. 67).

(19) Alexandroff and Hopf, p. 66, call T(M) der schwache Zerlegungsraum der Zerlegung M.

If M is upper semi-continuous, T(M) is their Zerlegungsraum (loc. cit., pp. 63 and 67). We deal

mainly with the latter.

(20) Alexandroff and Hopf, p. 95; for information and definitions having to do with map-

pings (Abbildungen) see pages 51, 52; in V, page 54, they show that a continuous mapping need

not be closed.
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z = g(x) of X on Z is not continuous. The mapping y =f(g~1(z)) of Z on F is

continuous but is not closed. The example both serves to illustrate the results

of Theorem 15.1 and to give Gegenbeispiele. If we amalgamate the elements

of Fi and Zi, we obtain collections of amalgamation points which may be used

to illustrate Theorem 15.4.

The extensive results of AlexandrofT and Hopf in their Theorem VIII,

p. 98, may be amplified by the following theorem. The mapping of their hypo-

thesis is continuous rather than closed. They give no result analogous to that

of the Conditions (I) and (III) implying (II); the transformation y =f(g~l(z))

of the preceding example illustrates the fact that the stronger condition, closed-

ness, is essential for such a result.

Theorem 15.1. Let X and Y be Hausdorff spaces, and let y = a(x) define a

continuous mapping of X into F; then any two of the following conditions imply

the third: (I) Y is perfectly compact; (II) X is perfectly compact; (III) the map-

ping y = a(x) is closed; for y^Y the set cx~~l(y) is perfectly compact in itself.

Proof. By AlexandrofT and Hopf, Theorem VIII, p. 98, Conditions (II)

and (III) imply (I). By this theorem and their Theorems II on page 95,

(I) on page 53, and IV on page 86 Conditions (I) and (II) imply (III). Let H

be a collection of open sets which covers X. If y£ F let H(y) be a finite sub-

collection of H which covers a_1(y) (cf. Condition (III) and Kuratowski

and Sierpinski, loc. cit.). Let D(y) be the sum of the elements of H(y);

then X-D(Y) is closed in X. By (III) a(X-D(y)) is closed in F; and

8(y) = F—a(X — D(y)) is open in F and contains y. By (I) there exists a finite

subcollection of the 5(y)'s which covers F, say 6(3/1), 8(yi), ■ ■ ■ , 8(yn).

Let H*=H(yi)+H(y2)+ • • ■ +H(yn). If x0£X, there exists j such that

o;(*o)£5(y,); if x0 were not covered by D(yf), it would belong to X — Diyf);

then a(x0)G.ct(X — D(yf)) = Y— 5(y,), and we are involved in a contradiction.

Thus x0 is covered by an element of H(yf), and X is covered by H*. Thus,

(I) and (III) imply (II).

D 15.1. A collection M of points is said to be upper semi-continuous (rela-

tive to 5) provided that if PGM and D is an 5-neighborhood of P, there exists

an 5-neighborhood of P, R, such that if Q is an element of M and R is an

5-neighborhood of a portion of Q, then D is an 5-neighborhood of Q (cf.

Definition (II) above).

Examples. E 15.2. Let M be a decomposition of the perfectly compact

Hausdorff space 5 into closed sets. Let N be the collection of those ideal points

which are amalgamations of elements of M. Then N is upper semi-continuous

relative to 5 if and only if M is upper semi-continuous in 5. Examples of both

possibilities are given by AlexandrofT and Hopf, p. 67. See also E 15.1.

E 15.3. A collection of real points, or of atomic ideal points, is upper semi-

continuous relative to 5.

If, in Theorem 15.1, we amalgamate the elements of the sets ct~l(y), for
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y£7, we obtain amalgamation points for which Theorem 15.4 applies. This

is an instance of the analogy we have noted before between the properties of

perfectly compact sets and of amalgamation points. Similarly, the results of

Theorem 15.3 resemble some of those of Alexandroff and Hopf. These analo-

gies give indications of some rather trivial applications of our theory. In gen-

eral, our procedure is to define mappings in terms of decompositions or of

amalgamations; these processes involve mainly order relations. This proce-

dure must be carried out in such a manner that it gives conditions which assure

the continuity of the mappings and permit the application of the results of

Alexandroff and Hopf. Such conditions are given in Theorems 15.4, 15.5, and

15.6. Thus, we have on the one hand the processes of amalgamation of points

and of continuous mappings, and on the other those of decomposition of

points and of the inverse of a continuous mapping. We may think of the lat-

ter as giving a kind of representation theory(21) for our system of points, in

which the representation of a point is a decomposition of that point into an

upper semi-continuous collection of amalgamation points. Thus, this repre-

sentation theory involves not only order, but also continuity.

Theorem 15.2. If N is an upper semi-continuous collection of amalgamation

points, no two of them intersect.

Suppose that X and Fare intersecting elements of N. By D 15.1 X and F

have the same 5-neighborhoods. By Theorem 9.2 if not X< Y then there

exists an element ß of a(X) -a(X) -a(Y). By Theorem 12.2 if XEa(F) there

exists an 5-neighborhood of X, ö(X), which is not an 5-neighborhood of ß. By

Theorem 14.3 there exists a finite collection of the 5(X)'s, whose sum D is an

5-neighborhood of F. By Theorem 11.7 D is not an 5-neighborhood of ß.

Since ß<X and D is an 5-neighborhood of X, we are involved in a contradic-

tion. Thus, X <Y. Similarly, Y<X. Hence, Y=X.

Theorem 15.3. Let Y be a decomposition^2) [x] of the ideal point X into

regular amalgamation points. The following conditions are equivalent: (1) F is

perfectly compact in itself; (2) X is an amalgamation point and Y is upper semi-

continuous relative to 5; (3) the space(23) 5(F) of the decomposition Y is a per-

fectly compact Hausdorff space.

The following is a point set analogue of this theorem.

Theorem 15.3A. If Y is a decomposition of the Hausdorff space X into a

collection of sets which are perfectly compact in themselves, the following condi-

tions are equivalent: (1) The space X(Y) of the decomposition Y is perfectly

compact; (2) X is perfectly compact and Y is upper semi-continuous in X.

(21) Cf. Binkhoff, p. 76, and Stone, loc. cit.

(B) Cf. D 9.3.

(23) Cf. Theorem 12.1.
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Consider 15.3A. By Alexandroff and Hopf, p. 98, Theorem VIII, (2) im-

plies (1). Let (1) hold and y=a{x) mean that x£y£F (XZ)y). If U is an

open set in X, U(Y) means the set of all elements of Y that are subsets of U;

and U{Y) is an open set in X(Y) (cf. Definition (III)). Let y£F, and R

be an open set in X containing y. If sG Y—R(Y), there exist in X mutually

exclusive open sets, Vz and Wz, which contain, respectively, y and z (cf. proof,

Theorem IX, p. 89, Alexandroff and Hopf). Since Y—R(Y) is a closed set

in the perfectly compact space X(Y), it has the Borel-Lebesgue property;

there exist WZI(Y), WZ2(Y), • ■ ■ , WZn(Y) which cover Y-R(Y) in X(Y). Let

V=VZ1-VZ2- ■ ■ Fz„and W=WZl + WZ2-i-+ IFz„.Then V and W are mu-

tually exclusive open sets in X, VZ)y, and W contains all elements of

Y—R(Y). Since V- W is vacuous, any element of Y that has a point in com-

mon with V is a subset of R. Thus, Fis upper semi-continuous in X; and the

mapping y=a(x) of X on X(Y) is continuous (cf. Alexandroff and Hopf,

p. 67). Let F be a closed point set in X, and D = X — F. Then D(Y) is open

in X(Y). Since D(Y) = X(Y)-a(F), a(F) is closed in X(Y), and the mapping

is closed. By Theorem 15.1 Condition (1) implies (2).

Proof of Theorem 15.3. Let (2) hold and G be a collection of open sets of 5

that covers F relative to 5. If x£ F, let DG.G such that D is an 5-neighbor-

hood of x. Let R(x, D) be an 5-neighborhood of x such that if it is an 5-neigh-

borhood of a portion of an element of F, then D is an 5-neighborhood of that

element. By Theorems 14.4, 11.6, and 9.1 there exists a finite collection of

the i?'s which covers the aggregate of atomic portions of X; say R(xi, Di),

R(x2, D2), • • • , R{x„, Dn). Let G* be the collection Du D2, ■ • ■ , Dn. If x£ F

and ß is an atomic portion of x, ß <x<X, and there exists j such that R(xj, Dj)

is an 5-neighborhood of ß. Then Dj is an 5-neighborhood of x, and G* covers F

relative to 5. Since F has the Borel-Lebesgue covering property, it is per-

fectly compact in itself (cf. Theorem 12.1 and Kuratowski and Sierpinski,

loc. cit.). Thus (2) implies (1).

Conversely, let F be perfectly compact in itself. By Theorem 14.10 X is

an amalgamation point. Let x£ F, D be an 5-neighborhood of x, and L be

the set of all elements of F of which D is not an 5-neighborhood. By D 12.1

no point of Y — L is a limit point of L, and L is a closed point set relative

to F. Since F is perfectly compact in itself, so is L. By Theorem 14.10 there

exists a regular amalgamation point ß, such that ß<L<ß. By D 9.3 x inter-

sects no element of L; and thus it does not intersect ß. By Theorem 14.7

x and ß can be separated by a pair of their respective 5-neighborhoods, U

and IF; by Theorem 11.6 IF is an 5-neighborhood of L. Let Xi be an element

of F such that U is an 5-neighborhood of a portion X of X\. If xx were an ele-

ment of L, W would be an 5-neighborhood of x\ and of X; since U-W is vacu-

ous, this involves a contradiction. Since Xi£ Y—L, D is an 5-neighborhood

of Xi. Thus, Fis upper semi-continuous, and (1) implies (2).

If Xi and x2 are two elements of F, by Theorem 14.7 and D 9.3 they can
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be separated by S-neighborhoods. By Theorem 12.1 condition (1) implies (3).

The converse is obvious.

Theorem 15.4. Given that P is an amalgamation point and Y and X are

decompositions of P into regular amalgamation points such that if y £ F there

exists a subcollection a~l(y) of X which is a decomposition of y; then any two

of the following conditions imply the third: (1) F is perfectly compact in itself;

(2) X is perfectly compact in itself; (3) the mapping y = a(x) of X into Y is a

closed mapping; the sets a_1(y) for y£ F, are perfectly compact in themselves.

By Theorem 15.3 the conditions (2) and (1) are equivalent, respectively,

to the upper semi-continuity of X and of F. Cf. E 15.1.

The close resemblance of Theorems 15.1 and 15.4 fails to extend to the

explicit assumption of the continuity of the mapping y = a(x), which is neces-

sary for the former. The inherent potentialities for the continuity of y=a(x)

for Theorem 15.4 are an example of the properties of this mapping which fol-

low from the way it is defined: For y£F, y <a~l(y) <y; X^)a~1(y); and if

x£_a~l{y), then x<y (cf. D 9.3). These order relations, which involve X, Y,

and the mapping, may be regarded as a key to our theory, and are a founda-

tion for the applications we make in following sections. The transformation

expresses the fact that the elements of y are obtained by amalgamations of

elements of X; conversely, the elements of X are the results of decompositions

of the y's. For topological applications we need conditions of continuity as

well as those for order; Simultaneous conditions for the required continuity

and order are given in Theorems 15.3 to 15.6.

Proof. By Theorem 15.3 if condition (1) or (2) holds, then For X, respec-

tively, is upper semi-continuous relative to 5. By (1) and (2) the mapping

y = ct(x) is continuous from X to F (cf. argument on page 67, and Theorem IV,

p. 53, Alexandroff and Hopf). The conclusion follows from Theorem 15.1.

Theorem 15.5. Adopt the notation of Theorem 15.4, and let X be upper semi-

continuous^4) relative to S; then (A) F is upper semi-continuous relative to S

if and only if the aggregate F'= [a-1(y)], where y£ F, is an upper semi-con-

tinuous collection of point sets in X(2S). (B) Let Y" = X(Y') be the spaced) of

the decomposition of X, Y', and let y" = a"(x) mean that x£y"£ Y"; then the

mapping y=a(x) of X on Y is closed if and only if the mapping y" =a"(x)

of X on Y" is closed. (C) If the conditions in either (A) or (B) are satisfied,

then those in each of Theorem 15.4, (A) and (B), are satisfied, and the mappings

y = a(x) and y" =<x"{x) are equivalent mappings of X{21).

(M) Or, X is perfectly compact in itself (cf. Theorem 15.3).

(26) Cf. definition (II). Here X is regarded as a space (cf. Theorem 12.1).

C) Cf. Definition (III); Y" is der zur Zerlegung gehörende schwache Zerlegungsraum (cf.

Alexandroff and Hopf, p. 66). The points of Y" are the elements of Y'.

(") That is, the mapping, y" = a"(a~1(y)), of Y on Y" is a homeomorphism (cf. Alexan-

droff and Hopf, p. 61).
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Proof. By Theorems 14.7 and 12.1 X and F determine Hausdorff spaces.

Let two of the conditions of Theorem 15.4 hold. The third follows; by Theo-

rems VIII and II, pages 98 and 95, Alexandroff and Hopf, the mappings of

(B) are equivalent and both are closed, and Y' is upper semi-continuous in X.

By Theorem 15.3 our hypothesis that X is upper semi-continuous relative

to 5 is equivalent to condition (2) of Theorem 15.4. If y = a(x) is a closed

mapping, condition (3) of that theorem holds. By the preceding paragraph

the conditions in (A) and in (B) are necessary. Let y" =cx"(x) be a closed

mapping from X to Y". Let yfE Y, U be an 5-neighborhood of y, and U(X)

and U( Y) denote all elements of X and of Y, respectively of which U is an

5-neighborhood; U(X) is open relative to X, and U(X)3a~: (y) =y". If V

is the set of all elements of Y" that are subsets of U{X), then V is an open

set in Y", and y"£ V (Definition (III)). Let H be the sum of the elements of

Y" — V. Then y" and H are closed point sets in X which do not intersect

(cf. Theorem I, p. 53, Alexandroff and Hopf). Since X is perfectly compact,

so are y" and H. By Theorems 14.10, 14.7, and 11.6 y" and H can be sepa-

rated by 5-neighborhoods D and R. Since y" =a~1(y), y <y" <y; by Theorem

11.6 D is an 5-neighborhood of y. Let D be an 5-neighborhood of a portion ß

of an element of Y, yx. Suppose that yi£ Y— (7(F); by Theorem 11.6 there

exists Xi£a-l(yi) such that U is not an 5-neighborhood of x\. Then a~l(yi)

= a"(xi)G Y" — V, and P7Z)a_1(yi). By Theorem 11.6 R is an 5-neighborhood

of yi and of ß. Since D is an 5-neighborhood of ß, and R D is vacuous, we are

involved in a contradiction. Thus, F is upper semi-continuous relative to 5.

By Theorems 15.3 and 15.4 the condition in (B) is sufficient. If the collection

F' is upper semi-continuous in X, it follows from Theorems VIII and II on

pages 98 and 95, Alexandroff and Hopf, that the mapping y" =a"(x) is closed

from X to Y". By (B) the mapping y = a(x) is closed. By the first paragraph

the condition in (A) is sufficient, and (C) is true.

Theorem 15.6. The conclusions of Theorems 15.3, 15.4, and 15.5 remain

true if the aggregate consisting of P and of the elements of X and Y include regu-

lar real or regular frontier points.

This follows from Theorems 12.1, 13.7, and 14.2.

16. Applications of the preceding sections. Applications of the preceding

section require the decomposition of an amalgamation point P into regular

amalgamation points. In problems dealing with the embedding of 5 in a per-

fectly compact Hausdorff space we have the case where P is the maximal

amalgamation point and the elements of the decomposition include the points

of 5 (cf. Theorem 16.1).

We supplement the results of §§13 and 14 for the regular, the normal, and

the semi-completely normal spaces by giving characterizations of the com-

pletely regular, the locally perfectly compact, and the perfectly compact
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Hausdorff spaces. Some of these give our interpretations of results by other

authors, and demonstrate the generality of our methods (cf. Theorems 16.1,

16.2, and 16.4). In order to utilize this generality fully, we devote Chapter III

to a study of lattices of regular points, and to lattices of systems of decom-

positions of an amalgamation point into collections of regular amalgamation

points. These give systematic methods for classifying our results. An impor-

tant part of Chapter III is the demonstration of the existence of atomic ele-

ments of systems of points which are encountered in applications of our

mapping theory. For the special case of the semi-completely normal space the

-equired atomic elements are the atomic ideal points (cf. Theorem 16.5). Simi-

lar conclusions hold for the decompositions of boundary points of normal

spaces (cf. Theorem 16.1, (3)).

Theorem 16.1. (1) In order that S be completely regular(2S), it is necessary

and sufficient that there exist a collection of regular boundary points M such

that (a) each boundary point intersect M, and (b) the collection S-\-M be upper

semi-continuous relative to S. (2) This condition is satisfied if and only if S + M

is a perfectly compact Hausdorff space. (3) If S is normal and M is the set of its

atomic boundary points, this condition is satisfied. (4) A perfectly compact, im-

mediate Hausdorff extension of S is a decomposition of the maximal ideal point.

The result in (3) is similar to that in Lemma 12, p. 119, Wallman, loc. cit.

If F is any perfectly compact Hausdorff space in which S is embedded and X

is the space S-\-M of (3), then the conclusion of Theorem 15.4 concerning the

mapping y = a(x) holds; cf. Stone, loc. cit., p. 476, Theorem 88. See also Theo-

rem 20.2. Cech, also, loc. cit., has considered this space.

Proof. Let F be the maximal amalgamation point and X = S+M. Let P

be a real point, Q be a boundary point, and ß be an atomic portion of Q. By

(la) ß intersects ßu^M; since ß is atomic, ß<ßM- Since ßnt is regular, P and

ßhi do not intersect, and they can be separated by 5-neighborhoods U and V

(cf. D 13.1 and Theorem 11.5). Since ß<ßni, V is an 5-neighborhood of ß and

P and ß do not intersect (Theorems 11.6 and 11.5). By Theorem 14.2 Q is an

amalgamation point. By Theorem 14.6 P and Q do not intersect. By Theorem

13.1 P is regular. By (la) each composition point intersects either 5 or M.

By D 9.2 Y<M+S; since M+S< Y, X = S + M is a decomposition of F (cf.

Theorem 15.2). By Theorems 14.5, 15.6, and 15.3 the condition in (1) is suffi-

cient and that of (2) is necessary.

Conversely, let the perfectly compact Hausdorff space T be an immediate

extension of S; then all points of T are regular. Let M be the boundary points

of 5 which are equivalent to points of T — S. By Theorems 13.7 and 12.1,

(2S) S is completely regular if and only if it can be embedded in a perfectly compact Haus-

dorff space; cf. Tychonoff, loc. cit.
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S-\-M is perfectly compact. By Theorems 14.10 and 14.2 there exists an amal-

gamation Z of the elements of 5+M. If Z^Y, there exists an atomic bound-

ary point ß which intersects Y but does not intersect Z (cf. Theorem 9.2).

By Theorems 12.1 and 14.7 the space S-\-M-\-ß is a Hausdorff space; clearly,

ß is a limit point of 5. Since S+M is perfectly compact, we are involved in

a contradiction; cf. Alexandroff and Hopf, p. 91, Theorem XI. Thus, Y<Z,

Z<Y, and Z= Y. By Theorems 15.6 and 15.3 the condition in (1) is neces-

sary, and that of (2) is sufficient.

For Case (3) the collection X = S-\-M obviously is upper semi-continuous.

By Theorems 5.5 and 14.12 M satisfies condition (la).

Theorem 16.2. (1) If S is regular but is not perfectly compact, then in order

that the set of all boundary points be amalgamable it is necessary and sufficient

that S be locally perfectly compact; (2) if this condition is satisfied and Q is the

amalgamation of all the boundary points, then S-\-Q is perfectly compact.

This theorem resembles closely one due to Alexandroff; cf. Alexandroff

and Hopf, p. 93, Theorem XIV.

Proof. If the condition holds, it follows from Alexandroff's theorem that

there exists a point Q, such that S-\-Q is a perfectly compact Hausdorff space

in which 5 is embedded; because of Theorems 13.7 and 12.1 we may suppose

that Q is a boundary point; by Theorem 14.2 Q is an amalgamation point.

It follows from Theorem 16.1 that each boundary point is a portion of Q.

Thus, the condition is sufficient.

Conversely, let Q be the amalgamation of all the boundary points. By

Theorems 13.1 and 14.6 Q and the real point P can be separated by 5-neigh-

borhoods U and IF, respectively. If IF were not perfectly compact, by Theo-

rem 10.3 there would exist a boundary point ß which is an end of IF. Then ß

is a portion of Q, and U is an 5-neighborhood of ß. By Theorem 12.3 ß is a

limit point of IF, and W- U is nonvacuous. Thus, we are involved in a con-

tradiction, and the condition is necessary.

Theorem 16.3. In order that a Hausdorff space be perfectly compact, it is

necessary and sufficient that it have no boundary points.

This follows from Theorem 10.3.

Theorem 16.4. Let X be a perfectly compact Hausdorff space which is an

immediate extension of S, P be the maximal S-portion, Mbea decomposition of X

into closed point sets, and Y be the aggregate of all ideal points, y(m), where y(m)

is the amalgamation of the elements of m, and m^M. Theorems 15.4 and 15.5

are applicable.

Thus, F is upper semi-continuous relative to S if and only if M is upper

semi-continuous in X; etc. The theorem points out that the results of Alex-

androff and Hopf are special cases of our's.
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Theorem 16.5. If S is semi-completely normal, the results of Theorems 15.4

and 15.5 hold true for the case that X is the decomposition of P into atomic ideal

points.

An interesting case is the one where P is the maximal ideal point, and F

is a perfectly compact Hausdorff space in which 5 is embedded. This justifies

our regarding X as a universal inverse mapping space.

17. Extensions of upper semi-continuous collections of point sets in nor-

mal spaces. Stone has commented on the "remarkable properties" of a space

which for the case that 5 is normal is a homeomorph of 5 plus its atomic

boundary points (loc. cit., p. 476, lines 8 and 9). The results of this section

give additional grounds for this comment. Our results in this section are dis-

tinguished by the fact that they are characteristic of normal spaces. Also, cf.

Cech, loc. cit.
D 17.1. If 5 is a subspace of T, M and N are collections of mutually ex-

clusive closed point sets of 5 and of T, respectively, and M is the collection of

all sets S-n, where n^N, we say that N is an extension of M (from S into T).

E 17.1. Let T be a circle plus its interior, and 5 be the interior. Let N

be the set of all chords parallel to a given diameter; define M as in D 17.1.

N contains an extension of M, N is upper semi-continuous in T, but M is not

upper semi-continuous in 5. Thus, T cannot take the place of the space X(S)

of Theorem 17.1.
Let E and F be two chords in T such that E and F have in common ex-

actly one point, P, which belongs to T — S. Let K be the collection whose ele-

ments are E S, F S, and the points of S — S (E-\-F). Then K is upper

semi-continuous in S, but cannot be extended to T. It follows that T does

not serve as a Tk (cf. Theorem 17.2).

Theorem 17.1. Let S be normal, X(5) be the space of S and its atomic bound-

ary points, M be a collection of mutually exclusive closed point sets of S, N be

the aggregate of the closures in X(5) of the elements of S, and K be the aggregate

of the amalgamations of the elements of N. (1) The following conditions are equiv-

alent: (a) M is upper semi-continuous in S; (b) A7 is upper semi-continuous in

X(5); (c) K is upper semi-continuous relative to S. (2) If these conditions are

satisfied, the spaces of these decompositions are homeomorphic(29).

Thus, the theory of upper semi-continuous collections of point sets in a

normal space may be regarded as a part of the theory of our ideal points (this

holds true even if the elements of M are not perfectly compact).

Proof. For m(^M, let «(m)GJV such that m = S-n(m); let P(m) be the

amalgamation of the elements of n(m); by Theorems 16.1 and 14.10 P{m)

exists. If U is an open set in S, and UZ)rn(£M, let X(t7) denote all points

of X(5) of which U is an 5-neighborhood. Suppose that ß^n(m)—m and not

(29) Cf. Definition (III), §15, and Theorem 12.1.
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/3£X((7). Then by Theorems 11.3 and 12.3 ß is an end of 5 — U and of m. By

Theorem 11.3 neither U nor S — m is an 5-neighborhood of ß. Since S=U

+ (S — m) and 5 is an 5-neighborhood of ß, by Theorem 11.7 we are involved

in a contradiction. Thus, U is an 5-neighborhood of n(m) and of Pirn); cf.

Theorem 11.6. Conversely, if W is an open set in X(5), and WZ)n(m), then

n(m) and X(5) — W are closed in X(5). Thus, ra(ra) and X(5) — W are perfectly

compact in themselves and are amalgamable (cf. Theorems 16.1 and 14.10);

by Theorems 14.7 and 11.6 they can be separated by 5-neighborhoods, D and

R. Then WOX(Z?)~3»(w), DZ)m, and D is an 5-neighborhood of P(m). By

Theorem 14.10 each P(m) is regular. The conclusion follows from these rela-

tions, the definitions of upper semi-continuity, and Theorem IV, p. 53, Alex-

androff and Hopf.

Theorem 17.2. (1) In order that it be possible to extend each M, which is

an upper semi-continuous decomposition of 5 into closed point sets, to a subset

of a similar decomposition of some immediate, perfectly compact, Hausdorff ex-

tension of S, say Tu, it is necessary and sufficient that 5 be normal. (2) (a) If 5

is normal, there exists a Tu, Y, which is independent of M; (b) such a Y is

homeomorphic to X=X(5) by means of the mapping y = a(x) of Theorems 15.6

and 15.4.

In particular, the conclusion of (2) holds for F=X(5); cf. Theorem 17.1.

Proof. Let E and F be mutually exclusive closed sets in 5. Let M be

the aggregate whose elements are E, F, and the points of 5— (F-f-F). Then M

is an upper semi-continuous decomposition of 5. If a Tu exists, there exists

an upper semi-continuous extension of M into TM. Then the product of the

closures of E and F in Tu is vacuous. Since Tu is perfectly compact, it is

normal (cf. Alexandroff and Hopf, p. 89). There exist in Tu mutually exclu-

sive open sets, U and V, which contain Et and Ft, respectively. Since

U SZ)E and V SZ)F, the condition in (1) is necessary.

Conversely, let 5 be normal and T be the space of the decomposition M

(cf. Definition (III), §15). If tET andsES, let the relation t =f(s) mean that

s& (recall that the points of T are the elements of M). Then the mapping

of 5 on T, t=f(s), is continuous and T is normal (cf. Alexandroff and Hopf,

pp. 67, 53, and 70). By Theorem 16.1 there exists an immediate, perfectly

compact, Hausdorff extension of T, say R. There exists a continuous mapping

from X(5) to R, say r = F(s), such that if PES, then/(P) = F(P) (cf. Theorem

16.1 and Stone, loc. cit., Theorem 88, p. 476).

Let A7 be the aggregate [F-1^)], where r ranges over R. By Theorem VIII,

p. 98, Alexandroff and Hopf, N is an upper semi-continuous decomposition

of F=X(5) into closed point sets. Thus, we have established (2a) and the

sufficiency of the condition in (1).

Consider any F which is independent of M, and let X be the space con-

sisting of 5 and those boundary points which are equivalent to points of F;

the mapping of the conclusion is a homeomorphism of X and F (cf. Theorem
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13.7). Suppose that the element 5 of X — S is not atomic; then there exist two

atomic boundary points which are portions of it, say a and ß. By Theorem

14.12 a and ß are regular. By Theorem 14.7 there exist 5-neighborhoods of a

and of ß whose closures in 5, E and F are mutually exclusive. If M is the col-

lection whose elements are E, F, and the points of S— (E-\-F), it is an upper

semi-continuous decomposition of 5. Clearly, a is a limit point of E and ß is

a limit point of F; by Theorem 11.6 each 5-neighborhood of 5 contains points

of E and of F, and 5 is a limit point of E and of F. Hence, there exist no mu-

tually exclusive closed sets in F which contain E and F, respectively. Since Y

contains an extension of M, we are involved in a contradiction. Thus, 5 does

not exist, and X = X (5).

Chapter III. The lattice-mapping theory of systems of regular points

Let P be a regular amalgamation point, and let X, Y, and y=a(x) be

such that the conditions of Theorem 15.4 are satisfied. Recall that for y£ F,

XZ)oTl(y) and y is an amalgamation of the elements of a_1(y). Since the

mapping y = a(x) deals both with order and with continuity, we may think

of F as a mapping space or an amalgamation space for X, and of X as an in-

verse mapping space or a decomposition space for F. If S is semi-completely

normal, we have shown in Theorem 16.5 that if X* is the decomposition of P

into atomic ideal points, then X* serves as a common inverse mapping space

for all the F's which are upper semi-continuous, or perfectly compact, decom-

positions of P into regular amalgamation points. That is, the elements of X*

may be said to be atomic from the point of view of our mapping theory. By

Theorem 14.12 for spaces other than the semi-completely normal the atomic

mapping points will not, in general, be the atomic ideal points. For these more

general spaces there is thus the question of the existence of such atomic ele-

ments, and that of the existence of decomposition spaces or of inverse map-

ping spaces.

In §19 we give conditions for which these questions have answers in the

affirmative. Our methods involve an order relation X < Y, where X and F

are decompositions of P which satisfy the conditions of Theorem 15.4. The

ordered set so obtained is a complete lattice and its zero is the required set

of atomic mapping points. The sublattices of this lattice, and their zeros and

units, give an extensive body of information which is not in Chapter II for

the case even of the semi-completely normal space. Important sublattices are

considered in §20.

Section 18 is concerned with preliminary methods dealing with multiplica-

tive systems and lattices of ideal points, and with the generation of such sys-

tems from collections of points. The zeros of the sublattices of §19 are, in gen-

eral, collections of atomic elements of systems of ideal points.

In Example 14.3 we established the existence of a space for which the only
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regular amalgamation point is the maximal ideal point P; for it P = X= F,

and the application of Theorem 15.4 is extremely limited.

18. The generation of multiplicative systems and lattices of amalgama-

tion points. We develop methods for generating such systems from any collec-

tion of amalgamation points. Most of these do not require a hypothesis of

regularity. In Theorem 18.5 we give conditions for regularity. In Theorem

18.4 we give conditions which make the generated set a lattice.

Note that if A7 is a subsystem of M, an atomic element(30) of A7 need not

be an atomic element of M (for instance, A7 might consist of a single non-

atomic element of M). The term atomic regular (amalgamation) point means

an atomic element of the system of all regular amalgamation points; it should

not be confused with the term regular atomic point (of S). Theorems 14.2

and 14.12 show that the terms are synonymous only for the semi-completely

normal spaces.

D 18.1. The set of points M is said to be almost-multiplicative provided

that if MZ)K and K has a lower bound in the system of all ideal points, then

the greatest lower bound of K belongs to M. The following are examples of

almost-multiplicative systems: all atomic points; all composition points; all

amalgamation points; all regular composition points; if 5 is completely regu-

lar, all regular amalgamation points (cf. Theorems 5.4, 14.2, 14.11, and 20.1).

D 18.2. If M is almost-multiplicative but is not completely multiplica-

tive^1), it becomes a complete multiplicative system M+O by the addition

of a zero element O; if M is completely multiplicative, let M+O denote M,

and let 0 denote its zero.

These systems find applications, among others, in establishing the exist-

ence of atomic elements. If M is the system of all regular amalgamation points

of the space of Example E 14.3, it has one element, the maximal ideal point

of the space. This is the atomic element of the system. This example shows

how far the atomic regular points may differ from the atomic points.

Theorem 18.1. Let M be an almost-multiplicative system of amalgamation

points. (1) // PEM, there exists an atomic element of M which is a portion

of P; (2) no two atomic elements of M intersect; (3) M is completely multiplica-

tive if and only if it has exactly one atomic element (its zero).

Proof. By Hausdorff, (I), pp. 140-141, there exists a system of elements

of M, say K, which contains P, is monotonic, and is not a proper subset of

any monotonic subcollection of M. For kEK the set a(k) is perfectly compact

in itself (cf. Theorems 9.1 and 14.4). By Theorem 9.2 the a(k)'s are the ele-

ments of a monotonic collection of point sets. There exists an atomic point 5

which is common to all the a(k)'s (cf. Kuratowski and Sierpinski, and Moore,

(3°) Cf. D 3.3.

(31) Cf. D 3.7, and MacNeille, loc. cit., pp. 429, 442, and 443.
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(II)). It follows that 5 is a portion of each element of K. By D 18.1 there

exists an element of M, ß, which is the greatest lower bound of the elements

of K. Let X be an element of M such that X</3, and let k£L-K. Then \<ß<k.

It follows that K-\-\ is monotonic; because of the definition of K, \{£-K; then

|6<X; since \<ß, X = /3, and ß is an atomic element of M. Since PEK, ß<P.

Let a and ß be intersecting atomic elements of M. By Theorem 8.1 and

D 18.1 there exists an element of M, 5, which is a lower bound of a and ß.

Since 8<ß and ß is atomic, ß<8, and ß=S; similarly, 8=a. The conclusion

of (2) and the necessity of the condition in (3) follow. If M has exactly one

atomic element, it follows by (1) that this element is a lower bound of each

collection of elements of M; by D 18.1 the condition in (3) is sufficient.

D 18.3. If K and M(K) are collections of amalgamation points, M{K) is

an almost-multiplicative system, and M(K) consists of those amalgamation

points which are greatest lower bounds of subcollections of K, we say that

M(K) is generated by K; if A(K) is the aggregate of all amalgamation points

P such that P is the amalgamation of the elements of some subcollection of

M(K), we say that A (K) is the additive system generated by K. If x(E.K, x is the

lower bound of the pair x and x; thus M(K) Z) K; similarly A (K) Z~) M{K) .UK

is either the set of all composition points, or of all atomic ideal points, then

K = M(K); if S is semi-completely normal, A(K) is the set of all amalgama-

tion points.

Theorem 18.2. Each collection of amalgamation points K generates an ad-

ditive system A(K) and an almost-multiplicative system M(K). A(K) is an al-

most-multiplicative system, and A (K) and M(K) have the same atomic elements.

Proof. Let M(K) and A (K) be defined as in D 18.3. Let H be a subcollec-

tion of M(K) that has a lower bound. Let H=HX+H2 such that KZ)Hi and

M{K)-KDH2. Let F be the product of all sets a(h), where hEH (cf. D 8.5).

For hEH2 let H{h) be a subcollection of K such that h is the greatest lower

bound of the elements of H(h); cf. D 18.3. Let H3 be the sum of all the H(h)'s,

for hEH2. Let G=Hi-\-H$, and let E be the product of all the a(g)'s, where

g£G-. Clearly, EDF. Suppose that ßEE — F; there exists h^H such that ß

is not an element of a{h). Since GZ)H\, hEH2; by Theorem 9.2 there exists

hzEHQi) such that a(h3) does not contain ß. Since h3EG, we are involved in

a contradiction, and ß does not exist. Thus, E = F; by Theorem 9.2 P(F) is

the greatest lower bound of the elements of if and of G. Since KZ)G, it follows

from the definition of M(K) that P(F)EM(K) (by Theorem 14.11 P(F) is
an amalgamation point). Thus, M(K) is an almost-multiplicative system of

amalgamation points, and is generated by K.

Next let H be a subcollection of A (K), and let F be the product of all the

sets a(h), for h(E.H. If h^H, there exists a subcollection of M(K), Mh, such

that h is the amalgamation of the elements of Mh (cf. D 18.3). For ßEF and

hEH, let x{ß, h) be an element of Mh that intersects ß. For a fixed ß, let x(ß)
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be the greatest lower bound of the x(ß, h)'s, where h ranges over H; by the

first paragraph, x(ß)EM(K). By Theorem 9.2 FDa(x(ß)), x(ß)<P(F), and

P(F) is the greatest lower bound of the elements of H. Let X be the aggregate

of all the «(j8)'s, for /3£F. By Theorems 8.1, 9.2, and D 9.2, X<P{F), and
P(F) <X. By Theorem 14.11 and D 14.2 P(F) is an amalgamation of the ele-

ments of X. Since M(K)DX, it follows that P(F)EA(K), and that A(K) is

an almost-multiplicative system.

Since A(K)Z)M(K), and for aEA(K) there exists mEM(K) such that

m <a, it follows that the two systems have the same atomic elements.

Theorem 18.3. Let K be a system of amalgamation points, and M(K) be the

almost-multiplicative system generated by it. Then K and M(K) generate the same

additive system; and, if K is almost-multiplicative, M{K)=K.

Theorem 18.4. If A(K) is the additive system generated by the collection of

amalgamation points K, then A (K) +0 is a complete lattice if and only if it is

possible to amalgamate the elements of K. If the condition is satisfied, the unit

of the lattice is the amalgamation of the elements of K.

Proof. Suppose that A(K)-\-0 is a complete lattice; then it has a unit, I,

which is an element of A(K). Since A(K)DK, for kEK, k<I; by D 9.2,

K<I. Since IGA(K), it follows from D 18.3 and D 14.2 that there exists a

subset of M(K), say M, such that KM. Let X be an ideal point that inter-

sects I; by D 9.2 X intersects an element of M, say m. By the definition of

M(K) there exists kEK such that m<k. Then by D 9.2 X intersects k, and

I<K; since K<I, it follows from D 14.2 that I is an amalgamation of the

elements of K.

Conversely, let I be an amalgamation of the elements of K. Since

M(K) DK, IGA (K). Let ßGA (K); then there exists a subcollection of M{K),

M, such that ß<M<ß. For m(E.M there exists k(EK such that m<k; by

D 9.2 M<K; then ß<M_<K<I. Thus I is the unit of A(K). By Theorem

18.2 and D 18.2 A{K)+0 is a complete multiplicative system; since it has a

unit, it is a complete lattice (cf. MacNeille, pp. 430-431).

Theorem 18.5. If K is a collection of regular amalgamation points, and each

element of K is a portion of some collection of regular composition points, then the

additive and the multiplicative systems generated by K consist of regular points.

Proof. If kEK and |3£a(fc) it follows from the hypothesis and Theorem

9.2 that ß is a portion of some regular composition point X. By Theorems 9.2,

14.2, 14.11, and 14.8 the greatest lower bound of k and X is a regular composi-

tion point k03), and ß<k(ß). It can be shown with the help of Theorem 9.1

that k <a(k) <L<k, where L is the aggregate of all &03)'s. Thus, k is an amal-

gamation of a collection of regular composition points. The conclusion follows

from D 18.3 and Theorems 14.11 and 14.10.
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19. Systems of upper semi-continuous, perfectly compact decompositions

of regular amalgamation points. Let us consider the aggregate D(R) of all de-

compositions of the perfectly compact Hausdorff space R into upper semi-

continuous collections of closed point sets. If X and Y are elements of D(R)

and each element of X is a subset of some element of Y, let us say that X < Y.

This relation orders D(R). The following analogue to Theorem 19.1 holds:

If Fi and F2 are elements of D(R) and X is the set of all products yi-y2, where

yiG Fi and y2£ F2, then X is the greatest lower bound of Fi and F2 in D(R).

Then X is upper semi-continuous, and it corresponds to the uim(P) of Theorem

19.1, if M is the pair Fi and F2. Such analogies may be extended to the case

of arbitrary subcollections M of D(R). We shall now extend these ideas to

the case of the amalgamation points.

D 19.1. If P is a regular amalgamation point, let o(P) be the set of all 5's,

where 5 is an upper semi-continuous decomposition (32) of P into regular amal-

gamation points. If X and F are elements of 8(P), let the relation X <Y

mean that each element of F is decomposible into a set of points which is a

subcollection of X; let 8(P) be ordered by this relation. Let L(P) denote the

sum of the elements of 5(P), and co(P) be the set of atomic elements of L(P).

Clearly this relation partially orders 5(P). The relation X < Y is merely

the requirement that X and F satisfy the conditions of Theorem 15.4. Thus,

the study of 5(P) and its sublattices systematizes our information about the

mappings and inverse mappings we considered in §§15 and 16. We shall show

that 8(P) is a complete lattice and that co(P) is its zero. Thus, w(P) may be

mapped on any element of S(P) by the methods of Theorem 15.4; the ele-

ments of w(P) may be regarded as the atomic points from the point of view of

these mappings. The zero of a sublattice of 5(P) has an analogous relation to

the elements of the sublattice; and the elements of this zero may be regarded

as the atomic points of the mapping theory which involves the elements of

this sublattice.

Example. E 19.1. Let P be an amalgamation point in a semi-completely

normal space 5 or a boundary point of a normal space. Then L(P) consists of

all amalgamation points which are portions of P, and co(P) is the decomposi-

tion of P into atomic points (cf. Theorems 16.1, 16.5, and 14.13).

D 19.2. If P is the maximal amalgamation point, let 5(5) = 5(P) and

co(5)=w(P).

The preceding example suggests questions which the author has not solved

for the case of the completely regular spaces. (I) If A and B are regular amal-

gamation points and A <B, does w(P)I)w(^4)? (II) Does co(5) consist of the

atomic regular points? An affirmative for (II) implies one for (I). A negative

for (I) would imply the possibility of the existence of "incommensurable

C32) By Theorem 15.3 the condition of the upper semi-continuity of S is equivalent to that

of its perfect compactness (cf. D 9.3).
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points," A and B; or that of a point P and a point ß such that ß(E.co(P) and

co(jS) consists of proper portions of ß. Theorem 14.12 shows that if S is not

semi-completely normal, some of its atomic points are too fine to be regular;

the preceding discussion suggests that for more general spaces 5 some of the

atomic regular points may be too fine to belong to co(5). In any case the exist-

ence of co(P) is of importance, since it is the finest decomposition of P for

which the methods of §15 are applicable.

Theorem 19.1. Let P be a regular amalgamation point which is a portion of

a collection of regular composition points; let M be a subcollection of 5(P); let

Lm(P) be the additive system which is generated by the sum of the elements of M,

and (i!m{P) be the set of atomic elements of Lm(P): (1) wm(P)£<3(P); (2) if

(8Gwm(P) and NElM, ß intersects exactly one element of N, say Nß; and ß is

the greatest lower bound of all the Nß's; (3) Lm(P) is the sum of all the Y's such

that F£S(P) and uM{P) < Y in 5(P); the elements of M are such Y's;

(4) Lm(P) +0 is a complete lattice of regular amalgamation points, and its

unit is P.

The lattice of (4) is obtained by the methods of the preceding section. The

set of its atomic elements, um(P), is the zero of a certain sublattice of 8(P);

this lattice is suggested in condition (3) (cf. Theorem 19.3). This condition

is used to show that the systems in the following two theorems are complete

multiplicative systems.

Proof. Let ß be an atomic portion of P; it intersects exactly one element,

Nß, of each element A7 of M. By Theorem 9.2, ß <Pß, the greatest lower bound

of all the Ays. By D 18.3 PßELM(P); by Theorem 18.5 Pß is regular. By
Theorems 18.1 and 18.2 there exists an atomic element of Lm{P), say A,

which is a portion of Pß; and there exists a subcollection of the sum of the

elements of M, say A*, such that A is the greatest lower bound of A*. Since

A <Pß, A is a lower bound of the elements of [Nß]. If NG.M, no two elements

of N intersect, since A7 is a decomposition of P into amalgamation points. It

follows that [Nß]DA*; by Theorem 9.2 Pß<A; since A<Pß, A=Pß; thus

we have established (2). Since ß <PßGwM(P), it follows with the help of Theo-

rems 9.1 and 9.2 that P <a(P) <aM{P) <P\ by Theorem 18.1 no two ele-

ments of um(P) intersect; thus coM(P) is a decomposition of P. It remains to

show that um(P) is upper semi-continuous.

First we shall establish this upper semi-continuity for the case that the

number X of elements of if is a positive integer. Let n =X be a positive integer

such that the conclusion holds for each collection of n elements of 5(P);

clearly, n=l is such an integer. Let M and H be two subcollections of <5(P)

which have, respectively, w + 1 and n elements, and are such that MZ)H.

Let J = wh(P), K be the element of M—H, and L be the set of atomic ele-

ments of the additive system generated by J+K. It follows from part (2)
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and Theorem 9.2 that L=wm(P)- Let /3£L and let D be an S-neighborhood

of ß. There exist elements of J and K, say j and k, such that ß is the greatest

lower bound of j and k. By an argument used in the proof of Theorem 14.11

there exist in 5 mutually exclusive open sets Pi and D2 such that P+Pi and

P+P2 are S-neighborhoods, respectively, of j and of k. Since J is upper semi-

continuous, there exists an S-neighborhood of J, Ri, such that if Ri is an

S-neighborhood of a portion of an element of j, then P+Pi is an S-neighbor-

hood of that element. Similarly define R2 for k and D+D2; let R = RiR2. Let

R be an S-neighborhood of a portion of an element of L, ßt, which is the great-

est lower bound of ji and k\. Then P+Pi and P+P2 are S-neighborhoods of

ji and of ki. Since D\-D2 is vacuous, it follows from Theorems 9.2 and 11.6

that D is an S-neighborhood of a(ßi) =a(ji)-a(ki) and of ßi. Thus L is upper

semi-continuous, and our conclusion holds for any finite case.

Let M be infinite. Again let /3£com(P) and D be an S-neighborhood of ß.

By (2) ß is the greatest lower bound of the elements of [Nß]; by Theorem 9.2

a(ß) is the product of the sets a(Nß). By methods used in the proof of Theorem

14.11 there exist a finite collection of the AVs, H= (Niß, N2ß, • • ■ , Nkß) such

that D is an S-neighborhood of the product X = a(Niß) -a(N2ß) ■ ■ ■ a(Nkß). If

ßk is the greatest lower bound of the elements of H, by Theorems 9.2 and 11.6

D is an S-neighborhood of ßk. Let NißENiEM, G=(Nlt N2, ■ ■ ■ , Nk), and

L=d)a{P). By the preceding paragraph LE8{_K) and ßkEL. Since L is upper

semi-continuous, there exists an S-neighborhood of ßk, R, such that if R is

an S-neighborhood of a portion of an element of L then D is an S-neighbor-

hood of that element. By Theorem 9.2 ß<ßk; by Theorem 11.6 R is an

S-neighborhood of ß. By condition (2) each element of oim(P) is a portion

of an element of L; it follows that uim(P) is upper semi-continuous. We have

established (1).

Let Z be the almost-multiplicative system which is generated by the sum

of the elements of M. By Theorem 18.2 ü)m(P) is the set of atomic elements

of Z. Let FG5(P) and uM(P) < Y in 5(P); by D 19.1 the latter means that

each element of F, y, is an amalgamation of a subcollection of um(P)- Since

ZZ)oim(P), Lm(P)D Y (cf. D 18.3). Thus, if S is the sum of all F's that satisfy

the condition of (3), then Ljif(P)Z)S. Conversely, let AELm(P) and let H

be the set of all elements of com(P) that are portions of A ; then A is an amal-

gamation of the elements of H. Let L be the set which consists of H and the

elements of uim{P)—H; let F consist of A and the elements of ooM(P)—H.

Since LM(P) is an almost-multiplicative system and its atomic elements are

the elements of com(P), no element of com(P)—H intersects A (cf. Theorems

18.1 and 18.2). By Theorem 14.7 A and if can be separated from each element

of com(P) — H by S-neighborhoods, and none of these elements is a limit point

of H. Thus, H is closed relative to co^(P). By Theorem 15.3 um(P) is perfectly

compact in itself. Since L is an upper semi-continuous decomposition of com(P)

into closed point sets, it follows from Theorem 15.5 that Fis upper semi-con-
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tinuous relative to 5. Then F£ 5(P) and um(P) < Fin 8{P). Thus, S3LM(P);

since Lm(P)DZ,Lm(P) = 2.

The conclusion of (4) follows from Theorems 18.4 and 18.5.

Theorem 19.2. Let P be the point of Theorem 19.1. If M=8{P), then

L(P) =Lm{P) and co(P) =wM(P)- Also, 8(P) is a complete lattice with unit P

and zero co(P).

Proof. If M= S(P), by Theorem 19.1 and D 19.1 LM(P)DL(P), and con-
versely. Thus, LM(P)=L(P) and uM(P)=w(P). By Theorem 19.1, (3), if

FG5(P), then w(P) < F in 5(P). Thus, w(P) is the zero of 5(P); clearly P

is the unit of 5(P).

By Theorem 19.1 if 8(P)DM and YGM, then wM{P) < Y in 5(P). Let X
be a lower bound of M in 5(P). If «Gl and NEM, there exists one element

of N, Nx, such that x is a portion of Nx (cf. D 19.1). By (2) of Theorem 19.1

there exists an element of com(P), say ßx, which is the greatest lower bound of

the Nx's. Thus, x is a portion of ßx. From this relation and the fact that each

of X and «m(P) is a decomposition of P, each element of oim{P) can be de-

composed into a subcollection of X. Thus, X <wM(P) and oim(P) is the great-

est lower bound of M in 8(P). Since 8(P) has a unit, it is a complete lattice

(cf. MacNeille, pp. 430, 431, and Birkhoff, p. 17).

Theorem 19.3. If 5(P)Z)Af and P satisfies the condition of Theorem 19.1,

let o>i(M, P) =w(P), co2(M, P) =03m(P), o}3(M, P) be the least upper bound of M

in 8(P), and o)4(lf, P) =P; if 1 gi^j^4, let 5tJ(ilf, P) oe the set of all elements

of 8(P), X, such that o>i(M, P)<X<o)j(M, P) in 8(P). Then 8i,iM, P) is a
complete sublattice of 8(P) and its zero and unit are, respectively, Wi(M, P) and

Wj(M, P); um(P) is the greatest lower bound of M in 5(P).

Thus, any X<co2(M, P) may serve as a common inverse mapping space

for the elements of M. However, X = o)2(M, P) may be regarded as the "most

economical" of these inverse spaces. For, if XE.8u(M, P) and Fi and F2 are

elements of M, we can first decompose the elements of Fi into points of X

and then reamalgamate these into points of F2 by the methods of Theorem

15.4. Since the elements of X =co2(M, P) are "coarser" than those of any other

element of 8u(M, P), the initial decomposition need not be extended so far

if this X is used for an inverse space. Similarly, X = o)(P) is the "least economi-

cal" of these inverse spaces, but it serves for all sets in 5(P). Analogous inter-

pretations hold for the common mapping spaces of the elements of M, the

elements of 8U(M, P). Theorem 19.3 may be modified by replacing 5(P) by

any of its complete sublattices.

20. Applications to completely regular spaces. If we order all the perfectly

compact immediate Hausdorff extensions of 5 by the ordering of D 19.1, we

obtain a quasi-partially ordered system (cf. Theorems 13.7 and 16.1). By
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identifying(33) equivalent elements of this system, we obtain a complete multi-

plicative system which is isomorphic to the subsystem of 6(5), .77(5), which

we consider in D 20.1 and Theorems 20.2 to 20.4. The zero of H(S), X(5), is

equivalent to the space considered by Stone in his Theorem 88, p. 476. In §17

we considered this space for the case that 5 is normal (cf. also, Cech, loc. cit.)

The important theorems 14.11, 18.5, and 19.1 to 19.3 involve hypotheses

in which certain points satisfy the condition of being the amalgamation of a

collection of regular composition points(34). This condition and the results of

the preceding section enter into the characterizations of completely regular

spaces which are given in Theorem 20.1. The fact that the atomic mapping

points in such a space are necessarily regular composition points gives an

analogy to the results of Theorem 14.13.

D 20.1. Let H(S) be the subsystem of 5(5) which consists of all F's such

that each point of Y is either a boundary point or is equivalent^5) to a point

of 5. Let X(5) be the zero of H(S) (cf. D 19.2).

Theorem 20.1. Any of the following is a necessary and sufficient condition

that 5 be completely regular: (1) At least one element of 5(5) consists of com-

position points; (2) the elements of co(5) are composition points; (3) if Q is a

regular amalgamation point, the elements of w(Q) are regular composition points.

Any regular amalgamation point in a completely regular space is the amal-

gamation of some collection of regular composition points^).

Proof. By Theorems 13.7 and 16.1 the condition in (1) is necessary. Let Y

be an element of 5(5) which consists of regular composition points, Q be a

regular amalgamation point, and K be the aggregate of all points Qy, where Qy

is the greatest lower bound of Q and the element y of Y. By Theorem 14.11

if y intersects Q, then Qy is a regular amalgamation point. Since Y is a de-

composition of the maximal amalgamation point P, and Q<P, it may be

shown that if is a decomposition of Q. We may regard Q as an upper semi-

continuous collection of one element; since Y is upper semi-continuous, we

may show by an argument like that used for the finite case in the proof of

Theorem 19.1 that K is upper semi-continuous relative to 5. By D 19.1

KG8(Q). By Theorem 19.1 if ßGco(Q), there exist elements of K and of Y,

respectively, kß and yß, such that ß<kß<yß. Since ß is a regular amalgama-

tion point and yß is a regular composition point, it follows from Theorem 14.8

that ß is a composition point. Thus, the conditions in (2) and (3) are neces-

sary. Since co(<2)£5(<2), by D 19.1, D 14.2, and D 9.3 Q is an amalgamation

ofco(0.

(33) Cf. Birkhoff, p. 7, Theorem 1.2.

(34) There exist examples which show that such an hypothesis is essential for the truth of

these theorems.

(36) Cf. D 3.2 and Theorem 13.7.

(36) Cf. Theorem 14.13.
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Clearly, each of (2) and (3) implies (1) (cf. Theorem 14.5). Let X be an

element of 5(5) which consists of regular composition points, M be the set

of those elements of X which are boundary points, and F=5 + 717. By Theo-

rem 5.2 no boundary point intersects a decomposition point. By D 19.1,

D 19.2, and D 9.2 each boundary point intersects M. By the argument used

at the beginning of the proof of Theorem 16.1 it follows that the points of 5

are regular. Since no two elements of Y intersect, it follows from Theorems

14.6, 14.7, and 12.1 that Fis a Hausdorff space. Let the mapping y = a(x) be

defined as in Theorems 15.4and 15.6. Let ß£ F,andZ> be an 5-neighborhood of

ß. Since ß is regular, there exists an 5-neighborhood of ß, R, such that DZ)Rs-

Let x be an element of X such that R is an 5-neighborhood of x. By Theorem

12.4 RsZ)a(x). By D 12.2 and the definition of the mapping, y=a(x), either

x = a(x) or a(x) =a(x); in either case D is an 5-neighborhood of a(x). Thus,

our mapping is continuous from X to F (cf. Alexandroff and Hopf, p. 53,

Theorem IV). By Alexandroff and Hopf, Theorem VIII, p. 98, Fis perfectly

compact. By Theorems 15.3 and 16.1 the condition in (1) is sufficient.

Theorem 20.2. Let S be completely regular: (1) 77(5) is a complete multi-

plicative subsystem of 5(5); (2) X(5) consists of the composition points which are

equivalent to the points of 5, and of the boundary points which are elements of

co(5); (3) if X=X(5) and Y'£72'(5), then X may be mapped on Y by the mapping

y =a(x) of Theorem 15.4.

Concerning (3) cf. Stone, loc. cit., Theorem 88.

Proof. Let 77' denote the set of composition points which are equivalent

to points of 77 (cf. Theorem 13.7 and D 3.2). Let M be a subcollection of

77(5). By Theorem 19.3 ojm(S) is the greatest lower bound of M in 5(5).

Since 5' is a subset of each element of M, and the remaining points of each

element of M are boundary points, by Condition (2) of Theorem 19.1

com(S)Z)S', and wm(S) — S' consists of boundary points (cf. Theorem 14.8).

Thus, WAf(5)£i7(5); (1) follows by D 3.7. If M = H(S), by Theorem 19.3

and D 20.1 X(5) =wm(S). Let K be the set of all boundary points which be-

long to w(5), and let Y= S'-\-K. By an argument similar to that used in the

proof of the sufficiency of the condition of Theorem 20.1 it follows that

F£5(5); hence, F£77(5). Thus, X(5) < F in 77(5). Since co(5) <X(5) in 5(5),
it follows that \(S)-S' = K, and that X(5) = F.

D 20.2. Let the symbol 77' denote the set of all composition points which

are equivalent to elements of 77 (cf. D 3.2 and Theorem 13.7). Let B be the

set of all boundary points and C be the set of all real points which are

limit points of B. Let Q(S) be the amalgamation of the elements of B + C

Let 7(5) = (5'-C)+0(5).
Recall that 77(5) contains the topological images of all immediate, per-

fectly compact Hausdorff extensions of 5. Theorem 20.2 shows that X(5) is a

universal inverse mapping space for such extensions, and is one of them. The
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two following theorems show that 7(5) is the least common mapping space

of the elements of 77(5), and that it does not necessarily belong to 77(5). The

following theorem gives the structure of 7(5). In particular, if 5 is not locally

perfectly compact at any of its points, then Q(S) is 7(5) and is the maximal

amalgamation point. Then Q(S) is the unit of 5(5).

Theorem 20.3. Let S be completely regular. (1) 7(5) is the least upper bound

of 77(5) in 5(5); (2) 7(5)— Q(S) consists of those composition points which are

equivalent to the points of 5 at which 5 is locally perfectly compact.

Proof. Let M be the set of all boundary points, N be the set of real points

which are limit points of M, and K = S — N. If XG.K, there exists an 5-neigh-

borhood of X, R, which is not an 5-neighborhood of any element of M+N (cf.

Theorems 12.2 and 13.1). Let 7>be an 5-neighborhood of X such that 2?Z)D.

If D were not perfectly compact, there would exist a boundary point ß such

that ß is an end of D (Theorem 10.3). Then, since RZ) D, it may be shown with

the help of Theorem 10.1 that R is an 5-neighborhood of ß; since ß(E.M, we

are involved in a contradiction. It follows that if the composition point 5 is

a limit point of M+N, then X?*a(8) (cf. D 12.2). Thus, either a(ä)GJV, or

a(5) is vacuous, and 5 is a boundary point; in either case 5 intersects an ele-

ment of M-\-N. By Theorems 14.1 and 13.7 Q(S) is an amalgamation point.

Clearly, no two elements of 7(5) intersect, each ideal point intersects an ele-

ment of 7(5), and 7(5) is upper semi-continuous relative to 5 (cf. D 15.1 and

D 19.2). Thus, 7(5)G6(5).

Let FG77(5) and Z be an upper bound of 77(5) in 5(5). Clearly, F<7(5)
in 5(5). If A and B are boundary points which belong to elements of 77(5),

they can be decomposed into subcollections of X(5), HA and 77B; and they can

be amalgamated into a point C such that C<Ha+Hb<C. Let L = C+X(5)

— (Ha+Hb). Then Cintersects no element of L — C; since X(5) contains L — C

and is upper semi-continuous, it follows that L is upper semi-continuous; also,

L is a decomposition of the maximal amalgamation point. Thus, L is an ele-

ment of 5(5) and of 77(5), and L<Z. Let 5£Z such that Cis a portion of 5;

since A and B are arbitrary, it follows that 5 is independent of A, B, and C;

thus, by D 9.2 M is a portion of 5. Since the elements of N are limit points

of M, they intersect 5 (cf. Theorem 14.6). Since 5'DA7', each element of 5'

belongs to each element of 77(5), and no two elements of Z intersect, each

element of A7 is a portion of some element of Z; that is, of 5. By D 9.2 Q(S) is a

portion of 5. Since the elements of 7(5)— Q(S) belong to 5', it follows that

7(5) <Z in 5(5). We have established the conclusion.

Theorem 20.4. (1) In order that 77(5) be a complete sublattice of 5(5), it is

necessary and sufficient that S be locally perfectly compact. (2) If this condition is

satisfied, X(5) and 7(5) are the zero and the unit of 77(5); and Q(S) is the amal-

gamation of all the boundary points.
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Here 7(5) is the topological image of the space we considered in Theorem

16.2. Cf. Alexandroff and Hopf, p. 93.
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