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I. Introduction. In this paper, we shall study the relations between uni-

tary spaces of n dimensions K„ and 'K„ whose fundamental tensors are re-

lated by the conformal transformation.

In §11, we develop the notation and some of the fundamental concepts of

hermitian geometry. Section III deals with the relation between the paths of

conformal unitary spaces. It is shown that (1) two unitary spaces, both without

torsion (symmetric connection), cannot be conformal; (2) if two unitary spaces are

conformal, then their paths correspond; (3) conversely, if two unitary spaces, one of

which is without torsion, are in a restricted correspondence of paths and if an uni-

tary orthogonal ennuple of Kn corresponds conformally to an ennuple of 'Kn (see

Definition 2), and if a certain curvature affinor 'C^fi vanishes, then the two spaces

are conformal.

The paper concludes with a study of some particular conformal unitary

spaces. We define the terms: (1) unitary &-space; (2) ^-spaces which are ^-con-

formal. We then prove the theorems: (1) the affinor 'Ca]ii„ is a conformal in-

variant of all k-spaces which are k-conformal; (2) if two unitary spaces are

conformal and the affinor 'Ca'^ is a conformal invariant, then the spaces are

k-spaces. A particular type of &-space with symmetric connection has been

studied by Mitrochin, Fuchs, Bergman and others.

II. Notation^). Consider the "points" determined by assigning arbitrary

values to the complex quantities £x (xx, yx real)

(2.1) $x = xx + t'y\      i = (- l)1'2, X = 1, • • • , H.

These points build a complex space of n dimensions Xn (real topological

Xin)(2)- Associated with (2.1) are the conjugate quantities

(2.2) (£x)* = £x* = sx - iy\ X* = 1, • • • , «.

Let us denote partial derivatives by

(2.3) dß = d/dp,      6> = d/d&";

then from (2.1) by the composite function theorem(3), we find for functions

Presented to the Society, February 24, 1940; received by the editors June 2, 1940.

(') Since most of the references are to Einführung in die neueren Methoden der Differential-

geometrie by J. A. Schouten and D. J. Struik; vols. 1, 2; P. Noordhoff; Groningen, Batavia;

1935, 1938; we shall merely indicate volume, page and equation number.

(2) II, pp. 225-251.
(3) The equations (2.4) are obtained as follows:
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of £x and £x* respectively,

dM?) = h(ß*/dx* ~ id<t>/dy"),
(2.4)

d**M?*) = + id4>/dy»).

Consider the allowable coordinate transformations with nonvanishing

Jacobian

(2.5) ? = = x* 4- iyy.

The corresponding conjugate equations are

(2.6) e' =    Of),      f = *x' - iy*'.

We now introduce the unit affinor whose intermediary(4) components are

(2.7) A\, = di/d{',      A*., = di'/df.

Evidently, if a star (*) after a symbol denotes the conjugate (i.e., replacing £x

by £x* and i by —i), then

(2.8) (A\.f = All.

This is a general notation which we will employ in the case of any affinor (also

for the connection (2.15)).

We next consider a function of position in Xn, 0(£\ £x*)> which is ana-

lytic(6) in £x, £x* considered as independent variables. Such a function is called

"semi-analytic." On the other hand, an analytic function <p(£x) of £x alone is

called "analytic"; all the functions studied in this paper will be assumed to

be "semi-analytic" or "analytic." The question arises as to the value of

d£x*/d|;x. As is easily seen, such a derivative depends on the ratio dyx/dxx.

In order to eliminate such a possibility, it will be desirable to consider £x*, £x

as independent variables, i.e.,

(2.9) 6V£X* = 0,      6>£x = 0.

We now formulate a definition of the operators dM, dß» which will check with

(2.9) and (2.4) and which will replace any previous conceptions of these opera-

tors.

d<t>       d<t>                             dtp       d<j> dZ"
-=- - = dud)'. -=- - — tdu<b.
dxf    ata dx" ay dy»

By multiplying the second equation by ( —t) and adding these two equations, the first equation

of (2.4) is obtained. See Über unitäre Geometrie by J. A. Schouten und D. van Dantzig, Mathe-

matische Annalen, vol. 103 (1930), p. 324, footnote.

(4) I, P- 22.

(5) On the elementary solution • • • , T. Y. Thomas and E. W. Titt, Journal de Mathd-

matique, vol. 18 (1939), p. 218 for definition of analytic "real" function. We assume a corre-

sponding definition for analytic "complex" function.
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Fundamental definition. For any "semi-analytic" function 6 (and for the

"analytic" functions <p, \p), the operators     6\,. will be defined by

(2.10a) dß = i(dd/dx" - idd/dy"),

(2.10b) 6V0 = h(d8/dx" + idd/dy").

Replacing 6 by £x* in (2.10a) and using (2.2), we see that the first equality

of (2.9) is valid. The second equality of (2.9) is obtained by replacing 6 in

(2.10b) by £x. Hence the definitions (2.10) are consistent with the equations

(2.9). Thus £x, £x* are independent variables with respect to differentiation.

We note that d(£x*)n/di;x = 0, identically in x\ yx.

One further question remains to be answered. "Is (2.10) identically satis-

fied in xx, yx ?" The answer is in the affirmative. We give a proof for a semi-

analytic function of one complex variable and its conjugate 6(z, z*). Since d

is semi-analytic, we can expand 6 in a convergent power series of terms znz*m.

Applying the operator d2 to this term, we obtain

(2.10c) d(znz*m)/dz = nzn~h*m.

Now if the expression znz*m is written as/(x, y)g(x, y) and substituted into the

right-hand side of (2.10a), we obtain

(2. lOd) (g/2)(df/dx - idf/dy) + (f/2)(dg/dx - idg/dy).

From our observation at the conclusion of the preceding paragraph, we see

that the second set of terms in (2.1 Od) vanishes. Furthermore, (2.10a) reduces

to (2.4) (an identity) when <p=f=zn. That is,

(2.10e) \(df/dx - idf/dy) = nz"-\

Hence (2.10c) and (2.10d) coincide and (2.10a) is an identity in x, y. The

argument can be generalized to any number of variables.

We can now see why an analytic function <p(£x) of £x alone is called "ana-

lytic." From (2.9), we have

(2.11) 6V0 = 0.

But upon expanding <p into real and imaginary parts (<p = u-\-iv) and using the

right-hand side of (2.10b), we find from (2.11)

(2.12) du/dx" - dv/dy* = 0,      dv/dx" + du/dy" = 0.

These are the generalized Cauchy-Riemann equations. The conjugate equa-

tion to (2.11) is

d,<b* = 0.

Evidently, any equation implies a conjugate equation. In the future, we shall

indicate the validity of the conjugate by the abbreviation "conj." It is to
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be noted, on the formal side, that in passing to the conjugate, indices are

starred. The star of a starred quantity removes the original star.

We now introduce the vector v*(£x,£x') of the first type with the transforma-

tion law
X' , X' x

(2.13) V   = Axv .

Associated with each such vector is its conjugate, or vector of the second

type vx*, with transformation law

X«'      ß» x«
(2.14) v    = Aw v .

The theory can be extended to affinors of any mixed valence.

Let us introduce a connection in Xn by means of the n3 quantities T^

which are functions of position. Then, we define the covariant differential of

a contravariant vector by

(2.15) 5»X = d/ -)- T^aV d{, conj.

The      transform in a well known manner(6) under (2.5). We now write for
-|X
L im

a covariant vector

(2.16) bw\ = dw\ — T&Wadt , conj.

By expanding the ordinary differential of a vector, we obtain

(2.17) oV = d£*dy 4- <7£".6yzi\ conj.

If we define the covariant derivative of u>\, vx by means of

(2.18) V^X = dMtiX 4- rX«/,        v>wx = df.w\ — T^wa,

x x
(2.19) v>» =       , v>wx = d„tW\, conj.,

then

(2.20) 8vx = ipV^ -f d£"*v>»\ conj.,

(2.21) 8wx = dpv^wx 4- dp'Vr.wx, conj.

An hermitian Xn with a covariant derivative defined by (2.18), (2.19) is de-

noted by Kn.

We now introduce an hermitian tensor with hermitian symmetry

(2.22) ax„« = (ax„*)*' = Vx,

the (') indicating the transpose matrix. If we condition öx„» by requiring

that

O I, p. 75, (7.4).
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p f p* \
(2.23) 5ax„« = 0 = (d„axii* — T^a^d^ + (cWxm* — IV^.axp*)^; >

then the space Kn becomes a unitary Kn. For such a space, from (2.23), we

can prove (7)

(2.24) V»axM* = Mxjf — r'XöPM. = 0, conj.,

(2.25) YVax,i« = d„.a\M. — r^*axP« = 0, conj.

The ax,,, is now a fundamental tensor and can be used to raise and lower in-

dices through the V operator; that is, if

(2.26) v\ = a^v1", conj.,

then

(2.27) V«»\ = axsVcV*', conj.

If we define the contravariant fundamental tensor a"*" by

(2.28) a"au* = A\, conj.,

then (2.24), (2.25) may be solved for the connection

(2.29) r'x = (d„aXa')a° ' = (d„aa,\)a ",

(2.30) FW = (d^a^a" = (6yaxv)a ■

For the curvature affinor, we have the components(8),

(2.31) Rv^^ 2d[JV]X 4- 2rnP|r/1P]x. conj.,

(2.32) Ry*ß\ = d,*vjl, conj.

The sign [ ] on the indices means that the alternating product is to be formed;

the sign ( ) enclosing indices means that the symmetric product is to be

formed; the sign | [ implies that indices enclosed are not to be included in

any alternating or symmetric product(9).

For unitary Kn, we find from (2.29)(10)

(2.33) Ryfi\ ' = 0, conj.

Next, we introduce the torsion affinor

(2.34) S„x" = r&A], conj.

(7) U, p. 234, (21.40).

(8) II, p. 233, (21.33).

(•) I, pp. 14, IS.
(10) II, p. 235, (21.43).
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If this afhnor does not vanish in Kn, then we may say that Kn has torsion.

Finally, we introduce an unitary-orthogonal ennuple(u) at each point P

of Kn. We may denote these vectors by wx(£\ £x*) (subindex k = l, • • • , »)

where

j i
(2.35) a\a*u>ua* = 8 ;      uxU\ = 5, conj.

k j hi k k

Here 5 is the Kronecker symbol. We note that at each point P there are

00n(n-i)/2 such ennuples. Let 'Kn be another unitary space also mapped by

the variables £x. We say that the point P(£x) of Kn corresponds to the point

'P(£x) of 'Kn and conversely. Let 'mx(£\ £x*), subindex k = l, • ■ ■ , n, denote

an unitary orthogonal ennuple at 'P(£x). We now form the definitions

Definition 1. We shall say that two ennuples of Kn and 'Kn at correspond-

ing points P and 'P are corresponding ennuples if functions a(£\ £x*), subindex

j= 1, • • • , n, exist so that

(2.36) 'u\ = a 'u\, not summed on j.
i        i i

Definition 2. If the a (subindex j) are all equal, we say that the two ennuples

correspond conformally.

III. Conformal unitary spaces; correspondence of paths. Consider two

unitary spaces K„, 'Kn both mapped by the variables £x and whose funda-

mental tensors are related by

(3.1) 'flxji* = <r«\/<*, conj.

Here <r is a function of £x, £x*. Taking the conjugate of (3.1) and using (2.22),

we see that a is real. Hence,

Definition 3. Two unitary spaces whose fundamental tensors are related by

(3.1) where a is real will be said to be conformal.

By use of (3.1) and (2.29), we find

(3.2) T^x = rv'x + Ald„ log o~, conj.

We shall now prove the theorem

Theorem 1. Unitary spaces Kn, 'Kn, both without torsion, cannot be con-

formal, unless Kn and 'Kn are the same space.

For if these spaces were conformal, then (3.2) would be valid. By our as-

sumption, the connections of both spaces are symmetric. Thus

(ll) I, p. 235.
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(3.3) Afrd\] log a = 0, conj.

By expanding, we find

(3.4) 3„ log a = 0, conj.

Hence cr is a constant. Such a conformal transformation takes Kn into itself.

We shall assume in the future that at least one of the unitary spaces K„,

'Kn has torsion. If only one of these spaces has torsion (K„), then from (2.35),

(3.2) we see that

(3.5) SmX" = — Afrpxy,      px = d\ log <r, conj.

The connection of Kn is then said to be semi-symmetric(12). In the general

case, we may write (3.2) in the form

(3.6) Tfcjo = T(mX) + A*(ßpx), conj.

If we denote these symmetric parts of the connection by

(3.7) 'fVx = 'IV),      i\!x = IV), conj.

and replace the vector p\ by

(3.8) qx = px/2 = dx log a/2, conj.;

then (3.6) becomes

(3.9) 'fVx = i\\ + 2A^qX), conj.

But, the equations (3.9) are well known in the theory of paths. These equa-

tions state that the paths of Kn and 'K„ correspond(13). Hence, we have the

theorem:

Theorem 2. If two unitary spaces are conformal, then their paths corre-

spond.

This last theorem has no equivalent in the theory of real spaces.

We shall now prove a converse of Theorem 2. Consider two unitary spaces:

'Kn without torsion; Kn with torsion. Let us assume that the paths of these

spaces correspond. Hence the connections of these spaces are related by

(3.10) TVx = i\"x + 2A*(»qx), conj.,

where

(3.11) I> = r^x), conj.

(12) I, p. 82, (7.27).

(13) II, p. 176, (18.1).
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In our work, we shall find it useful to consider the particular correspondence

of paths for which gx(£\      is a gradient vector. Hence, we define:

Definition 4. The particular correspondence of paths determined by (3.10)

when q\ is a gradient vector of a real scalar function of position shall be called

restricted correspondence of paths.

The curvature affinors determined by the connections occurring in (3.10)

may be found from (2.31), (2.32). With the aid of (3.10), we find that these

affinors are related by(14)

(3.12) 'R,'^' = ^x* 4- 2A%&fi ~ con3->

(3.13) 'R^x = £,.Mx" 4- 2(Vv?o,Mx), conj.,

where

(3.14) ff„M = — \7Pqß 4- g„gv, conj.

In these equations, the V„ (superindex s) represents covariant differentiation

with respect to the connection occurring in the right-hand side of (3.10). Fur-

thermore, by (2.33), the left-hand side of (3.12) vanishes. Finally, we define

the affinors
. .ß . . .«* X*0

(3.15) 'Ra\*-, = 'Ra^\''a  'aVK„ conj.,

(3.16) 'Cav*v = 'Raß*-, — 'Rfa, , conj.

We may now state our theorem as:

Theorem 3. If two unitary spaces, 'Kn without torsion, Kn with torsion

are given, and if (1) the paths of these spaces are in restricted correspondence,

(2) the affinor 'C'ai£, vanishes, (3) one arbitrary unitary orthogonal ennuple at

one arbitrary point P of K~„ is conformal to the corresponding ennuple at the

corresponding point 'P of 'Kn (see (2.36)), then the two spaces are conformal.

By assumption (1), the equation (3.10) is valid. Substituting (2.29) into

(3.10) and transvecting with 'aKa; we find

(3.17) d„ 'axa' =      'aKO* 4" '<WOX 4" 'a\a.qß, conj.

We shall consider (3.17) as a system of partial differential equations in 'a\a*

where T£x (superindex s) and q\ are considered as known. The integrability

conditions of (3.17) are

(3.18) d[„6\,]'axa» = 0, conj.,

(3.19) d[v*dß]'a\a. = 0, conj.

(14) II, p. 240, (21.62).
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Our method of procedure is to show that because of our assumptions, the

equations (3.18), (3.19) are identically satisfied. It then follows that there ex-

ists an unique solution for 'a\^ which by (2.22) contains w(«4-l)/2 constants

of integration. From (3.11), (2.29) the equation (3.17) may be written in the

form

(3.20a)        3(/flx)o* = (d(?aw)aß** 'aKa, + 'aßa*q\ -\- 'a\a.q„, conj.

Since the connection of 'k„ is symmetric, (3.20) may also be written in the

form

(3.20b) d/ax*« = (oVaxj^V"" '<W 4" '<W<7x 4" 'a\a*qß, conj.

This last set of equations constitutes a system of linear homogeneous partial

differential equations. For, we can write (3.20b) in the form

(3.20c) d„'aXa. — Aß\" 'a„„. = 0, conj.,

where A'^ are known functions of £x defined by

• • v Q*v v v

(3.20d) Aßx =a   (d^avp) + Aßqx + Axqß, conj.

If n(w4-l)/2 particular integrals of (3.20c) are denoted by

(3.21a) 'ka; k = 1, • • • , n(n + l)/2,

then the general solution of (3.20c) is given by

i
(3.21b) 'a\a* = c'a\a;   k = 1, • • • , n(n 4- l)/2; conj.;

k

where c, subindex k, are arbitrary complex constants. By substitution, we see

that one particular solution of (3.20a) or (3.20c) is

(3.21c) 'ax«» = <ra\a,, conj.,

where <r is a real solution of

(3.21d) d„ log <j = 2qß, conj.

Since q» is the gradient of a real scalar <p, the solution of (3.21d) for <r is given

by

(3.21e) log a = 2<p + /(•*•) + s,

where 5 is an arbitrary constant and/is an arbitrary function. The conjugate

equation of (3.2Id) yields

(3.2If) log <r = 2<p + gm + r.

This last result follows from the facts that <r, 0 are real; r is an arbitrary con-
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stant and g is an arbitrary function. Upon taking the conjugate of (3.21e),

we find

(3.21g) S* + f*m = Ä*(£x*) + r*.

Since £\ £x* are independent, the functions /, g both vanish. Furthermore,

s = r and 5 is real. Thus a is given by

(3.21h) a = Se2*;

real 5 is a real arbitrary constant.

The general solution of (3.20c) can now be written as

(3.22a)       'a\a> = ca\a- + c 'a\a.,   k = 2, ■ ■ • , n(n + l)/2; conj.
t

Note, that a contains an arbitrary constant. We now use condition (3) of our

theorem to show that c (subindex k = 2, ■ ■ • ) must be zero. At P, we ex-

pand 'oxa. (superindex k) in terms of the ennuple and find

(3.22b) fix«* = au\ua,, conj.
it

By substituting (3.22b) into (3.22a) and transvecting with the wx, Mx* vectors,

we obtain by use of (2.35) and (2.36)—where all a's are equal—

(3.22c) cq. = 0, ft* I, j,l - 1, • • • » »,
k jl

(3.22d) ca = (aa* - a),    k « 2, •••,#(» + l)/2.

We can evidently fix the arbitrary constant in er so that the right-hand side

of (3.22d) vanishes at some point P. Let us assume that the c (subindex k)

are not all zero. Then the [n(n + l)/2 — l] solutions 'a\ß* (superindex k) are

linearly related at P. Since the 'ax^* (superindex k) satisfy a system of linear

partial differential equations, these 'ax,.* are not independent in Kn. It will

be shown in (3.41) that the integrability conditions of (3.20a) are identically

satisfied in virtue of condition (2) of our theorem. Hence, from the theory of

linear differential equations, (3.20a) has n(n + l)/2 independent integrals

o-OxM«, 'flx^* (superindex k). Thus c (subindex k) must vanish and the only

solution of (3.20a) under the condition (3) of our theorem is

(3.23) 'ct\a* = «nix««, conj.

Thus, we have reduced our problem to showing that the conditions (3.18),

(3.19) are identically satisfied. We first consider (3.18). From (3.17), we find

dfrdp] axa* = 'ff«a»(9[^rM]x) 4" T\[iidV]'aKat 4- q\d[y'aß]a*
(3.24)

4- q\jnd,]'a\a* 4- (d[„a|xi)'a„]a. + 'öx<««3[»<//i]. conj-



36 N. COBURN [July

With the aid of (3.17), we see that the third term on the right-hand side of

(3.24) vanishes. We next simplify terms two and four:

ft a k   ap a k sc

(3.25) T\[ßdy] aKct» = T\[pTV]/apa- -\- T\[J aV}a*qK -\- Fx [pgr]'a«**,

(3.26) qiixdr]'axa. = F)k[>&]'<W 4- <7[/<Ma«?x + g^i'axa», conj.

Upon substituting these simplifications into (3.24) and using (2.31), (3.14),

we obtain
t • ■ «4

(3.27) doöV/axa* = %RviA 'aKa* 4~ q\ii/cV]at — fffoi'ax«*, conj.

From (3.12), (3.27) we find

(3.28) 2'a   dirdtf'axa* = 'RPß\ß, conj.

Since the right-hand side of (3.28) vanishes for a unitary 'Kn, we see that the

conditions (3.18) are identically satisfied.

The verification of (3.19) requires considerable computation due to the

unsymmetric character of the indices. We shall list the principal steps. By

taking the conjugate of (3.9) and using (2.30), we find

(3.29) dß.a,\* = Tß*\*'a,w + 'a^qw 4- 'ö»x*?m*, conj.

By differentiation of (3.29),

(3 30)     da6y'fl>.x* = (daTß*\')'arK* + (da'a^)Tß*\' -\- (da'avß')q\>

4" 'arß*daq\* + {da'av\*)qß. -\- 'ay\.daqß', conj.

We simplify terms two, three and five of the right-hand side by means of

(3.17),

(3.31) Tß*\*da (iyt* = r^.xtTa, a,ßK* 4" IVx« 4" IVx« aaK*qv, conj.,

(3.32) (da'avß.)q\. = T Jatß*q\* + 'aaß*qrq\* -\- 'atß,qaqw, conj.,

(3.33) {da'a,\*)qß. = Ta~aK\.qß. + 'aa\*qvqß» 4- 'av\.qaqß*, conj.

From (3.17), by differentiation, we get

s k t K

dß*da'av\* = (dß*Tav)'aK\* + tavdß*'a^ -\- (dß*'aa\*)q,

+ 'aa\.dß*qu -f (dß''av\*)qa + 'ay\>dß*qa, conj.

For the terms two, three and five of (3.34), we obtain

(3.35) Tavdß*'a,y\* = TaSß*\>'aKp* -\- Tav'aVß*q\* 4" Fa/aK\*qß*, conj.,

(3.36) (cV'tfaX*)0- = i>x«'cwffx 4- 'aaß*qwqv + 'aa\»qß,qv, conj.,

8 k*

(3.37) (dß,'a^)qa = Tß*\*'a„\*qa + 'aA.qß.qa 4- 'a„ß*q\-qa, conj.
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When we subtract (3.30) from (3.34), we find that the set (3.31), (3.32),

(3.33) cancels against (3.35), (3.36), (3.37). And we obtain

2dradu«]'<z,x« = (daTi^\')'avw — (d^Tav)'aK\*

(3.38)
+ 'ar^daq\* 4- 'av\,daqß' — 'aa\>d^q, — av\*dß*qa, conj.

This equation may be simplified by transvection and use of (2.32) into

X»/3 f s . . ■ic'/ \*ß/ < • • -a
2 a  d[adß*] a^x* = Ra/S\* a   aVK* — Rß*av

(3.39) \»ß ß ß ß
4- 'a    aVß.daq\* -\- Avbaqß* — Aadß*qv — Avdß*qa, conj.

Upon replacing the first and second terms of the right-hand side by their

values as determined by (3.13), and using (3.15), we find

(3.40) 2 'a ß d[adf]'a*\, = 'R*?., — 'Rß*J, conj.

From (3.40), (3.16), these last integrability conditions are equivalent to

(3.41) 'Caii>, = 0, conj.

Hence our theorem is proved.

The extension of this theorem to K„, 'Kn both with torsion is not possible.

For then the term '.S^x'#«<»• must be added to the right4iand side of (3.17);

the argument (3.20, 3.21) is then no longer valid.

IV. Conformal unitary ^-spaces; a conformal invariant. We first define a

unitary &-space by

Definition 5. If the fundamental tensor of a unitary space K„ can be written

in the form aa,t = ßdadr* log k, where k is real and ß is an arbitrary function of

£\ £x then Kn shall be said to be a unitary k-space.

From (2.29), we see that those ^-spaces for which ß = 1 have a symmetric

connection. Such spaces have been studied by Mitrochin, Fuchs, Bergman

and others(16). The class of ^-spaces with real ß are evidently conformal to

those ^-spaces for which ß= 1 (fixed k). Hence by Theorem 1, the connections

of the class of ^-spaces with real ß (ß not constant) possess torsion.

If we fix the function k, but allow ß to vary, then we obtain a set of such

^-spaces. In particular, we consider those ß which are the product of a real

function and an initial p\. Any two spaces of such a set are conformal to each

other. We define a subset of such spaces by the following:

(l6) Über die Veränderung der Krümmung von Hyperflächen bei Pseudokonformen Abbild-

ungen, by I. Mitrochin, Bulletin de 1' Institute de Mathematiques et M6canique ä 1* University

Koubycheff de Tomsk, vol. 1 (1937), no. 3.
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Definition 6. All unitary k-spaces (fixed k) whose fundamental tensors are

related by

(4.1) 'axM« = kaaw, conj.,

where a is any real number, will be said to be k-conformal.

This definition imposes the following restrictions on ß. Consider two k-

spaces

(4.2) ox„« = ßiövV log k, conj.,

(4.3) 'ax„* = j32dxdM. log k, conj.

If these ^-spaces are fc-conformal, then

(4.4) k'fit = ß2.

Evidently, the so1 ^-spaces whose first fundamental tensors are

(4.5) j8i3xaM. log k;   k'ßvhd^ log k;   £"'p\öx6V log k, etc.,

are ^-conformal to each other when a, a', etc., are any real numbers. We now

prove the theorem

Theorem 4. The affinor C'a$vis a conformal invariant of all unitary k-spaces

which are k-conformal.

From (3.16), (3.10), (2.32), we find for any two unitary conformal spaces

(4.6) 'C«p», = 'i?«^x«'ßX ß'arK* — 'R„*J , conj.,

Caß*v = (3arM»x» 4~ Afdaq\* 4" A\tdaqß»)'a 'a,*

(4.7) ,ß        ß ß
— (disTav + Aad^q, + Avdß*qa), conj.

Simplifying (4.7) with the aid of (3.16), we obtain

i-iif', — ^aii*v t i    av)i*oaqx* -p- Avoaqß*

(4.8) i 0
— Aadfqv — Ardß*qa, conj.

Since our spaces are ^-spaces and ^-conformal, then (4.2), (4.3), (4.4) are

valid. Furthermore, from (3.8)

(4.9) qx. = f6V log er, conj.

Hence from (4.1), where a = ka, and (4.3), we find

(4.10) 6V<7x* = (a/2)dMdx« log k = a'allw/2ß2, conj.

From (4.9) conj., we have

(4.11) cVtf/a = (a/2)dx.dM log k = a'aft\*/2ß2, conj.
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From (4.10), (4.11), we find the important relation

(4.12) dwqß = dßq\*, conj.

Upon substituting (4.11), (4.12) into (4.8), we see that

(4.13)
'C = Gap*, , conj.

Hence our theorem is proved.

We may also prove the converse theorem:

Theorem 5. If two unitary spaces are conformal and the affinor CäßZ is a

conformal invariant, then the spaces are k-spaces.

From (4.8), we find that the condition (4.13) is equivalent to the two con-

ditions

(4.14) d\.qß = dßq», conj.,

(4.15) dßqx. = p V. conj-

From (3.8), we find

(4.16) dßd\> log a = 2p'aß\>, conj.,

where a is real. Hence our theorem is proved.
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