
ON A THEOREM OF SCHUR AND ON FRACTIONAL
INTEGRALS OF PURELY IMAGINARY ORDER

BY

H. KOBER

1. Let Lp(a, b) be the space of all functions/(y) whose pth power is in-

tegrate over (a, b) or which are measurable and essentially bounded over

(a, b) for l^p<oo orp=oo respectively, with the norm

1/1»-{/ Iain}1''

\f\p = ess. u.b. I/O) I [?=»];
a<y<b

let p' = p/{p-\) and

Lp = Lp(0, co).

The following theorem is in substance due to I. Schur(1):

Let K(x, y) be homogeneous of degree —1 and K(x, y)^0 for 0<.r< °°,

0 <y < <*> ,let K(x, y)x~ll2(ZLi, and letf(x) CLL?.; then

K(x, y)f(x)dx
o

= «l/(y)U

where

k = f K(x, \)x~mdx = f £(1, y)y~U2dx.
J 0 *r 0

77ze constant k is the best possible.

Of course the inequality is true when K(x, y) takes negative or even com-

plex values also, if we replace k by

/» 00 y-» CO

' = j    I K(x, 1) I x-^Hx = I    I K(l, y) \ y-"Hy.

However k is not the best possible constant any more. We shall give a better
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0) Journal für die reine und angewandte Mathematik, vol. 140 (1911), pp. 1-28. The cor-

responding theorem for fCLp, l<p< °o, was proved by G. H. Hardy, J. E. Littlewood, and

G. P61ya, vide Inequalities, Cambridge, 1934, Theorem 319.
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theorem for this case and we shall use it to deal with fractional integrals the

order of which is an imaginary number, thus filling a gap in the literature.

Throughout this paper we denote constants depending on the given pa-

rameters by the single symbol C; a and ß denote finite numbers such that

9t(a)>0, 31(0) =0.

2. Theorem I. Let (i) K(x, y) be homogeneous of degree — 1, (ii) K(x, l)x~112

CLi, (iii) f(x) C-f-2; then the function

Wf = [mE(*,M*)**

exists for almost all values of y in (0, »), and

|»7|.S«.|/(y)|t-   max |«(r)H/(j)U

where

w(t) = f #0, l)*-1/2"iTd* = f Jt(l, y)y-w*+-*iy,     k0 =  max   | co(r) |.
J 0 «7 0 — 0O<T<«

TAe constant is the best possible.

Obviously Ko = k ; when X(x, y) ^ 0 then k0 = k, as we may see taking t = 0.

Proof. Without loss of generality we may suppose K(x, y) to be no null-

function; then k0>0. Let 1 <a< =o ,f(x, a) =f(x) in (a-1, a), /(x, a) =0 other-

wise, and let

/.»
(/>(*)x-1/2+iTdx [<p C Li].

In consequence of Schur's theorem IF is a bounded linear transformation

in L%\ the Mellin transform M is a bounded linear transformation from

L2(0, oo) into Li(— oo, oo). We have

(2.1)

f y-llm4*W{f{xto)\dy - f y-w+"dy \  K(x, y)f{x)dx

= r /(*)*-i/2+i^x r «ei, D)z)-i/2+ird»
•J l/a «'0

when we put y=vx and make use of the homogeneousness of K(x, y); the

interchanging of the integrations is justified by absolute convergence of the

right-hand repeated integral. Since the left-hand integral exists, it must be

equal to MW{f(x, a)}, therefore we have

MW{f(x, a)} = co(t )M{f(x,a)\.
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Since \f(x, a)— /(x)|2—>0 [a—►«], and |w(r)| S=/Co< °°, by the continuity of

the operations M and W we get

(2.2) IflV/ = «(»2lf/;

therefore | MWf\i = Ka\ Mf\i in L2(— 00, 00). Now the operator (27r)_1/2lf is

isometric, and so we obtain the first assertion of the theorem.

The function w(t) is continuous in consequence of (ii) and attains its maxi-

mum value at a finite point r, since, by the Riemann-Lebesgue theorem,

w(t)—-+0 [r—» + a> ]. Now let X be any positive number smaller than k0- Then

we can easily show the existence of f unctions/(x) C-l2 such that | Wf\ 2 >X |/| 2-

Let £ be a set of measure m(E) >0 such that | w(r) | >X in E and E is in-

cluded in some finite interval. Take <p(r) = 1 in E and c/>(t) =0 otherwise, and

let f=M-l<p. Then from (2.2) we have

f   I MWf\2dr = f I w(t) \2dr > \2m(E)

= X2 f   I <p(r) \Ht = 2ttX2 f   I fix) \2dx,
J -x J 0

f I W7"|2dy > X2 f \f(x)\2dx.
J 0 «7 0

Hence the theorem is proved.

3. We could give an alternative proof by the theory of "general trans-

forms," without making use of Schur's theorem. Let V be a transformation

of the form

Vf= f L(x, y)f(x)dx,
J 0

the infinite integral being defined in some sense. Then it turns out that,

roughly speaking, the class of all transformations which are representable in

the form V\Vi is identical with the class of the transformations

Wf= f K(x, y)f(x)dx,
J 0

where K(x, y) is homogeneous of degree —1. We leave that proof of I to the

reader(2).

(2) W belongs to the so-called "product-class." We need the lemmas:

A. Let ylx{y)(ZLz, let w(t) = (j— ir)M{y~lx{y)} be essentially bounded in (—<*>, x), and

let x(y) have the form %{y) =fylH{^)dk-\-c, where e = x(l) is an arbitrary constant. Then, for any

fCLi, the function

gb) = Wf= U.m. sq.  f b(?)m —
7V-»»   Ji/g   \x/ x
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4. We replace the customary operators(3)

(4.1) fl(y) - -i- f *(y - *)a_1/(*)dx,
T(q:J

(4.2) fa(y) = — I   («- y)"_1/(*)d*
r(a) J „

by the more general ones

(4.3) /„,„()>) = /,,«/ = —— I   (y - *) x'f(x)dx,
T(a) J o

(4.4) ü«(y) = JW = -~r f (*— y)"-1*-'-"/^)^-
r(«) •/ y

where tj is a given parameter. Obviously

(4.5) fa(y) = y"ltaf,     }Z{y) = y"jZaJ.

In another paper we have proved that I*af and J~af are bounded linear

transformations in Lp for l^p = » when 9f(a)>0 and when SR(tj)>—l/£'

or $R(t7)>— 1/p respectively (4). Obviously the definitions above have no

meaning at all when we replace a by an imaginary number ß, but we shall

show that the operators I*ßf and J~ßf exist in some sense for any fC.L2.

Those definitions are of importance in the theory of Hankel transforms, as

will be shown in a joint paper of A. Erdelyi and myself.

exists, and Mg = a{r)Mf.

Vide H. Kober, Quarterly Journal of Mathematics, Oxford, vol. 8 (1937), pp. 172-185,

§6 and Theorem 2A.

B. Let <)>(x)CLi and ^(y)=y-lfy0<t>(x)xll1dx; then y'^M-tO for y->0 and and

C. Let r'xWCis, let y~1/2x(y) —>0 for y—>0 and y—>», and let x(y) have the form as in

Lemma A; then

(i - ir)M\ y-'xiy)! =  Km    f * H(y)y-»*+»dy,

i/ i/ie right-hand limit exists.

Cf. H. Kober, loc. cit., Theorem 3(i).

(3) Cf. H. Weyl, Vierteljahrsschrift der Naturforschende Gesellschaft, Zurich, vol. 62

(1917), pp. 296-302; G. H. Hardy and J. E. Littlewood, Mathematische Zeitschrift, vol. 27
(1928), pp. 565-606; E. R. Love and L. C. Young, Proceedings of the London Mathematical

Society, (2), vol. 44 (1938), pp. 1-28. The operator y~<* f^(y) exists in Lp with domain Lv and is

bounded when 1 gp< {3J(a) Also cf. J. D. Tamarkin, Annals of Mathematics, (2), vol. 31

(1930), pp. 219-228.
(4) Cf. Inequalities, Theorem 329. H. Kober, Quarterly Journal of Mathematics, Oxford,

vol. 11 (1940), pp. 193-211.
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Let 9?(ij)>-l/2 and(4)

({r(a)}-1(y — x)«-1*'))-'-«      [0 < x < yj,

K{"-y) = to    [, > ,],

then K(x, y) satisfies the hypotheses of Theorem I, and we have

oo(» = f K(x, l)x-l'2-"dx = —^- f  (1 - x)a-1xi-lli-iTdx
J o T(a) J o

r(ij 4- \ - it)

T(V + a + i - ir)

/*.«/= I   K(x,y)f(x)dx [fCLz],
«7 0

therefore by the theorem

r(n +1 - ir)
/t«/|2 = maX

— 00<t<« T(v + <x + * - ir)
/I» = «o|/|

When we take \a\ <C, then, in consequence of a well known property of

the gamma function, k0 is uniformly bounded for 9t(a) >0; therefore

\iUf\t gc|/U
where C depends on ?7 only. Let ß be any fixed imaginary number or zero;

then, by a well known theorem on weak convergence, a sequence at, ct2, «3, • • •

and a function <p(y) CL2 exist such that converges weakly to </>(y) when

a„ tends to ß [«—>■ 00 ].

A similar argument applies to J^af, and we now define

(4.6) I*jf = weak limit

[9t(u) > -hfCL2]

(4.7) /7j»/ = weak limit /,,«„/

for some sequences {«„}, {am}.

5. Strong convergence. Starting from I+ß\j/ and for step4"unctions \p

we can show that /^J" or J^/ converges to I*ßf or /"^/ in the strong sense also

for any JC.L2 when a tends to ß. We can also proceed in a shorter way. By

(2.2) we have

(5.1) MI*.f-r(, + irir){r(, + a + i- ir)} "W/

and, taking
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[0 < x < y](0      [0 <
K{x, y) = < . .

l{r(a)}_:l(a! — y)"-1x-,i-ay,>      [x > y\,

we get

(5.2) MJ~,af = r(r, + \ + ir){T(V + a + \ + ir) }   V/. -

Let

Aty = S(r)l co(r; a) = T(r, + \ - ir)/T(r, + a + \ - ir).

Then

/" /* °°I MI+af - »(r; jS)g(r) frfr = I    | g(r) | | «(r; a) - w(r; 0) 1"dr
-co " —CO

+     +     = Zi + z2 + z».
-to     Jn     J -n

Since co(t; a) is bounded in (— oe , co) uniformly when 9? (a) >0 and |a|<C,

and since g(r) CL2(— °° , °°), we can fix A7 sufficiently large such that Zi <e/3,

Z2 <e/3 uniformly in a for any given e >0. Now it is easy to show that Z3 <e/3

when [0—ß\ is sufficiently small. Hence MI*af converges strongly to the

function co(t; ß)g(r) and, by the property of the Mellin transformation men-

tioned above, I*af to -M"_1{co(t; ß)g(r)}. By the same argument we get the

corresponding result for J~af, and so we have

Theorem II. Let «R(ij) > -1/2, let 9?(a)>0 awd «R(/3) =0 and a->j8, and

Ze< /CLj ; ^Aew £/te functions and /^a/ converge strongly to I^ßf and J~ßf

respectively, where

+ -i(    r(rj + I - ir) )
(5.3) /:,/= M   j      "    ' '.Mf\,

KTOn + ß + i - it) )tro, + ß + i - ir)

'    T(v + j + fr)

+ (8 + § + ir)

_i (    T(ri + I + »r)

Evidently I$J-f, J^f=f-

6. The inversions of the operators J^/, J^pf- The operators (i^)-1 and

(J^ß)^1 are also bounded linear transformations in L2. We have

Theorem III. Let 9J(ti) > -1/2, St(/3) =0, Ze//(*) CL2, and Zef

(6.1) /^/ = g(y); Jlf>f=h(y).

Then

(6.2) / = I^+ß.-ßg;     f = Ji+ß.-ßh.
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The proof follows from (5.3) and (5.4), immediately; for instance,

+              r(ij 4- ß + § - ir)
MIv+ß,-ßg =-— Mg = Mf.

rin + ß-ß + t-ir)

From (5.3) and (5.4) we may also see that both the domain and the range of

(P^p)-1 and (Jy,p)~l are L2, since {cc(t; ß) }_1 is bounded in (— », oo).

Of course the operators I*a and /~„ do not possess this simply property.

7. Application to the customary fractional integrals, to that of Riemann-

Liouville and to that of Weyl. Let the operators Xaf=f+(y) and Yaf=fä{y)

be defined by

(7.1) Xßf=yßltßf,     Yßf=yßJlß,ßf VCU]

when they are of imaginary order, in accordance with (4.5). Since |y"| =1,

Xß and Yß are bounded linear transformations in L2 with domain L2, and it is

not difficult to show that, for a—*ß,

I y~aft -xß\t-*o,   i ys~y: - Yß |, -> 0.

The semi-group property of /„+ in Lp(0, a) for \^p—^,0<a<^> is well

known(6). Here we shall prove

Theorem IV. The transformations Xß or Yßform a group in L2.

Since Xüf = I^0f =f and F0/ = /^o/=/, we have only to prove that, for any

imaginary numbers ß, y

(7.2) XßXy = Xß+y;     YßYy = Yß+y.

We need the following lemmas:

Lemma 1. When f QU, MM >-1/2, 9t(X)^0, RGOfeO,

(7.3) Iv+\,fili,\ — = 7,,x/,+x,fl;      Jn+\,i>J^,\ — -7,,x+M = Jr,,\J^+\,^

Lemma 2. WhenfCU, 9?(X)S;0, K(k)-0,

(7.4) Z*x/ = y 7^,x {* '/(*)};      7,,x/ = y ">^,x {*"/(*)}.

We can easily prove Lemma 1 by taking the Mellin transforms of both

sides and employing (5.1)-(5.4).

The proof of Lemma 2 follows from the definitions (4.3) and (4.4) im-

mediately when 91 (X) > 0, since x"f(x) CF2, x~"f(x) CL2. Taking 9?(X) > 0, X—>p\

we have

(5) E. Hille, Annals of Mathematics, (2), vol. 40 (1939), 4.4. In this paper the theory of

semi-groups is developed. Cf. E. Hille, Proceedings of the National Academy of Sciences, vol. 24

(1938), pp. 159-161.
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7,,x — Iv,ß 12 ■—* 0;

I ylU,,\{x '/(*)} - y'l1i-,,ß{x '/(*)} 12

= I JW {x~*f(x)} - I,+V,ß {x 'f(x)} |2 -* 0,

and so (7.3) is true for \ =ß also.

Now by (7.1)

XßXyf = yßlt,ß{xylt,yf},

and l£ß{xy(p} =yyIyß(p by Lemma 2. Hence, by Lemma 1,

0+7 +     + 0+7 +
XßXyf = y     Iy.ßh.yf = y     h,ß+yf = Xß+yf.

Similarly we have

ß —     (   7 — ) 0+7 — — 0+7 —

YßYyf = J J-ß,ß\x J-y,yf\ = y   -7-0-7,0-7-7.7/ = V    ^-0-7.0+7/ = Yß+yf-

Corollary. The transformations (A^)-1 and (Yß)~l are linear and bounded

in Li with domain L2, and (Xß)~l =X_ß, (Fp)-1 = F_p.

8. We shall now deal with the corresponding problems in Lp for pi^l.

We do not know if Theorem I can be generalized in some way for p9*2.

Therefore we cannot extend the results of §§4-7 to the general case fCLp

[l fkpS 00 ]. We have to restrict ourselves to certain subspaces of Lp or, as

in Theorem VI, to the case when a tends to zero under certain conditions.

Moreover we shall discuss the characteristic values (§10).

Let 0<a< 00 and let the step-function <pa(x) be defined by <pa{x) = \ for

0—x^a, (pa(x)=0 otherwise. When 9J(f) > —1, we easily find

+ r(f + 1) 1    ralv
(8.11)      J?>. =-—   or -■ {l-ty-HUt,

r(f + a+l) r(a)J0

1     (/ -yV/yW
J\,a<f>a-;--

r(« +1)
(8.12)

{(-TO*
+ 0? - 1) f  (1 - t)Hi-2dt\   or 0

J Via

for 0<y<a or a<y<oo respectively; therefore, in these open intervals,

l£a4>a and J^a4>a certainly exist and are continuous, also when we replace a

by a purely imaginary number ß, and l£a<pa-+I*ß<pa, J^,a(pa—»J^cpa as a—>p\

Hence, for any step-function/, l£ßf and J~ßf exist and are continuous almost

everywhere in (0, <»), and F^0/=/~0/=/, as we can easily deduce from (8.11)

and (8.12). The following theorem holds:

Theorem V. Lei 1 £p< w and M(f) > - 1/p' = 1 - 1/p, 9?(tj) > - 1/p, let
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9t(X) ^0, and letf(x) be any step-function. Then, as a—>X,

(8.21) \lt.af-ltxf\P^0,

(8.22) \j!,«f ~ f,*f\p->0.

To prove (8.21), we simply take/ = <p0 and \a— X| <1. Then

r(f + i)        r(f + i)
/| lt.oc<Pa — It,\<pa\Vdy =

o J 0
dy

r(r + a + l)   r(f + x + i)

+ f I *(«, y) - *(x, y) \pdy -Vi+ V*,
J a

say, where

(8.3) *(«, y) = J- f '"(1 -
r(o) j o

Obviously Vi—*0 as a—>X. When a <y < a> and y is fixed, then ^(a, y)—>^(X, y)

by the Lebesgue convergence theorem, since |(1—Z)a-1/r| = (1 — a/y)-1l*(f)

and <ffl(f)CLi(0, 1). To prove F2—>0 we need only show that |^(a, y)| ^ «7(y),

where J7(y) does not depend on a and belongs to Lp(a, <»).

For 2a <y< °°, we have 1 — a/y > 1/2,

2 /•<■/»
I 4>(a, y) I g -r I     fr^dt = Ky-xw-1 = UB(y) C Lp(2a, »).

I r(a) I J0

For a<y<2a, we have

l   c1/2    if a/!/

iK«. y) = "zrrr I    + =      y) + *»(<*, y).
1 (a) ^ o 1 (a) ./ i/2

(8.3.0)

2
^(a, y) I ^ /»<r># = Ci = <7i(y) C L,(a, 2a).

I "(«) I J o

««'"'-TTr^l^-O-v)"^)'r(a + 1) I \      y / \ y.

< C2 = t/2(y) C FP(a, 2a).(1 - a-*-1
1/2

Applying Lebesgue's theorem again, we have F2—*0, which completes the

proof.

The proof of (8.22) is similar. Let | a— X| < 1 again. We have to take into

consideration that J^/ba is bounded uniformly in a and y for a/2<y<a.

Furthermore, for 0<y<a/2 we have to replace (8.12) by
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(8.12.0)

21-1-« 77—1       C 1

r(« + i)   r(a + i)Jm

l r1
+- (1 - ty-H^dt =Wi+W2+ wh

T(a) J y/a

where \ Wi\=K, \W2\^K, \W3\ ^Ky<iCLp(0, a/2), when -l/p<7?i<
min (0, OUt?)). For 2^p< <x>, the theorem also follows from Theorem IIb (§9).

Theorem V holds also when we suppose that f and 77 are not fixed, but that

f-+fo and 77-»T7o as a-+X, where 3f(r0) > - 1/p' and 3?(t7o) > - 1/p.

Now for l^pg 00 and 3t(f)>-l/p', 31(77) >-1/p, we have(6)

(8.4)

r{M(«)}r{<R(r)+ !/?'}

T(a)\ -r{3t(f + a) 4- l/P'}

r{3t(a)}r{3f(7,)4- l/p}

\T(a)\ -r{3?(77 4-a) 4- l/p}

When in (8.21) and (8.22) 3i(X) is greater than zero, then | lf,ag\P and | J^<ag \ P

are bounded uniformly in a for |«—X | <|3t(X); by approximating to g(x)

by a sequence of step-functions we see that, for 3i(X) >0 and 1 ^p < °o, Theo-

rem V is valid for any gC.Lp. It is an open question whether or not it holds

for 3i(X)=0 also, when l:i£p<2 or 2<p<<x> (cf. Theorem II), but it is cer-

tainly true in the following sense for X = 0:

Theorem VI. Let l^p<°o and f(x)QLp, let 3t(f)>-l/p' and 31(77)
> — 1/p; let 0 be any positive number smaller than tt/2, and let a—>0 with the

restriction |arga| ^0. Then

I lt°f ~ f(y) I v -> 0;      I j;,af - f(y) Ip -> 0.

The proof is an immediate consequence of Theorem V, since in Lp the

operations l£a and J~a are uniformly bounded for | arg a| 2=0, when \ a\ <K:

Let a =ai-\-ia2; then ai >0, I «21 <«itg0,and

r{3t(a)} r(ai4-l)

r(«) I     I r(a + l)

«2

1 + i —
ai

r(«i 4-1)
(1 -f tg 0)< K.

r(« 4-1)

Therefore, by (8.4), the operations have the desired property.

Corollary. Let a be restricted as in Theorem VI and letfC.Lp; then

I y~Y«(y) -f(y)\P-+o, | ffty) -f(y)\P^o
for 1 <p < «3 and 1 ̂ p < °o respectively, as a tends to zero.

(6) Cf. our paper cited in Footnote 4.
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The case p = l is not included forfa{y) by this theorem; some results for

/+(y) [a—>0] under the hypothesis/C-Li(0, .4) were given by Hardy-Little-

wood (loc. cit.) and by j. D. Tamarkin(').

9. We can state some better theorems for p>2. Let 2<p=<x> and let

WP be the set of all functions fCZLp which possess a Mellin transform

F(t) = Mf in the well defined sense that/(x) is representable in the form

index pi    C h

(9.1) f(x) = l.i.m. — I   F{t)x-1Ip-"<It = M~lF,

where F(r)CLp'( — <x>, °o). In consequence of the well known theory of

Fourier transforms, M~XF is a bounded linear transformation from

Lp>{ — a), oo) into LP(Q, oo) and 3JJP a subspace of Lp and smaller than Lp.

When p = 2 obviously Wp = L2(s).

Lemma 3. Let 2<pS<*> and 9i(f)>-l/p' and 9t(ri)>-1/p, and let

/C2JJj>- Then if^f and J^f belong to 3RP also, and

(9.21) Mlt.af = co(t, a)Mf;

(9.22) MJ'af = x(r, a)Mf,

where

r(f + i/p' - ir)                  r(„ + i/p + ir)
(9.3)    w(t, a) = ——-—rrr,-TT '•   X(r, a) =

r(f 4- a + l/>' - ir) T(V + a + 1/p + ir)

We shall only outline the proof. Let F„(r) = F(t) in ( — n, n), F„(t) =0 for

|t| >«, and let/(x, n)=M-lFn. Then, for 0<y< »,

/£«{/(*, «)} = —-        I   (y - x)°-lxf<Zx F(T)x-llr-iTdT
2irT(a) J o J-n

= — f F(T)y-1/p-'v<7r—— f  (1 - g^ff-V*-*^
2irJ-n r(a) J o

= lf-»{F„(r)«(T, «)},

and so (9.21) follows by /| F-F„| *'dr-»0, |/(jc) -/(*, n)|p->0 [»-»*>], and

by (8.4).

(7) Annals of Mathematics, (2), vol. 31 (1930), pp. 219-228.

(8) When 2<p< », then (9.1) implies

index p'    /» a

F(r) = l.i.m. f(x)x-V*,+<Tdx
O-. oo     J !/„

in consequence of the Hille-Tamarkin theorem, vide Bulletin of the American Mathematical

Society, vol. 39 (1933), pp. 768-774.
For Lemma 3 see also our paper cited above.
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By (9.21) and (9.22) lfafand J~af are defined also when we replace a by ß;

for w(t, ß) and ß) are bounded for — °o <t< <», therefore w(r, ß)Mf

= w(t, /3)F(t) and x(r, ß)Mf=x(r, ß)F(r) belong to Lp,(- «©, eo). Also to

every gC2JcP corresponds a uniquely determined function /CäJJj, or (pC$DcP

such that Ifßf = g or J^ß<p=g respectively (cf. (6.1) and (7.2)). By the same

reasoning as in §5 and §7, we have the theorems:

Theorem IIb. Let 2^p^<x>, let 9i(f)>-l/p', 9i(r>)>-l/p, and let

fCSflP. Then

I it«f - ttzflp-* o;    I >7,«/ - 0
a5 a tends to X, where 9J(X) ̂ 0.

Lemma 4. FAe operator Xßf, defined by (7.1), «cis/s ira Lp(0, so) wi/A ftoiA

domain and range Wp when 2 = p = =o. So does Yßf when 2^p< oo.

Theorem IVb. Under the restrictions of Lemma 4, the transformations Xß

or Yßform a group in Lp, and \ Xß — Xß(j \ p—>0, | Yß — FpJ p—>0 as /3—>pV

10. Characteristic values. From (7.1) and (9.2) we easily have

T(l/p' - ß - ir)
(10.11) MXßf =-—-F(r - iß) 2 < p < oo 1
V "        T(l/p' -it) l      f ~ j

T(l/p 4- ir)
(10.12) MF,/ = '        .    F(r - #)         [2 £ p < «],

r(i/p + ß + it)

where f=M~1FCHRp. We shall now deal with the equations

(10.21) Xef = If,

(10.22) Yßf = If,

(10.23) Xß/=//.

Let ß=ip, where p is real. Obviously (10.21) is equivalent to

(10.31) A(r 4- p) = /A(r); F(r) = h(r)/T(l/p' - ir) C Fp-(- oo, oo),

and (10.22) or (10.23) to

(10.32) k(r + p) = lk(r);  F(r) = k(r)T(i/P + ir) C Lp.{- oo, oo)

or

(10.33) A(r 4" p) = /Ä(- r); F(t) = A(r)/r(l/p' - ir) C^(- oo, oo).

By means of the well known asymptotic expansion of |r(o-4-«")| for

t—>+ oo we arrive at the following results:

The transformation Xßf [p^O] with domain WP [2^p = oo ] has no char-

acteristic values at all.
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The characteristic values of Yßf [ß?*0, domain 9Jcp, 2ikp< 00 ] are the set

of points I for which exp (— Jtt | /31) < | /1 < exp (§tt | ß |). To every characteristic

value I corresponds an infinity of characteristic functions.

We construct all these functions by (10.32), taking k(r) in (0, |p|) as an

arbitrary function belonging to LP'(0, \p\).

Also, from the group property of Yß, we can deduce the result:

Let 9?(/c) = 9?(A) =0, let k/A be no rational number, and let YKf =f and Y\f=f

and f Q.'SSlp. Then f(x) =ce~x, and Yyf=f for any y such that $t(y) = 0.

Furthermore, by (10.33), we can prove the result:

The equation (10.23) has a solution j'CSR* if, and only if, \l\ =1. To every

number I of this kind corresponds an infinity of solutions fC.WlP.

For instance, fix) =e~llxx~ß~l is a solution of (10.23) for 7 = 1.

11. It is not difficult to show that Ifßf and J^f certainly exist and are

integrable for any/CLj, when Src(f) > —1/2 and 9?(r?)> -1/p and 2<p< oo.

We have

Theorem VII. Let2<p<™ and fix) QLV; let $R(f) > -1/2, 9i(}j)>-l/p.
Then there exist functions l£ßf and J^iClf, defined in (0, oo) and such that, for

any positive finite number A, Iffif and J~ßf belong to L2(0, A) and that

f   \lt,*f-lt,ßf\2dy-+0;     f   \j\.af-Jlßf\2dy^0    [a — p4].

Proof. Let fnix) = fix) or fn(x)=0 for 0=x^n or x>n respectively

[« = 1, 2, • • • J. Then fn{x)(ZLi(Q, oo), and by Theorem II, the function

ga{y, n)=Ifafn belongs to 1-2(0, oo) and converges strongly to a function

gßiy, n) as «-*ß,

(11-1) \g«(y, n) - gß(y, n) |2->0.

We now define 7^/ in (0, =o) by putting

(11.2) it.ßf = gß(y, n) for n - 1 < y = n [n = 1, 2, • • • ].

This function then has the desired properties. For 0<y = « obviously

ga(y, n) = IttCtf,

and so

f "      + j 2 f °° ,2(11.3) I I{,af - gß(y, n) I dy ̂  J    | ga(y, n) - g${y, n)\dy->0
J 0 J 0

as a tends to ß. Therefore, for 1 = m<n,
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am j     \l/2 /    /» m j \l/2
I &j(y. ») - &(y> »01 <*yj   - ( J   I 7r,c*^ _     m) I dy)

an \l/2
lar(y. ») - Wl <*yj

Hence fp(y, m)=gß(y, n) in (0, w), and

(11.4) itßf - a>(y, »)

in (0, n) for w = 1, 2, • • • .

Therefore l£ßfCLt(0, n) for any », and, by (11.3) and (11.4),

fn\il,«f- itßf Uy = f I     - a>(y, ») |'<*y -* 0
•-'0 J 0

as a—>ß; which proves the first part of the theorem.

Let us take (cf. 4.4) 0 <y =5 n,

flj =        if  4- f  i (* - y)a-1x-'-a/(a;)(7a;
(11.5) r(«) I Jy       Jn f

= <t>a(y, *) 4- <Wy, »)•

Plainly <pa(y, ») = in (0. *)• Now/„CL2(0, «) and 9t(ij) > - 1/p> -1/2,
and so, by Theorem II, JßiVfn exists, belongs to L2, and

(11• 6)    j   I <t>a(y, ») - J„,ßfn I 4y = I   I A,«/n - /,.ftf» fdy -»0   [a -> /3].
Jo Jo

Let b be any positive number smaller than n. Then there exists a function

T^ß(y> n)< depending on n but not on b, such that

(11.7) f   I *„(y, n) -My, »)|*<*y-»0 [a-*ß],
J 0

as we shall now show. For 0 <y <n and n^x< 00, the function

x(a>, y, a) = {r(a)}-1y-"(a; — y)a-1x-'-t'/(x)

tends to x(x> y> 0) as a~^ß, and

I x(*. y, «) I < ITar*«-11 /(*) I C ii(«, <*>)

when y is fixed and \<x\ <K. Hence, by Lebesgue's convergence theorem,

tßiy, n) exists, and ipa(y, n) — ̂ (y, »)—»0 when 0<y <«. For 0<y = b<n, we

have x — y= (1 — b/n)x = cx,

I <£«(y, ») I = I r(«) l-iy»« f I /(*) I     ^ jTyKOr),
J n
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where K does not depend on a when \a—ß\ <1. Hence also

I t«(y, ») - My, ») I = £y*(,).
Since y8*(,) C-7-2(0, o), applying Lebesgue's theorem again, we obtain (11.7). In

consequence of (11.5)—(11.7), for hß(y, n)=<pß(y, n)+$ß(y, n) we have

(11.8) f* I Ä,«/- hß(y, n)\*dy^0 [a->ß].
J o

When we define J~ßf in (0, oo) by

Jv,ßf = hß(y, ») for N — 1 = y < n [n = 1, 2, • • • ],

then, by the argument applied in (11.4), it easily follows that J^ßf—hß(y,n)

for 0<y<«, which completes the proof.

The University,

Edgbaston, Birmingham, England.


