ON A THEOREM OF SCHUR AND ON FRACTIONAL
INTEGRALS OF PURELY IMAGINARY ORDER

BY
H. KOBER

1. Let L,(a, b) be the space of all functions f(y) whose pth power is in-
tegrable over (a, b) or which are measurable and essentially bounded over
(a, b) for 1=p < o or p= o respectively, with the norm

b 1/p
[l = { [ 1) o 1=p< =]
| fl» = ess. wh. | f(3)| [p==];
a<y<bd
let p’=p/(p—1) and
L, = L,0, «»).

The following theorem is in substance due to I. Schur(?):

Let K(x, y) be homogeneous of degree —1 and K(x, y) =0 for 0<x < =,
0<y< oo,let K(x,y)x~Y2CL,, and let f(x) CLy; then

[ &G i@

2§ k| f(9) |2

where
K =f K(x, 1)x~V2dx =f KQ1, y)y—1%dx.
0 0

The constant k is the best possible.

Of course the inequality is true when K(x, y) takes negative or even com-
plex values also, if we replace « by

- =f | K(z, 1)| w=12dx =f | KQ, y)l y12dy.
0 0

However ¥ is not the best possible constant any more. We shall give a better

Presented to the Society, February 22, 1941; received by the editors May 13, 1940; §§8-11
added June 21, 1940.

(¥) Journal fiir die reine und angewandte Mathematik, vol. 140 (1911), pp. 1-28. The cor-
responding theorem for fC L,, 1 <p< «, was proved by G. H. Hardy, J. E. Littlewood, and
G. Pélya, vide Inequalities, Cambridge, 1934, Theorem 319.
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theorem for this case and we shall use it to deal with fractional integrals the
order of which is an imaginary number, thus filling a gap in the literature.

Throughout this paper we denote constants depending on the given pa-
rameters by the single symbol C; @ and 8 denote finite numbers such that
R(a) >0, R(B) =0.

2. TueoreM 1. Let (i) K(x, y) be homogeneous of degreé —1, (ii) K(x, 1)x~1/2
CL,, (iii) f(x) CLz; then the function

wi= [ K i@

exists for almost all values of y in (0, »), and

Wil < 0l (D] = max o] -|16)1a

where

w(T) =f K(x, 1)x~Y¥irdy = f K(1, y)yVztirdy, Ko = max [ w(T) I .
0 0 —nlrl®w

The constant is the best possible.

Obviously k <%; when K(x, ¥) =0 then k) =k, as we may see taking 7=0.

Proof. Without loss of generality we may suppose K(x, y) to be no null-
function; then k>0. Let 1 <a< =, f(x, a) =f(x) in (@™}, a), f(x, a) =0 other-
wise, and let

N
Mé = Lim. sq. (x)x12irdy [¢ C L,].

N—ow 1/N

In consequence of Schur’s theorem W is a bounded linear transformation
in Ls; the Mellin transform M is a bounded linear transformation from
Ly(0, ©) into Ly(— «, «). We have

) "y {f(z, a)}ay = f

L

y~tridy | K(x, y)f(x)da
1/a

(2.1) . -
= | f(x)avrtidg f K(1, 9)vii2+idy
0

1/a

when we put y=vx and make use of the homogeneousness of K(x, v); the
interchanging of the integrations is justified by absolute convergence of the
right-hand repeated integral. Since the left-hand integral exists, it must be
equal to MW {f(x, a)}, therefore we have

MW{f(x, a)} = w(-r)M{f(x, a)}.



162 H. KOBER [July

Since |f(x, a) —f(x)|2—>0 [a— ], and lw(r)| =K< «, by the continuity of
the operations M and W we get

(2.2) MWf = w() Mf;

therefore IMWf|z§ xol Mflz in Ly(— «, x). Now the operator (2w)~V2M is
isometric, and so we obtain the first assertion of the theorem.

The function w(7) is continuous in consequence of (ii) and attains its maxi-
mum value at a finite point 7, since, by the Riemann-Lebesgue theorem,
w(r)—0 [r—+ © ]. Now let X be any positive number smaller than k. Then
we can easily show the existence of functions f(x) C L. such that I wf [ 2 >N I f I 2.

Let E be a set of measure m(E) >0 such that |w(r)| >\ in E and E is in-
cluded in some finite interval. Take ¢(7) =1 in E and ¢(r) =0 otherwise, and
let f=M"'¢. Then from (2.2) we have

f | MWf|2dr = fE | w(7) |2dr > N2m(E)
= \? 7) |%dr = 2 2y,
2 [ o) Par =200 [ ] ) s

S twsbay > [ g0 s

Hence the theorem is proved.

3. We could give an alternative proof by the theory of “general trans-
forms,” without making use of Schur’s theorem. Let V be a transformation
of the form

vr= [ Lt i

the infinite integral being defined in some sense. Then it turns out that,
roughly speaking, the class of all transformations which are representable in
the form V,V;is identical with the class of the transformations

W = f K(z, »f(2)d,

where K(x, y) is homogeneous of degree —1. We leave that proof of I to the
reader(?).

(2) W belongs to the so-called “product-class.” We need the lemmas:

A. Let yix(9)C Ly, let w(v) = (3 —ir) M{y 'x()} be essentially bounded in (— =, ©), and
let x(y) have the form x(y) =[{H(£)dt+c, where c=x(1) is an arbitrary constant. Then, for any
fCL,, the function

g0) = Wf = lim. sq. fl :«H(i) 1) d:x
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4. We replace the customary operators(?)

.0 fAy)—m JRCEEN

(*.2 20 =5 [ = s

by the more general ones

.9 Jaa3) = Tiaf = PT) f (v = 9" 5 (@,
(4.4) frals) = Joef = < ( ) )T (),
where 7 is a given parameter. Obviously

4.5 fa9) = ¥Toefs  J3) = 9 Toaf.

In another paper we have proved that I},f and J,,f are bounded linear
transformations in L, for 1 <p =< «» when ER(oz) >0 and when R(n)>—1/p’
or R(n)>—1/p respectively(?). Obviously the definitions above have no
meaning at all when we replace @ by an imaginary number 8, but we shall
show that the operators I}sf and J,4f exist in some sense for any fCLs.
Those definitions are of importance in the theory of Hankel transforms, as
will be shown in a joint paper of A. Erdélyi and myself.

exists, and Mg=w(r) Mf.
Vide H. Kober, Quarterly Journal of Mathematics, Oxford, vol. 8 (1937), pp. 172-185,
§6 and Theorem 2A.
¥ BILIet ¢(x)C L1 and ¢(y) =y ep(x)x'2%dx; then y'%(y)—0 for y—0 and y— =, and
Y|2=| o)1
C. Let y71x(y)CL,, let y12x(y)—0 for y—0 and y— », and let x(y) have the form as in
Lemma A; then

N
G- DMy X)) = lim fl " BO)ysay,

if the right-hand lim1t exists.

Cf. H. Kober, loc. cit., Theorem 3(i).

(®) Cf. H. Weyl, Vierteljahrsschrift der Naturforschende Gesellschaft, Zurich, vol. 62
(1917), pp. 296-302; G. H. Hardy and J. E. Littlewood, Mathematische Zeitschrift, vol. 27
(1928), pp. 565-606; E. R. Love and L. C. Young, Proceedings of the London Mathematical
Society, (2), vol. 44 (1938), pp. 1-28. The operator y™ f_(¥) existsin L, with domain L, and is
bounded when 1 <p < {®(a)} . Also cf. J. D. Tamarkin, Annals of Mathematics, (2), vol. 31
(1930), pp. 219-228.

(%) Cf. Imequalities, Theorem 329. H. Kober, Quarterly Journal of Mathematics, Oxford,
vol. 11 (1940), pp. 193-211.
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Let R(n)>—1/2 and(®)

_ f{T@}7y — w0 <a <y
Kz, 9) = {0 [+ > 5]

then K(x, y) satisfies the hypotheses of Theorem I, and we have

w(r) = f:K(x, Da—t2itdy = ;21:) Ll (1 — w)elgrt/iz-indy
__ Ta+3—in)
T(n+a+ 3 — ir)
Ief = [ K i [/ C L),
0

therefore by the theorem
T(n+ 3 — ir)
T(np+ «+ § — ir)

| I:aflz < max
—olr<o

[ fle = o] s

When we take |a| < C, then, in consequence of a well known property of
the gamma function, ko is uniformly bounded for R(c) >0; therefore

| Iyefle < C| f]a,

where C depends on 7 only. Let B be any fixed imaginary number or zero;
then, by a well known theorem on weak convergence, a sequence o, oz, o3, © - *
and a function ¢(y) CL; exist such that I}, f converges weakly to ¢(y) when
a, tends to B [n— o |.

A similar argument applies to J,,f, and we now define

(4.6) Ivsf = weak limit I, f

- () > — 3, f C L]
4.7 Josf = weak limit J; o, f

an—p

for some sequences {a.}, {om}.

5. Strong convergence. Starting from I}g/ and J, g for step-functions ¢
we can show that I}, f or J,,.f converges to I}sf or J,5f in the strong sense also
for any fCL, when « tends to 8. We can also proceed in a shorter way. By
(2.2) we have

(5.1) MIt.f=Tm+3%—i){Pn+a+i—i)) Mf
and, taking
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0 [o<z<y]
K(z, y) =
(@ 9) {{I‘(a)}"‘(x —yetreyr x>y,
we get
(5.2) MIyof =T(n+3+ i {T+a+3+in} "M
Let

Mf = g(r); w(r;a) =T(n+ 3 — i7)/T(n + a+ 5 — ir).
Then

[ 11tes = st 05 i = [ 15|t = o5 )|

[+ +f —a+zran
— N -N

Since w(r; ) is bounded in (— «, ) uniformly when R(a) >0 and |a| <C,
and since g(7) CLz(— =, «), we can fix N sufficiently large such that Z;<e/3,
Zy<€/3 uniformly in « for any given € >0. Now it is easy to show that Z; <e/3
when la—ﬁ] is sufficiently small. Hence MI},f converges strongly to the
function w(r; 8)g(7) and, by the property of the Mellin transformation men-
tioned above, I}, f to M1 {w(r; BRg(r) } . By the same argument we get the
corresponding result for J,,f, and so we have

TuaeoreM II. Let R(n) > —1/2, let R(a) >0 and R(B) =0 and a—p, and
let fCLs; then the functions It,f and J,,f converge strongly to I} sf and J,af
respectively, where

+ o, a1 T(n+ 3% — i)
(5.3) Liyf= M { > Mf},

T+ B+% -
P(n+%+i7)‘ Mf}.
I(n+ B+ 3+ i)

(5.4) Tosf = M“{

Evidently Itof =f, Joof =f.

6. The inversions of the operators I},f, J,5f. The operators (I}5)~! and
(J,8) 7! are also bounded linear transformations in L;. We have

TueoreM III. Let R(n) > —1/2, R(B) =0, let f(x) CLs, and let
(6.1) Tiof = 8(9);  Jusf = ().
Then
(6.2) f=Thssg; f=JTns sh
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The proof follows from (5.3) and (5.4), immediately; for instance,

i -
Mihgsg = —0tBEEZ0 4y,
Tn+B—B+ 35— i)
From (5.3) and (5.4) we may also see that both the domain and the range of
(I}s)~' and (J,5)7! are Lo, since {w(r; B)}~" is bounded in (— ®, «©).
Of course the operators I, and J,, do not possess this simply property.
7. Application to the customary fractional integrals, to that of Riemann-
Liouville and to that of Weyl. Let the operators X.f=f(y) and Y.f=fs(y)
be defined by

(7.1) Xof = ¥ Tosf,  Vef = 9T asf If C Ly

when they are of imaginary order, in accordance with (4.5). Since I yP I =1,
X and Y are bounded linear transformations in L. with domain L,, and it is
not difficult to show that, for a—,

|7 = Xala—0, |72 = Tala—o.

The semi-group property of f#+in L,(0,a) for 1=p =< 0, 0<a< » is well
known (). Here we shall prove

THEOREM IV. The transformations Xg or Yg form a group in L,.

Since Xof =Igof =f and Y,f = J5of =f, we have only to prove that, for any
imaginary numbers 3, ¥

(7.2) XXy = Xpiy; YeYy = Vpiy.
We need the following lemmas:

LEMMA 1. When fCLs, R(n) >—1/2, R(\) 20, R(u) 20,

+ 4 + + o+ - - ~ - -
(7.3 Lipulan = Inpgu = InaIpaw; T an = Tonis = TonT pinue

LEMMA 2. When fCLs, R(\) 20, R(») =0,

(7.4) Imf = ¥Toa{a f(®}; Tl =3 Tewalaf(®)}.

We can easily prove Lemma 1 by taking the Mellin transforms of both
sides and employing (5.1)-(5.4).

The proof of Lemma 2 follows from the definitions (4.3) and (4.4) im-
mediately when R(\) >0, since x*f(x) CLs, x~*f(x) CL.. Taking R(\) >0, A\—0,
we have

(°) E. Hille, Annals of Mathematics, (2), vol. 40 (1939), 4.4. In this paper the theory of
semi-groups is developed. Cf. E. Hille, Proceedings of the National Academy of Sciences, vol. 24
(1938), pp. 159-161.
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| Ioa = Ippla— 0;
| Y Iad® f(®)} = ¥ Tans{s 1@} |2
=| oala f®)} = Iinsla f(#} >0,

and so (7.3) is true for A= also.
Now by (7.1)

8+ +
XpXof = 3 Lop{a Toaf},
and I.;".a{x'fcb} =y7I]s¢ by Lemma 2. Hence, by Lemma 1,

B+v, + _+ B+v . +
XeXof =y Iygloqf =9 Topsaf = Xpsnf-

Similarly we have

8 —~ ~ Bty — - Bty —
VeV f =y J —ﬁ.B{x‘yJ —vaf } =Y +.i’—ﬂ—1,BJ —vaf =Y 7J—ﬂ—1.ﬂ+1f = Vpiqf.
COROLLARY. The transformations (Xg)~! and (Y3)~* are linear and bounded
in Lp with domain L, and (Xg)'=X_4, (V) 1=Y_;.

8. We shall now deal with the corresponding problems in L, for p=1.
We do not know if Theorem I can be generalized in some way for ps2.
Therefore we cannot extend the results of §§4-7 to the general case fCL,
[1=p= = ]. We have to restrict ourselves to certain subspaces of L, or, as
in Theorem VI, to the case when o tends to zero under certain conditions.
Moreover we shall discuss the characteristic values (§10).

Let 0<a< « and let the step-function ¢.(x) be defined by ¢.(x) =1 for
0=<x=a, ¢.(x) =0 otherwise. When R({) > —1, we easily find

aly
T+ 1) or 1 f (1 — §)e-1gds,
I¢t+a+1) T(a) Jo

Fte= {03 ()

1
+ (- l)f 1 - t)“t"“%lt} or 0
v/a

(8.11)  Ifada =

(8.12)

for 0<y<a or a<y< » respectively; therefore, in these open intervals,
If.¢. and J,.¢. certainly exist and are continuous, also when we replace «
by a purely imaginary number B, and I}, ¢a—I{s¢s, Jpaba—T7sda as a—p.
Hence, for any step-function f, Ifsf and J,5f exist and are continuous almost
everywhere in (0, ), and I,f=J,,f=f, as we can easily deduce from (8.11)
and (8.12). The following theorem holds:

THEOREM V. Let 1Sp< o and RE)>—1/p'=1—1/p, R(n) > —1/p, let
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RMN) =0, and let f(x) be any step-function. Then, as a—N\,

(8.21) | If.af = Iiaflo =0,

(8.22) | Toef = Janfls— 0.

To prove (8.21), we simply take f=¢, and |a—)\| <1. Then

o T ] TE+1D rg+1 |
I,a a—I, a d =f ot d
fo [ Trate = Iiataldy = | | e~ T

+ [ vt ) =90, iy = Vit 7,

say, where

aly

1
(8.3) mm=ﬂso<pwww

Obviously V;—0 as a—\. When a <y < » and y is fixed, then ¥(e, )¢\, ¥)
by the Lebesgue convergence theorem, since [ A —t)ys | S(1—a/y)"uR®
and #®®CL1(0, 1). To prove V,—0 we need only show that |1[/(a, y)| =U(®y),
where U(y) does not depend on « and belongs to L?(a, ).

For 2a <y< «,wehave 1—a/y>1/2,

2 aly
[ (e, )| < Wf mOdt < Ky ®®O-1 = Uy(y) C Ly(2a, ).
0

For a <y <2a, we have

aly

W )——l—f”2+i = Wl 3) + vales 9)
a, y I‘(a) ] l"(a) . = yila, y o, V),

/2

2 1/2
| ¥1(e, y)l =< Wfo B’O4t = C, = Ui(y) C Ly(a, 2a).

N EIC)

< Cp = Us(y) C Ly(a, 20).

(8.3.0)

| Yaler )| = ————
R R FTrTy

aly
+¢ (1 — Hes-1ds

1/2

‘Applying Lebesgue’s theorem again, we have V,—0, which completes the

proof.

The proof of (8.22) is similar. Let [a—)\| <1 again. We have to take into
consideration that J,.¢. is bounded uniformly in « and y for ¢/2<y<a.
Furthermore, for 0<y<a/2 we have to replace (8.12) by
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- 2 LR (R S
J,,_aqﬁa" + — {)en2d¢
Tat 1)  T(e+1
(8.12.0) (at ) Tlat 1)

1
+ —-—f a1- Nl idt = Wi+ Wo+ W,
T(e) Y y/a
where |W1| <K, |Wz| =K, [W3[ <KynCL,(0, a/2), when —1/p<m<
min (0, R(n)). For 2=<p< =, the theorem also follows from Theorem IIb (§9).
Theorem V holds also when we suppose that { and 7 are not fixed, but that
¢—¢o and n—1n as a—N\, where R($o) > —1/p" and R(no) > —1/p.
Now for 1 £p = 0 and R(E) > —1/p’, R(n) > —1/p, we have(®)

T {%R(a) | T{NE) + 1/2'} el
r@| T{®¢+a) +1/p} 7
o Plm@irinm +1/p)
"7 r@] T{Ro+ )+ 1/p} 7

When in (8.21) and (8.22) R(N) is greater than zero, then |I}"'ag[ pand IJ,,",,,gI »
are bounded uniformly in « for Ia—)\| <iN(); by approximating to g(x)
by a sequence of step-functions we see that, for R(\) >0 and 1<p < », Theo-
rem V is valid for any gCL,. It is an open question whether or not it holds

for ®(N) =0 also, when 1=<p<2 or 2<p < (cf. Theorem II), but it is cer-
tainly true in the following sense for A=0:

| I;aglp = I
(8.4)
| Jrag]

THEOREM VI. Let 1=5p< o and f(x)CL,, let RE)>—1/p' and R(n)
> —1/p; let © be any positive number smaller than 7/2, and let a—0 with the
restriction |arg a| <©. Then

| IEaf = f) |5 =05 | Tnaf — f(3) |, —0.

The proof is an immediate consequence of Theorem V, since in L, the
operations I, and J,, are uniformly bounded for |arg a| <©, when la] <K:
Let @ =ou+ion; then an >0, |es| <a: tg ©, and

T{R@] T+ T(e: + 1)
IT@| [T+ 1] T T+ 1]

Therefore, by (8.4), the operations have the desired property.

22

1+ tg®) < K.

(251

COROLLARY. Let « be restricted as in Theorem VI and let f CL,; then

—a + —a —
|y 7)) = fD =0, |y fa») = 1) [, —0
for 1<p< o and 1<p < o respectively, as o tends to zero.

(%) Cf. our paper cited in Footnote 4.
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The case p =1 is not included for f¢(y) by this theorem; some results for
+(v) [@—0] under the hypothesis fCL1(0, A) were given by Hardy-Little-
wood (loc. cit.) and by J. D. Tamarkin(7).

9. We can state some better theorems for p>2. Let 2<p=< » and let
M, be the set of all functions fCL, which possess a Mellin transform
F(7) = Mf in the well defined sense that f(x) is representable in the form

9.1) f(x) = 11m — F(r)x‘”‘""d-r = M,

a,b—w ﬂ'
where F(r)CLy(— e, «). In consequence of the well known theory of
Fourier transforms, M~—1F is a bounded linear transformation from
L, (—®, ©) into L,(0, ) and M, a subspace of L, and smaller than L,.
When p =2 obviously I, =L,(?).

LEMMA 3. Let 2<p= o and RE)>—1/p" and R(n)> —1/p, and let
fCM,. Then I, f and J,,f belong to M,, also, and

(9.21) MI3.of = o, @) Mf;
(9.22) MJT,.of = x(r, @) M,
where
T 1/p" — ir T 1 iT
9.3) w(r,a) = E+1/p 'i). . x(ra) = (n+ /1’+z)‘ )
~ T+ a+1/p —ir) I'(n+a+ 1/p + ir)

We shall only outline the proof. Let F.(7) = F(r) in (—n, n), F.(r) =0 for
| 7| >, and let f(x, #) = M~1F,. Then, for 0<y< ,

_"_a

I;.,a{f(x, n)} = f (y — x)a—lxrdxf F(r)xVr—irds

27T(e) —n
= — F —1/p—irdr.
- f_,. (et

= M—I{Fn(f)w(fr a)}v

and so (9.21) follows by [| F— F.|?'dr—0, |f(x) —f(x, n)| ,—0 [n— ], and
by (8.4).

f (1 — getgr—iring
0

(") Annals of Mathematics, (2), vol. 31 (1930), pp. 219-228.
(8) When 2<p < «, then (9.1) implies

index p’
F(r) = 11m f(x)x‘l/"’“f"dx

in consequence of the Hille-Tamarkin theorem, vide Bulletin of the American Mathematical
Society, vol. 39 (1933), pp. 768-774.
For Lemma 3 see also our paper cited above.
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By (9.21) and (9.22) I}, f and J,,f are defined also when we replace a by §;
for w(r, B) and x(r, B) are bounded for — « <7< «, therefore w(r, B)Mf
=w(r, B)F(r) and x(r, B) Mf=x(r, B)F(r) belong to L,.(— », «). Also to
every gCIM, corresponds a uniquely determined function fCIR, or ¢CM,
such that Ifgf=g or J, ¢ =g respectively (cf. (6.1) and (7.2)). By the same
reasoning as in §5 and §7, we have the theorems:

THEOREM IIb. Let 2Zp=< o, let RE)>—1/p', R(n)>—1/p, and let
FCM,. Then

+ + - -
| Iraf = Ieafls— 05 | Joef = Tuafl»—>0
as a.tends to N\, where R(\) = 0.

LEMMA 4. The operator Xgf, defined by (7.1), exists in L,(0, «) with both
domain and range M, when 2=<p < . So does Ygf when 2<p< o,

THEOREM 1Vb. Under the restrictions of Lemma 4, the transformations Xg
or Yg form a group in L,, and |X,3—Xp°| »—0, | Ys— Ypol »—0 as B—p0,.
10. Characteristic values. From (7.1) and (9.2) we easily have

_ T/ — B —in) .
(10.11) MXsf = Ty — i F(r — i) 2275 ],
T(1/p + i)
. MYsf = T — 1 < ©
(10.12) of T LB ) F(r — if) 2=p< =]

where f= M1FCM,. We shall now deal with the equations

(10.21) _ Xof = lf,
(10.22) Yef =1,
(10.23) Xsf = If.

Let B=1ip, where p is real. Obviously (10.21) is equivalent to
(10.31)  h(r 4 p) = Ih(); F(r) = h(x)/T(A/p' — ir) C Ly(— o, ),
and (10.22) or (10.23) to
(10.32)  k(r 4 p) = Ik(r); F(r) = k(DT(1/p + ir) C Ly(— w, )
or .
(10.33)  h(r + p) = lk(— 7); F(r) = h(r)/T(1/p’ — ir) C Lp(— =, ).

By means of the well known asymptotic expansion of II‘(cr-HT)I for
t—+ « we arrive at the following results:

The transformation Xaf [B5%0] with domain M, [2<p < » ] has no char-
acteristic values at all.
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The characteristic values of Yef [85%0, domain M,, 2=<p < « ] are the set
of points 1 for which exp (— %1r| BI )< |l I <exp (%1r| Bl ). To every characteristic
value I corresponds an infinity of characteristic functions.

We construct all these functions by (10.32), taking k() in (0, |p|) as an
arbitrary function belonging to L, (0, |p|).
Also, from the group property of V3, we can deduce the result:

Let R(k) =RN) =0, let k/\ be no rational number, and let Vif =f and hf=f
and fCM,. Then f(x) =ce*, and Y,f=f for any v such that R(y) 0.

Furthermore, by (10.33), we can prove the result:

The equation (10.23) has a solution fCM, if, and only if, |l| =1. To every
number | of this kind corresponds an infinity of solutions fCIM,.

For instance, f(x) =e~Y2x#~1is a solution of (10.23) for I=1.

11. It is not difficult to show that Ifsf and J,,f certainly exist and are
integrable for any fCL, when R({)>—1/2and R(p)>—1/pand 2<p< =,
We have

THEOREM VII. Let 2<p < 0 and f(x) CLyp;let R(E)>—1/2, R(n) > —1/p.
Then there exist functions Ijsf and J,,f, defined in (0, ) and such that, for
any positive finite number A, Ijpf and J,gf belong to Ls(0, A) and that

404 + .2 4 - = 2
[V = Taflay— 0 [ | Foa = Tty —0 (a6l
0 0

Proof. Let fu(x)=f(x) or fu(x)=0 for 0=x=n or x>n respectively
[#=1, 2,---]. Then f.(x) CLy(0, =), and by Theorem II, the function
g.(y, n)=I{,fa belongs to Ly(0, =) and converges strongly to a function
gs(y, n) as a—p,

(11.1) | ga(y, ) — gs(y, M) |s — 0.

We now define I#sf in (0, ») by putting
(11.2) Liaf=gs(y,m) for n—1<ysn [1=12---]
This function then has the desired properties. For 0 <y <% obviously

+
ga(y, m) = It of,

and so

"o+ 2 ® 2
1.9 [ G- g lays [ aom - a0 -0
0 0

as o tends to 3. Therefore, for 1 <m <,
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ml g(y, n) — ga(y, m) |2dy v < ml Ihf = gy, m) |2dy 1/2
U )= (S

n 1/2
+([ 180w = faflay) =0 sl
0
Hence gs(y, m)=gs(y, n) in (0, m), and

(11.4) Iiaf = gs(y, m)
in (0, n) forn=1,2, - - - .
Therefore I3 f CLs(0, n) for any 7, and, by (11.3) and (11.4),
" 2 " 2
[ 8tar = Tarlay = [T\ s = g3 P2y 0
0 0

as a—f3; which proves the first part of the theorem.
Let us take (cf. 4.4) 0<y=wn,

= ¢a(y, 7) + Ya(y, n).

Plainly ¢.(y, n) = J,,f»in (0, 7). Now f,CL2(0, ) and R(n) > —1/p> —1/2,
and so, by Theorem II, Jg,f. exists, belongs to L,, and
" - 2 ° — 2
(11.6) f | $aly, m) = Tosfal dy < f | Toafa = Joafal dy =0 [a—B].
L] 0

Let b be any positive number smaller than #. Then there exists a function
Ys(y, n), depending on » but not on b, such that

b
(11.7) f | Va3, 1) — W3, ) |"dy — 0 )

as we shall now show. For 0 <y <7 and » =x < «, the function
x(% y, @) = {T(@)} 7y (x — y)=—ta—mef()
tends to x(x, v, B) as a—f, and
| x(x, 3 @) | < Ka @2 f() | C La(n, )

when y is fixed and [al <K. Hence, by Lebesgue’s convergence theorem,
¥s(y, n) exists, and Ya(y, ) —¥s(y, #)—0 when 0<y<#n. For 0<y=<b<n, we
have x—y=(1—b/n)x =cx,

| ¥aly, #) | | T(a) |—1ym(n)f ROl RW-1| f(x) | dx < KyR,
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where K does not depend on & when |a—8| <1. Hence also
| Wa(3, m) = ¥s(y, m) | < Kymon,
Since y® ™ C Ly(0, b), applying Lebesgue’s theorem again, we obtain (11.7). In
consequence of (11.5)-(11.7), for ks(y, n) =¢s(y, n)+y¥s(y, n) we have
b
— 2
(11.8) [ 1720 = W3, m[ay—0 [ — 6.
0

When we define J,5f in (0, ) by
Josf = he(y, n) forn —1<y<n[n=12---],

then, by the argument applied in (11.4), it easily follows that J,gf=hs(y, n)
for 0 <y <m, which completes the proof.
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