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1. Introduction. In this work we shall investigate properties of "growth" of

solutions of differential systems, with particular reference to systems of the type

of importance in dynamics. The systems of the latter kind are nonlinear. A.

considerable part of the developments for the nonlinear problem can be based

on the theory of the problem obtained by retaining the linear part, only, of

the nonlinear system in question. In §§3 and 4 we shall give developments for

linear systems. This treatment is followed by consideration of nonlinear sys-

tems of a very general type, given in §§5, 6. It is not our main purpose, at

this time, to investigate problems of dynamical stability and instability. How-

ever, it is to be noted that Theorem 6.1 presents an extended case of condi-

tional stability.

Of importance from our present point of view are a number of contribu-

tions, of which we shall mention certain memoirs due to A. Liapounoff?),

P. Bohl?), E. Cotton?), 0. Perron?).

In §2 we investigate growth of functions on the basis of "characteristic

numbers," defined with respect to any "admissible" function (cf. Definitions

2.1, 2.3). The developments for linear differential systems are given with the

aid of characteristic numbers (§3) and "product integration" (§4). In the

study of nonlinear systems use is made of characteristic numbers (§5) and of

the method of successive approximations (§6).
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The main results are embodied in Theorems 2.1, 2.2, 3.1, 3.2, 4.1, 4.2, 4.3,

5.1, 5.2, 6.1. There is an important application given subsequent to Theorem

6.1.
2. Growth of functions. In the sequel, unless the contrary is stated, all the

functions and numbers will be supposed to be real, the functions being defined

on the interval (ta, 4-oo).

It will be convenient to introduce the following definitions.

Definition 2.1. A function \p(f), continuous for /St/0, monotone non-de-

creasing for t St ta, and such that

lim \f/(t) = 4-oo (for t —> -f °°)

•will be said to be "admissible."

Definition 2.2. A function y(t) will be said to be identically zero, provided

there exists a number t\ (St/o) so that y(t) = 0 for all JjSsfi,

Definition 2.3. A function x(t) will be said to have a "characteristic num-

ber" X, with respect to an admissible function yj/(t), provided

(2.1) lim sup I x(t)\p+t(t) I = co,      lim I x{t)ip-'(t) | = 0

(as    >4~ 00) for all e > 0. We shall employ the following notation for this number:

(2.2) X - C(x(t) I *(0).

When in the first relation (2.1) one may replace lim sup by lim, it will be said

that X is a characteristic number in the strong sense; this number will then be

designated by

x = cs(X(t) i m>.

It is to be noted that characteristic numbers in the sense of (2.2), with

\p(t) =exp t, have been previously used by Liapounoff (cf. (L)).

Definition 2.4. Given a function f(t), form the limits

U(h) = lim sup I f(t) |,      u{h) = lim inf | fit) \ {for t St h),

where t\ is any number St/0. We shall write

L I f{t) I = lim U(h),      LI f(t) I = lim u(h) (as tt-* + »).

Clearly, U(h) is monotone non-increasing and u(h) is monotone non-de-

creasing.

The advantage in the use of L, L in place of lim sup, lim inf lies in the fact

that the first two symbols are more descriptive of the behavior of f(t) in the

neighborhood of t = + 00 •

We shall now prove the following theorem.
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Theorem 2.1. Let x(i) be continuous for t^to and be not identically zero.

Then x(t) has a finite characteristic number with respect to some admissible func-

tion ip(t).

Suppose first the | x(t) | is not uniformly bounded. One then has

(2.3) lim sup I x(t) | = L \ x{t) \ = <x>.

There exists a non-empty class K of functions q(t), continuous, monotone

non-decreasing and such that

I *(0 I ̂  ?(0-
In the class K there is a "least" function that is, for every t (^o) the

value \f/(t) is the least value which the functions of K may assume. Clearly,

in view of (2.3) \(/(t) is admissible and

(2.4) |*(*)I

moreover, there exists a set of values

to < h < ■ ■ ■ < h < ■ ■ ■ ,

with lim, t* = oo, so that

*(*r) = I x{Q I (v = 1, 2, • • ■ ).

One has

lxö = i X(t)rx+'{t) \ = I x{t)rm\nt);

hence

hit,) = i'ity) -* cc (all e > 0; as v —> <=o),

lim sup (,(/) = <» (all e > 0).

On the other hand, by (2.4)

mo = I xw+'(t) I g
Whence

lim mo - 0 (all e > 0).

Thus, when \x(t)\ is unbounded, one has

ax?) i tfo) = -1,
where \p(t) is the function referred to in (2.4).

The alternative to the hypothesis implied in (2.3) is

(2.5) I x(t) I g ß, (finite ß > 0).
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One then may have, when h (St/0) is taken sufficiently great,

(2.6) 0 < a g I x(t) I g ß (t~^h; constant a);

then, on letting \p(t) denote any admissible function, it is inferred that

I *(/)*«(*) I ̂  «*'(/), I xW-<(t) I g ßi,-<(t),
which implies

lim I x(t)4i'(t) I = °o, lim I x(t)*p-'(t) | = 0

for all e>0. Whence, under (2.6),

c.(x(t) I m) = o

for all admissible functions ip(t).

The remaining subcase of (2.5) is

I x(t) \ g ß,      L \ x(t) I = 0.

The latter relation will imply existence of values

(to <) Ii < ti <       <tl <       ;   lim tl = cc
V

for which

lim I x(t!) I = 0.
V

This follows from the fact that the equality L_\x(t) \ = 0 signifies that the func-

tion

u(T) = lim inf | x(t) \ (t St T)

is zero for all TStio. In consequence of the continuity of x(t) and inasmuch as

x(t) is not identically zero one may choose the tl so that

I *(*,') I > 0 (v = 1, 2, ■ ■ • ).

Amongst the (ti) one may select an infinite subsequence (tv) (^ = 1,2, • • • ) so

that

(2.7) I x(h) \ St I x(h) \ St ••• St I x(t,)\ St • • • ;

necessarily

(2.7a) I x(Q I > 0,       lim I x(t,) \ = 0.
v

Let h(u) be any admissible function, defined for

u St I x(ti) |_1 = Mo

and such that

(2.8) lim I x(t,)h<( \ x(t,) I"1) | = « (all e > 0).
V
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For example, h(u) =exp u is such a function. In consequence of (2.7)

y, = h( I *(*,)      g y,+i (v = 1, 2, • • • );

moreover, by (2.7a) lim y„ = oo. Hence it is possible to construct an admissible

function \p(t) for which

HQ =y. (» = l, 2, • • •).

On writing

(2.9) X.(0 = I x(W(t) I,

it is observed that

x,(#») = I *(<,)*'( I *(oh)-
Whence in consequence of (2.8)

lim \t(t,) = oo (all e > 0).

Together with (2.9), this implies that

lim sup I x(t)\l/'(t) I = oo

for the admissible function \p(t) introduced above.

On the other hand, on noting the relations

I x(t) I g ß,      L \ x(t) I = 0,

it is observed that the function of (2.9) satisfies

X_.(f) g ß+-(t);

thus

lim X_e(j) = 0 (all e > 0).

Hence, for the subcase under consideration, we have

C(x(t) I *(<)) = 0,

where ip?) is an admissible function with properties as described above.

This establishes Theorem 2.1.

Theorem 2.2. Let x(t) be continuous and be not identically zero. In order that

(2.10) C(x(/)|*(0)=0

for all admissible functions \p(t) it is necessary and sufficient that

(2.11) Z|*(0|^0, 5*=o.

To prove that (2.10) implies (2.11) suppose, if possible, that

(2.12) I\ x(t) I = oo.
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There exists then an admissible function q(t) (>0) such that

I x{t) I g q(t),       q{Q = I *(*,) |-oo (as v -> oo),

where the t, are certain numbers satisfying

h < h < ■ ■ ■ ;       lim t, «■ oo;

Let <p(t) be any admissible function for which

lim q(t)\p''(t) - co

One may take </>(/) =q(t) and 0 < « < 1. We write

x(t)

(all € > 0; as f —>• oo).

X_e(i) = I x(t)<t>-<(t)

and note that in view of the preceding

x{t,)

q(t)
q(t)<t>-'(t)

Whence

for all «>0 and

X_t(^) - q(t>)<t>->(ty) — oo

lim sup \-,(t) = oo

(as v —* =o)

for any function <p(t) of the above description. The latter relation is contrary

to the hypothesis that (2.10) holds for all admissible functions yp{t). Thus

(2.12) is impossible and we have

(2.13) x(t) I g ß < oo.

Still assuming (2.10) it is now observed that failure of (2.11) is conceivable

only when (2.13) holds, while

(2.13a) L I x(t) [ = 0.

Now the latter relation implies that lim x(t) = 0 (as t—>»). Amongst the con-

tinuous monotone non-increasing functions c(t), such that

I *(0 I g c(t),

there is a least function h(t) with the same properties. We have

h(t) = lim sup I x(t) I (t ^ !)■

Since

I *(01 ̂ *(0
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and since x(t) is not identically zero, it is deduced that h(t) >0; moreover,

lim h(t) = 0.
l-»oo

It is observed that for some admissible <p(t) we have

X.fjf) = I x(t)<b<(t) I -> 0 (all e > 0; as t-* <x>).

In fact, one may take

<p{t) = - log h(t).

Whence (2.10) is impossible for some admissible functions and (2.13a) can-

not hold. Accordingly, (2.10) implies (2.11).

To establish the converse we assume (2.11) and proceed to deduce (2.10).

The second relation (2.11) implies that

I x(t) I g 0 < oo.

Hence, with \p(t) denoting any admissible function, one has

and

lim X_e(/) = 0 (all e > 0).

On the other hand, on writing

II «(Ol = «(> o)
and on letting a0 denote any constant such that 0 <a0 <a, it is deduced that

there exist values

h < h < ■ ■ ■ < tv < • • ■ (ta<h)

such that

lim    = + oo,      I x(Q I St a0 (v = 1, 2, ■ • • ).
v

This follows from the continuity of x(t). Let 4>(t) again be any admissible

function. By the above relations

K(tt) St a0H(tp).

The last member, here, tends to + oo with t, for all e>0. Thus

lim supXe(/) = oo (all « > 0).
t—»00

Together with a previous relation for X_e(r) this establishes (2.10), which com-

pletes the proof of Theorem 2.2.

We shall define the characteristic number (with respect to an admissible
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function \f/(t) of a finite set of functions Xj{t) (7 = 1, • ■ ■ , m) as the least one of

the characteristic numbers of the x,-(t). This is in agreement with Liapounoff's

definition for the case of ip(t)=exp t. Our designation for the characteristic

number (with respect to\p(t) of functionsxx(t), • • • , xm(i) will be

C(*b • • • , xm(t) I iKfl).

3. Characteristic numbers for linear systems. Consider the linear differ-

ential system

dxi
(3.1) — = p\,i(t)x! + • ■ ■ + pn,i{t)xn (i = 1, • • • , n),

at

where the pi,j{t) are continuous for t^t0.

Let p(t) be the "least" function such that

(3.2) \pi,M\gp(t) 1, •••,«).

Necessarily p(t) is continuous. Inasmuch as p(t) StO, the function

(3.2a) 4>(t) = f p(t)dt

will be continuous, monotone non-decreasing.

The transformation

(3.3) r = cb(t),

applied to (3.1), will yield

—- = kuirfki + ■ ■ ■ + hn,i(T)xn        (i = 1, • ■ ■ , »),
dr

where

pi, At)
hi.Ar)

Pit)

In view of (3.3) and (3.2a) to the interval (t0f£t< oo) corresponds the interval

(0grgr'), with

r' = j P(t)dt,

the convention being made that when the latter integral diverges one has

t'= oo. In any case, by virtue of (3.2),

I k,i{i) I ̂  1 (° = T = T')-

Lemma 3.1. Every linear differential system (3.1) is transformed by (3.3)

[(3.2a), (3.2) ] into a system of the same type with coefficients uniformly bounded
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in absolute value on an interval which is infinite or finite, according as the integral

(3.4) f p(t)dt

diverges or converges.

We recall now a certain theorem, due to Liapounoff(b). In the notation

at the end of §2, the theorem states that for every solution

*i(0. • ■ •. *»W

of a system (3.1), whose coefficients are continuous and uniformly bounded in

absolute value for t^to, the number

(3.5) C(si(t% •••,*.(<) I «0

is finite.

This fact, together with Lemma 3.1, enables us at once to make the follow-

ing inference with respect to characteristic numbers of solutions of any system

(3.1).
We form the function p{t), as stated in connection with (3.2). If the inte-

gral (3.4) converges, then p(t) is uniformly bounded for t^t0; the same will be

true of the |/>»,,•(/) | (*\ J = L ' • ' > n) and, consequently, for every solution,

Xi(t), • • • , x„(t), of (3.1) the characteristic number (3.5) will be finite. If, on the

other hand, the integral (3.4) diverges, one may assert that for every solution

Xi(t), • • • , xn(t) of (3.1) the characteristic number

c(^Xl(t), ■ ■ ■ , xn(t) I exp j f p(t)dt^

will be finite.

We shall give greater precision to the above results by examining more

closely the lines of approach used in (L), p. 229 ff.

We shall need the following lemma, which will be stated without proof.

Lemma 3.2. Let \p(t) be an admissible function. Then

(3.6) C(x\ + ••• 4- **j 000) = 2C(*i, I *(*)),

provided at least one of the above characteristic numbers is finite.

In this connection we note that, given any set of functions Xj(t)

(j = l, • • • , n), continuous and not all identically zero, there exist admis-

sible functions\p(t) for which C(x\-\- ■ • ■ 4-x„| tp(/)) is finite. This follows from

Theorem 2.1.

(') (L), p. 229.
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In view of Lemma 3.1 there is no loss of generality in considering the sys-

tem (3.1) with coefficients subject to inequalities

(3.7) I pitj(t)\ g b < co.

By Liapounoff's result ((L), p. 229 fl.), we merely know that every solution

Xj = Xj(t), (j = l, •••,«), of (3.1) has a finite characteristic number with re-

spect to exp t, provided (3.7) holds. We shall obtain bounds, depending on b,

for the characteristic numbers of solutions.

Let ft, be a solution of (3.1). With Liapounoff, we employ the

transformation

(3.8) Zi = x,ext (X an indeterminate number),

which yields

dzi
— = pl.i(t)Zl + • • •  + (piM + X)2.' + • • •  + PnM)Zn       (* =  1, • • ■ , n)
at

and, on writing u=z\-\- ■ ■ ■ -fz2,, we obtain

1 du
(3.9) - - = A(\) + B(\) = T(X),

2 at

where

(3.9a)    ^(X) = £ (pUt) + 73(X) = £ (p.,.(t) + p...(t))zjs..

Using the inequality of Schwartz, it can be proved that

2_ I ctsaa I g (n — l)(ai + • • • + a„)    (s, a = \, ■ ■ ■ , n)

for any numbers cti, ■ ■ ■ , a,. Hence by (3.9a) and (3.7)

(3.10) \B(\)\ g 2bJ2\z*z* \ ^ 2(»- l)bu.

Define Xo as

(3.11) Xo = (2n - l)b + n/2 („ > 0).

In consequence of (3.9a) and (3.7)

piM + X^X0-Z>>0 (for X ̂  X0)

and

AQi) ^ (Xo - b)u > 0 (for X >t X0).

By virtue of (3.10) and of the above, from (3.9) we deduce
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r(X) ^ [(Xo - b) - 20 - 1)6]« = |«

for allXStXo and for allr^r0. Whence by (3.9)

(3.12) u St ce" (X St X0; constant c > 0).

It is similarly established that

r(X) g - — u (for all X g - Xo),

which yields

(3.12a) m 5= Cxe-"        (X g — X0; constant ci > 0).

By (3.8)
2x( 2 2

u = e   v,      v = Xi + ■ ■ ■ + xn;

here the Xj (j=l, ■ • ■ , «) are independent of X and constitute a solution of

(3.1). Thus, in view of (3.12) and (3.12a),

lim e^'v = + oo   (all X St X0),      lim e2Uv = 0   (all X g - X0),

where X0 is from (3.11). Inasmuch as v (>0) may be taken arbitrarily small,

the above relations can be stated in the form

(3.13) lime2X<D = + cc (allX > (2» - \)b), lim e2X(i> = 0 (all X < - (2» - \)b).

An inequality

(3.M) ft -C(»|e') > 2(2«- l)b

is impossible. In fact, suppose (3.14) holds. It is noted that

gOi-Ofj, = I g2[(2n-l)6+e]ij) I g[^-3<-2(2n-l)6](>

Choose e subject to

0 < 3e g p - 2(2« - 1)6;

then u — 3e — 2(2» — l)6StO and, in consequence of the first relation (3.13), we

have

lim e^~'^'v = oo.

This is contrary to the relation p = C(v \ exp t). Hence (3.14) is impossible and

one has

M g 2(2» - 1)6.

It may be similarly shown that p.St —2(2»—1)6. Thus
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(3.15) - 2(2» - 1)6 g C(x\ + ■ ■ ■ + xl\e) g 2(2» - 1)6,

and, by virtue of Lemma 3.2,

(3.15a) - (2» - 1)6 g C(xi, ■ ■ ■ , xn \ el) g (2n - 1)6.

We have obtained the following result.

Theorem 3.1. If in the differential system (3.1) the coefficients are continu-

ous and
I piM I g b < co       tfti « 1»   ••,»;* 2S *o),

the following may be asserted for every solution, Xj (j = 1, • • • , w), of (3.1). 0»

writing v=x\-\- ■ ■ ■ +x2,, we have (3.15), (3.15a) and, more generally, (3.13).

Consider now the case when lim pi,j(t) = 0. Let m{t) be the "least" monotone

non-increasing continuous function such that

I pt,M I g m(t) (i, j = 1, • • ■ , »).

Existence of such a function is inferred without difficulty. Necessarily

lim m(t)=0. Moreover, inasmuch as we exclude the case, trivial from our

point of view, when the pi,j(t) are identically zero, we have

(3.16) m{t) > 0.

Applying Theorem 3.1 (in particular (3.13)) to the interval (t, oo), where

r^to, it is concluded that

(3.17) lim e<*M+.)«ii = co,        lim ff-^M+.)tv _ 0 (all« > 0),
(—♦oo (—»oo

with

(3.17a) ct(t) = 2(2» - l)w(r).

In fact, it is noted that for the interval (rgt< °o) one may take b = m(r).

In view of (3.16) there exists a number e0 (>0) so that the equation

<t(t) = e (0 < t g e0)

has a solution r(e); necessarily

<r(r) g € (for t ^ r(e)),

inasmuch as <t(t) of (3.17a) is monotone non-increasing just as m{j) is. Thus,

given e such that 0<e^e0, in (3.17) one may put t = 7-(e), which will yield

lim e2ttv = co,        lim e~2elv = 0.
I—* 00 t—* 00

Whence

(3.18) Cs(v\ e') = 0.

We have obtained
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Theorem 3.2. Let the coefficients of the differential system (3.1) be continu-

ous and

lim pi,,(t) = 0 (i, j = 1, • • • , n).

For every solution x\, ■ • • ,xn of (3.1) we shall have (3.18), where v=x\+ ■ ■ ■ -\-x2n.

This Theorem is applicable to the general system (3.1) envisaged at the

beginning of this section. In fact, there are two cases at hand:

Case 3.19. The integral

f p{t)dt (p(t) from (3.2))

diverges.

Case 3.20. The above integral converges. That is, p(t)—>0 sufficiently fast,

as t—►+ ».

Consider the Case 3.19 and let p(t) be a continuous function such that

(3.21) p(t) ^ p(t).

Then the integral

f P(t)dt

will diverge. Application of the transformation

(3.22) r = f P(t)dt

to (3.1) will yield

dxi
(3.23) — = qi,i(r)xi 4- • • • 4- ?n,<(r)x„ (t = 1, • • • , «),

a/

with

g.-.Kr) = —— •
tm

The qi,j(T) will be continuous for t?t0 and

■ *(/)
(3.23a) I qUr) \ g ^—= r(r) ^1 (»»j - 1, • • • , »; t 0).

PW

If p(/) is so chosen that

Pit)
(3.24) lim -— = 0,

<-.+» p(t)
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one will have

lim r(r) = 0
T—

and, in view of (3.23a), Theorem 3.2 will be applicable to the system (3.23),

yielding the relation

(3.24a) Cs{x\ 4- • • • 4- xn\ e) = 0

for every solution Xi, • • • , X* of (3.23). By virtue of (3.22) this will imply that

in the Case 3.19 for every solution x\, ■ ■ ■ , xn of the differential system (3.1) we

have

(3.25) C,(xl + ■ ■ ■ + xl I exp j j p(t)dt^ = 0,

provided p(t) satisfies (3.21), (3.24).

The degree of precision afforded by an equality (3.25) varies according to the

choice of p(t) (subject to (3.21), (3.24))(6). If px(t) and p2(0 are two functions,

subject to (3.21), (3.24) and satisfying pi(t)gp2(t), of the two statements

C,(v I exp I j pi(t)dt^ = 0,      Ce(v I exp j J p2(t)dt^ = 0

the first one will be as precise as or more precise than the second. Clearly there

exists no particular function p(t), satisfying (3.21) and (3.24), for which (3.25)

represents the most precise result.

Consider now Case 3.20. Theorem 3.2 will be applicable directly to the

system (3.1). Let p{t) be positive and continuous (for /St/0) and let p(t)—>0

(as t—* °o) sufficiently slowly so that

(3.26) lim^— = 0,        I   p(t)dt diverges.
p(0 J h

Applying to the system (3.1) the transformation (3.22), we repeat the steps

leading from (3.22) to (3.24a). Thus, in the Case 3.20 (and, more generally,

when lim p.-,,(0 =» 0) for every solution Xi, • • • ,xn of the differential system (3.1)

we have

C,(x\ + ■ ■ ■ + xl I exp | J* p(t)dt^ = 0,

where p(t) (>0) is taken continuous (for t^ta) and subject to (3.26). With re-

spect to the degree of precision presented by the above result a statement

may be made analogous to that for the Case 3.19.

(') If one takes p(t)>0, the condition (3.21) will be non-essential.
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The following is a simple application of the above result. Suppose

I fk.0) I g at~a       (a > 0, a > 1; t St t0 > 0);

on taking p(i) =t~* we then obtain

Cs(xl + ■ ■ ■ + xl\ t/to) = 0

for every solution x\, • ■ ■ , x„ of (3.1).

4. Growth of solutions for linear systems. In the previous section we ob-

tained results relating to properties of "growth," at t = 4- 00, of solutions of

linear systems (3.1). We shall now apply a different method, based on "prod-

uct integration," for the purpose of establishing some further results regarding

properties of solutions of (3.1) for t large.

Using matrix notation the system (3.1) may be written as

(4.1) X™(t) - X(t)P(t),     X{t) = (*,•,,«),     P(0 = foJM,     ..• ■

i, j = 1, • • • , n. Here and in the sequel the element ö,,,- displayed in a matrix

(ßi.i) will be the one in the ith row and jth column. If X(t) satisfies (4.1), the

elements of any row in X(t) will constitute a solution of (3.1). With t>t0, we

subdivide the interval (r0, t) into A7 equal subintervals and call their end points

t, = h + vA    {v = 0, 1, • • • , TV),       im tN,

where

t - h
(4.2) A=-•    .•     . N

We then form the matrix

(4.3) XN = (xmu) = (I + APtyUI + AP(h)) •••(/ + AP(tN-i)),

where 1= (S,-,,-) is the identity matrix. In consequence of the known theory of

"product integration" the limit

(4.4) lim XN = X{t) = (xij(t))
ir-4«

exists for all t^tt and the matrix X(t) will satisfy (4.1); moreover, X(t0) =1.

We have taken equal subintervals for convenience.

By (4.3)

XN = I + A X, P{tn) 4- A2Z P(QP(Q + ■■■

+ A»  £ P(QP(tn) ■ ■ ■ P(tJ + ■■■ + afP(h)P\h) ■ ■ ■ P(tN-i);

here Vj = 0, 1, • • • , N— 1. Thus
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AT

(4.5) XN - I = X>mZ.m, Lm = {tmij,

where the element Imu.j in the matrix Lm is of the form

Im-.i.i — element in the ith row and 7th

column of 2n<...<^,P(0 ■ ■ ■ P(<,J
(4.5a)

n

=        E X) Pi.rAtvJPri.rsit^)  ■  ■  ■ Prm-l,i(t'J-
"l<---<"m    "ti ■ ■ • .'»-l=1

Let p(i) be a continuous function such that

(4.6) \PiJi)\ i 'k*) 1, • - . I*).
In consequence of (4.5a) it is concluded that

n

I am7ra:i,,-| g    E E      (A^))(A^))'-• • (AP(0)
»■i< • • ■<'„ n, ■ ■ ■ ,Tm_!-i

= E (a?(0) • ■ • (aP(/,j) E i

(4.7) ^

n< ■ • -<"m

1
= —     £    (nAp(tn))(nAp(Q) ■ ■ ■ (nAp(t,J).

n ,!<•••<-»

By (4.5) and (4.7)

N

n I XN-.i,i — 8i,i \ g »E I Amlm;i,j\

(4.8)
m=l

g E     E    («A#(<n))(*A/KO) ■ • ■ (»A#(0)>
m=l   j*i< • • -<vm

where Vj = 0, • ■ • , N— 1. With the aid of the identity

N

— 1 4- (1 4- co)(l 4- ci) • • ■ (1 4- c^-i) = E     E    c"ic-2 • ' • Cym
m=\ vi<---<vm

(v, = 0, • • • , 7Y-1) from (4.8) we infer

N-l

n \ Mmt,:i - Ki\ ^ - 1 + IT (1 + nAp{Q).
r-0

Now, inasmuch as nAp{tn) 2:0 and since

1 4- u g eu (for u 0),

we obtain
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JV-l

(4.8a) it I xN-.i,i -       g - 1 + exp »£ Ap(tr).
r=0

From this in the limit, as N—* °°, it is deduced that

(4.9) I XtM ~ h,i\ g 1 4- exp |» j #(0*|] = «(<);

here the*<,,•(<) (*,7 = 1, • • • , «) are the elements of the matrix (4.4). The best

result is presented by (4.9) when p(t) of (4.6) is taken "least."

Let

(4.10) hgtgr.

We subdivide the interval (t, r) into N equal subintervals, with end points

given by

I = Tff < Tff-l <  ■ ■ ■   < T\ < t0 = t,

where

t — r .
(4.10a) t, = t + vS,      8 =-=-5.

N

If the matrix

ZN = (Smi.i) = (/ 4- «P(ro))(/ + 5F(rO) • ■ ■ (/ 4- 5P(r*-i))

is formed, in consequence of the theory of product integration it is deduced

that the limit

(4.11) limZjv = Z(t) = (s4,M) (hg t g t)
N

exists and satisfies (4.1); we have

(4.11a) Z(t) = 7.

In place of (4.8) we now have inequalities obtained by replacing

XNU.j, t7, A

by

ZN:itji TV1 5,

respectively. We had A>0, but now 5<0. Accordingly, in place of (4.8a) it

is established that

n j zN-.i,j — 8i,j j g — 1 -f exp (— n £ 5p(rr)|.



1941] SOLUTIONS OF DIFFERENTIAL EQUATIONS 269

In the limit, as N—><», this will yield the following inequalities for the func-

tions Zi,,(t) of (4.11a)

(4.12) »\*i,M - 8ft/| g - 1 4- exp |- n j p(t)dt^     (t0 g t g r).

When the integral

(4.13) f p(t)dt (cf. (4.6))

converges, the following is observed. The matrix

X(t) = (*<.,(*)) = lim Z(t)
T—»+00

satisfies the system (4.1); moreover,

X(+ oo) = J,

and, by (4.12),

(4 14)       ' XiM ~ 5i"' ~ 1 + 6XP {*/, P(t)dt}~\ = ß{t)

(t0gt< oo).

Accordingly one may formulate the theorem.

Theorem 4.1. The following may be stated for the solutions of the differential

system (3.1), whose equivalent matrix form is (4.1).

Let p(t) be a continuous function such that

I put) I g p{t).
The matrix solution X(t) = (xi,,(t)),for which X(t0) =1, satisfies the inequalities

(4.9). In the case when the integral

f P(t)dt

converges, there exists a matrix solution X(t),for which X(-\- oo) =T,the elements

of X(t) will satisfy the inequalities (4.14).

It is noted that, when (4.13) converges, the function a(t) of (4.9) is uni-

formly bounded; in fact

a(t) g a(oo) < oo ((, g / < oo).

When (4.13) diverges a(t) is monotone increasing and

lim a(t) = + oo ;
(—»00



270 W. J. TRJITZINSKY [September

moreover, in this case, the faster

approaches + 00, as t—» °° , the faster will a(t) approach + °° with t.

When (4.13) converges, the function ß(t) of (4.14) will approach zero, as

/—»4~ 00 • In this case, the faster p(t)—*0 (as t—+ «>), the faster will ß(t) approach

zero with l/t.

Comparison of the results of Theorems 4.1, 3.1 leads to the conclusion that

the two theorems overlap and, in a sense, supplement each other.

Corollary 4.1. With p(t) from (4.6) and

f Pit)dt

convergent, every solution Y(t) = (y,-,3(/)) (definedfor t^ta) of (4.1) has the prop-

erties :

(4.15) lim Y(t) = C = (d,,) (as t -><»),

where the d,j are constants;

I Ji,i(t) —       g ncß(t),

with ß(t) from (4.14) and the constant cfrom the inequalities

(4.15a) I Citj\ g c (i, j = 1, • • • , n).

In fact,

Y(t) = CX(t),      C = (Ci„),

where the d,j are some constants and X(t) is a matrix solution of (4.1) for

which X(-\- co) — I. The solution X(t), with the stated property, exists in con-

sequence of Theorem 4.1. The relation (4.15) follows at once. Now

Y(t) -C = (yUt) - eh) = C(X(t) - I)

and
n

yi,i(t) — d,i =  Z) CiAX^,j(t) — 5r,j).

Thus, by (4.15a) and (4.14)

I yi,i(t) - Ci,j\ g ncß(t),

which establishes the corollary.

Let us consider the case when there exists a continuous function p(t) such

that
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(4.16) pUt) ä; p(0 Q (*, j = 1, • • • , n).

We repeat the developments leading up to (4.5a). By (4.5a) and (4.16)

N-i N-l

MlU.i = E *PiM - X) A#(fc>).      Amlm-.i,j ^ 0.
»1—0 >1=0

Whence, in view of (4.5),

N N-l

XN-.i.j ~ 8,,i = A/l:»,j 4" £ Amlm-i,j ̂ Alui.i ^ X MO
m=2 ^i=0

and, in the limit (as TV—►«>),

(4.17) *M0 - Km £ A#«0> I p(0*-

Hence we may state the theorem.

Theorem 4.2. Suppose (4.16) holds. Then the Xi,,(£) of the matrix solution

X(t) = {xi,j(t)) of (4.1), with X(tn)=I, will satisfy the inequalities (4.17).

Corollary 4.2. Suppose that the coefficients in (4.1) satisfy

piM) ^ ~ p(0 < 0 (i,j = 1, • • • , n),

where p(t) is continuous. With X(t) = (xi,,-(t)) denoting a solution of (4.1), reduc-

ing to I for tQ, the elements Xi,j(t) of the inverse of X(t) will satisfy the inequalities

Xi.At) ̂  h.i + j P(t)dt (ij = !,•■■,»).
H

The corollary is established on noting that

x(t) = i*i,M)

satisfies

*«(0 = - P{t)x(t),

whenever X(t) is a matrix solution of (4.1).

Further results will be obtained with the aid of product integration and

of the identity

+ K.niQ + ■ ■ ■ + K^r^iK-d + h7m_uj{tvj

(4.18)    = hUt) + [hiM - h,,i(tym)] + [hTm-Ut>J ~ h^Ut,^)] + •••

where we have put

(4.18a) hi,,?) = hi(t) - h,{t) (i, j = 1, • • • , »).
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Suppose the hi{t) are continuous for t^to and the h{u(t) (i=i, •••,«) exist.

If we have

(4.19) ki\f) ^ h?\t) ^ ^ hn\t),

then

(4.19a) h™(t) - hr\t) - A<W)(0 g 0 (* = 1, • • • , h;t = 1, • • ■ , »),

where p is from the inequalities

(4.19b) hi\t) = h2\t) = ■ • • = h?{t) ^ CiW       • • .

Thus, under (4.19), l^p^w. With t0gt'gt", from (4.19a) one would obtain

hl.Mdt gO   (i = 1, • ■ • ,p;r = 1, • ■ • ,n).

Whence, if (4.19) (see (4.19b)) holds, the identity (4.18) will yield

(4 20)    hi,Tl(-tn) + hT1-Ti{Ui) + ' ' ' + ^-..'--»(^-i) + g hiM

(i = 1, • ■ ■ , p; 7 = 1, • • ■ , n),
whenever

(4.20a) t0 g ttl g tri g ■ ■ ■ g t,m g t.

If instead of (4.19) we have

(4.21) hi\t) g h2\t) g       g *il>(<),

then for some number n, such that 1 gngn, the inequalities

(4.21a) h?(t) g       g k?\t) = CiW = • • • = h?(t)

will hold. It will follow that

*rf<0) =^0 (i = i7, 77 4- 1, • • • , n; r = 1, • • • , n).

This, in turn, would imply

hr,i(t") ~ hr.i(t') g0 (i = 77, V + 1, • ■ • , »; T =  1, ■ • ■  , »)

for any values t" such that t0gt'gt". Hence, on taking note of (4.18), it

is observed that, if (4.21) (see (4.21a)) holds, one has

(4 22)     hi-ri^ + + ■ • • + + ^„-„,(0 g h,M

(i = v, v + i> • ■ ■ . »; i = l. • ■ ■ . »),

whenever (4.20a) is satisfied.

Letw(r), A,-(<) (j=l, •••,») be functions such that (4.19) holds and
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(4.23) I pUt) I ̂  «#)**«<*>-*'*« (i, j = 1, • ■ • , »),

the function w(t) (^0) being continuous for t^t0. Such functions exist in all

cases. Repeating the developments leading to (4.5a) we now obtain

I A1*m| g     2Z E      (A^(in))(^(U) • • • Ow(O)
(4.24) '.<-<•*

•exp LAM/,,) 4- hTlUQ + • • ' + Arm_2,T„_1(^„_1) 4- *r»_,.i(OJ-

Inasmuch as (4.20a) is satisfied, application of (4.20) to (4.24) is possible,

yielding

(4.24a)     I A-lWfl E       Z ■ ■ • (Aw(O)

for t=l, • ■ • , p (p from (4.19b)). Using the steps employed in (4.7), from

(4.24a) it is deduced that

I &mlm:i,j I g —       E • • • («AW(0)
w   n< •••<%,

(*=1, • • • , p;j'=l, • • • , raiOgj^/V-l). By (4.5) and the above (see (4.8))

one has

N

n \ XN-.i.i ~ oi,j \ e-A«-.>-<'> |£ 2 (nAw(Q) ■ ■ ■ (nAw(t,J)

(*=1, • • • , p) and, with the aid of the identity subsequent to (4.8), we find

jv-l

»| xn-.u - 6i,f\ g - 1 4- II (1 + (* = 1, • • • , p).

Thus
N-l

n I sssrj,-^ — Sj,,-1 e-^./O g — 1 4- exp m 22 Aw(t,)        (t = 1, • • • , p),
r=0

and, in the limit (as N-^<x>),

» I -       £ — e^w^öf- 1 4- exp In f w{t)dt\~\
(4.25) n L I  «71„ 7 J

(* = 1, • • • , n;j = 1, • ■ • , «).

Let continuous w(t) (^0) and the hj(t) be such that (4.21) holds and the

inequalities (4.23) are satisfied. On making use of (4.22), we now obtain

(4.26)
*i,M - Im I S — ek* (,)-"'(1 + exp j» J »(/)<&

(i = V, V + 1, ■ ■ ■ , n; j = 1, ■ ■ ■ , n),
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where t? is from (4.21a). As in (4.25) the %,/(/) are the elements of the matrix

X(f), satisfying the system (4.1); X(t0)=I.

Inequalities (4.25) refer to the first p. rows of X(t), while (4.26) refers to

the last n — 77 4-1 rows. We recall that the elements in any row of X(i) con-

stitute a solution of the system (3.1). The hj(t) in (4.25) and (4.26) do not need

to be the same.

Inequalities of the form (4.23) imply, in particular, that

w(t) ̂ I piM I (i = 1, • • • , »).

Thus, it is not always possible to choose w{t) so that the integral

(4.27) j w(t)dt

converges. However, for some systems (4.1) one may choose w(t) so that

(4.27) converges. Suppose now that the latter is the case. Let wit) be a con-

tinuous function such that (4.27) converges, while

(4.28) I pi,j{t) I g w^ifo-M» (ij = l, . • • , n),

where the h,{t) are such that either (4.19) or (4.21) holds. We recall the nota-

tion introduced in connection with (4.10)-(4.10a), as well as the subsequent

developments leading to (4.14). The formula corresponding to (4.8) will be

N

(4.29) »| ZmM - hti\ g nJ2 (- S)m| Leu. A-

On the other hand, making the replacements indicated subsequent to (4.11a),

in view of (4.5a) it is concluded that

(      5)m lm:i,j
11 n

g     X E       (- 5PiM(rn))(- 5K,x2(0) • • ' (- S^-i,|-(0)
n<"'<*m Xi,• •-,xm_i=i

(Ogv„gN-l). In consequence of (4.28) this will imply (cf. (4.24))

(- 5)™| L:i,i\

^   E        £    (- sw(r,M- ■ ■ • (- MO)
(4.30) »i<■••<»,» Xi,---,\„-i=i

•exp [*<,x,(t„) + Vx2(t,2) 4- ■ • ■ 4- hm_2,xmUT'm-i) + V-i'^O 3

(i, j = l, ■ ■ ■ , n; t<TSm<TVm_l< ■ ■ ■ <Tyigr). Under (4.19), in place of

(4.19c) we obtain

(4.31) h,i(t") - Äx,<(V) = f    ki%)di gO    (i = tf, ■ ■ ■ , «;X = 1, , n)
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for tgt" gt' gr; here t\' (Agr\'gti) is, from the inequalities, valid when

(4.19) holds—that is,

(4.31a)    h^it) ^ h?\t) ^       ^ t$\i) = C+iW = • • • = £\t).

On the other hand, under (4.21),

(4.32) hM") - h,i(0 go (i = l, • • • , m'; x = 1- • ■ • ,»)

for tgt"gt'gr, the integer p' being from the inequalities

(4.32a)    hT{t) = h2\t) = • ■ • = £ f&M hn\t).

By virtue of (4.18)

(4.33) = ht,M + [kUQ ~ 4- [h^.UryJ ~ hj^faiji]* ' ' '

+ [Äx1,i(r„s) — fe,,i(tn)j.

Inasmuch as the r,- satisfy the inequalities of (4.30), on taking account of the

statements in connection with (4.31) and (4.32), the following is inferred. For

7 = 1, • • • , n and tngtgr

,a *n       nr * i   tlfiV. (under (4.19); cf. (4.31a)),
(4.34) TF < hi,j(t)<

~ It - 1,   • • , m' (under (4.21); cf. (4.32a)).

Application of (4.34) will yield from (4.30)

(- «)-|/«,(,/| ^ «k<-'(0    E       E (~ 8»(rO) ' ' • (- MO)
"l<-'<|,m Xi,---

for values of i as indicated in (4.34) and for t0gtgr. Whence, by virtue of

(4.29),
N

n \ WHH.i —       e-hi'i<-t) ̂  E  E (~ n8w(rn)) ■ ■ • (- m5w(t„J)
tn=l ci< ■ • •

= -1 + n (i - «8w(t,))
r-0

N-l

g — 1 4- exp — »E Sw(rr)

for i = r]', under (4.19), or for i=\, ■ • ■ , p', under (4.21). Accord-

ingly, in the limit (as A7—* ») one has

I *t,iit) ~ **,f \ •£—J***W>\- 1 4- exp {-n f w(0<«ll
(4.35) " L

(i = ij', • • • , m or t = 1, • • • , u'; j = 1, • • • , n; t0 g t g t).
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The matrix (z;,,(<)) satisfies the system (4.1); moreover, (Zi,,(r)) = (5,-,,).

Existence of the limits, as t—* °°, cannot be asserted for all the elements of

the matrix (z,-,,■(/)). However, the limits

(4.36) lim Zi,j(t) = x,-tJ(0 ( ■»*',••■,»; under (4.19)),
T

(4.36a) lim *itM = x,-,,-^) (* = 1, • • • , p'; under (4.21))
r

will exist for 7 = 1, • • • , w; moreover, in consequence of (4.35)

(4.37) I Xi,iit) - bi,j\ g — e*«')-*/(t)      i + exp |M j w(t)dt^

for values of i as indicated in (4.36), (4.36a), for j= 1, • • • , n and for <o = ' < 00,

it being supposed that (4.27) converges. For any i, for which the above is

asserted, the set of n functions

(4.37a) Xi,i(t), Xi,2(0. • • • . x<,„(i)

constitutes a solution of (3.1).

The above results may be summed as follows.

Theorem 4.3. Let w(t) (?:0), hj(t) (7 = 1, ■ • • , n) be functions continuous

for t^to, such that

I pitj(t) I g w(t) exp [hi(t) - hj(t)] (i, j = 1, • ■ ■ , »),

<z7z<7 5mcA /7to7 either (4.19) or (4.21) is satisfied, the hj(t) being derivable.

If X(t) = (xi,j(t)) is the matrix solution of (4.1), for which X(t0) =/, then

I Xijit) - aM| g — eh'(')-">(') ^- 1 4- exp |» J w(0*|]

(j = l, ■ • • ,n) for i—\, ■ ■ ■ ,p, M77«7er (4.19) (cf. (4.19b)), a«<i /or i = rj, ■ ■ ■ , n,

under (4.21) (c/. (4.21a)).
Suppose w(t) can be so selected that the integral of w(t)dt extended over (t0, »)

converges, while the hj(t) are functions as described above, for which either (4.19)

or (4.21) holds. One may then assert that there exists a matrix solution

X(t) =Xi,j(t)) of (4.1) with the following properties. If (4.19) holds, each of

the last 77 —7j'4-l rows of X(t) will constitute a solution of the system (3.1).

When (4.21) holds, each of the first p' rows of X(t) will be a solution of (3.1).

In this connection, n', u' are from (4.31a) and (4.32a), respectively. The con-

stituent elements *<,/(/) of the solutions of (3.1), just referred to, will satisfy in-

equalities (4.37) for 7=1, • • • , 77 and for t0gt<<x>.

5. Growth of solutions for nonlinear systems. We consider now nonlinear

differential systems of the form important in classical dynamics,
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dXi
(5.1) — = /.(/; Xi, • • • , xn) = Ii + qt (*=%,•••, »).

a7

where

(5.1a) U = P\,i(i)xi + • • • + pn,i{t)xn,

the p,,i(t) being functions of the same type as before, while

(5.1b) qi =     X     7?<"    '*('; aO*"*«' • • • X»   0'i, • • ■ , jn 1 0).

The coefficients in (5.1b) may depend on (x) = (xi, • • • , xn):

(5.1c) ^1""''"(<; x) = pt "'\t) + x),

where the

Pi  " (0 (;i+---+ jn - 2; ji, • • ■ , jn 2 0)

are independent of xi, • • • , x„ and are continuous for t^t0. On the other hand,

the

ft. • • ••'"/..   \ _   h< ■ ■ \
Ti \t') X) — Ti yt'y Xi, ' ' ' , Xn)

are continuous in xi, ■ ■ ■ , x„, for every t^to, when

(5.2) t0gt<°c, \Xi\gH (j = 1, ■••,»; H > 0);

moreover, it is assumed that

(5.3) |r;'"""'J"(<;x)| gr(||*||) ^ r° (||x||2 = x\ + • • ■ + xn)

under (5.2). Äere r(«) is independent of i, j\, • • • , jM and r° is independent of

; furthermore

(5.3a) lim r(u) = 0 (as u —>0);

r° way depend on t,in which case it is to be continuous for t^h.

Such systems (5.1) will include, in particular, the case when the

fi(t; xn) are analytic in x\, ■ ■ ■ , x„, for |x,-| gH and fSt<0, and are

continuous in /, the variables involved being subject to (5.2);/i(<; 0, • • • , 0)

= 0. In the case when the term "analytic in x\, ■ • ■ , xn," above, is replaced

by the expression "analytic in xx, ■ ■ ■ , xn uniformly with respect to t

(<St/0)"(7), one may choose r(||*||) and r° in (5.3) independent of t.

It is observed that the system

dxi
— = /,• (i = 1, • • ■ , n)
dt

(7) In the sense of Liapounoff.
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is precisely the previously investigated linear differential system (3.1).

Let p0(t) be the "least" function, continuous for t^t0 and such that

(5.4) |faO}|£M0
and

(5.4a) I p!"I +r g p0(t).

Inasmuch as the number of continuous functions in the first members of (5.4),

(5.4a) is finite, po(0 may always be chosen as stated above.

The transformation

(5.5) r = <p(t) = f p0(t)dt      (0 g r g 4>(+ <*>) = t')

has the properties indicated at the beginning of §3. Under (5.5) the system

(5.1) takes the form

dxi

Ik
= fi = h 4- 2i (i — 1, • • • , «),

where

Here

with

h = Äi,«(t)*i 4- • • • 4- h„,i(T)xn,

§i = 2 ft/'   'J"(r; x)xil ■ ■ - x* 0'i + • • • +/» = 2).

.     . .      Pi,AO ii.---.in,      .       ,ft.'••»*»/ x   ,   -*».•••.*», s,
hi.At) = -— ;       *< (t; x) = hi (t) 4- ?i (r; x),

MO

Ä*"    '!"(r) =—— 'J"(0- ''"(r;x)=—— r<"    ''"(«; x).
Po(t) po(0

In consequence of (5.3) and (5.4a)

(5.6)        I *)\--^ KIND = KIND = 7^ =     = 1-
po(0 po(0

(5.6a)      I »<,,,,",i*(r;*3|4F I,       | ^„-(r) | g 1,       | ft/1'"'"'"(t) | ^ 1

for Ogr^r' and \xj\ gH (j = l, • ■ ■ , n). It is noted that the function f°, in

(5.6), is continuous in t for 0^t5=t'.

When the integral

(5.7) j Po(t)dt
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diverges, the interval for r is (0, + w); in the contrary case it is (0, r')> where

t' < + oo. In the latter case

po(t) g b < oo

and, in view of our purposes, the transformation (5.5) is not needed.

In view of the transformation (5.5) (p0(t)from (5.4), (5.4a)) there is no loss of

generality, if the general nonlinear problem (5.1)-(5.1c) is taken subject to the

inequalities

(5.8) \pud\,   \tf["''ht)\g b < oo        + • • • +i« = 2),

(5.8a) \pT"',i\t;x)\ g b,

(5.8b) I u' "''"(*; x) I g r(\\x\\) gr gb

satisfied for \xj\ gH (J= 1, • • • , n) and t0gt<<x>, b being independent of L

To the system (5.1), under (5.8)-(5.8b), we apply the transformation

(5.9) Si = Xiext (X indeterminate).

The system satisfied by the z; will be of the form

dzi ,
— = px,i{i)zi 4-4- (piM + X)zs- 4-4- PnAt)*. + pn.i
dt

(#=1, •••,«), with

(5.10) p'n<i = e        pVi"zvzK,      bpY = pi'    "(t) + ft'    ''"(/; Si,-, xn)
v,k

0'i+ ■ • • 4-Jn = 2), where sets {v, k) are in a certain correspondence with sets

O'i' ' ' ' > jn), while 5 = 1 for v = k and 5 = 2 for Vt^k. We write

(5.11) u = zx4- • • • +zl

Then

1 ' du
(5.12) =A(\) +B(\) +C(X),

2 or

where ^4(X), B(\) are given by (3.9a) and

(5.12a) C(X) - 2Z**P*.*-
i=l

Using the inequalities (5.8), from the developments of §3 we infer that

for all t^to.
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A(\) + B(\) ^ vu (all X St (2m- 1)6 + t,; any t, > 0),

A(\) + B(X) g - i?« (all X g - (2m - 1)6 - 77)

for allfSt;0.

We think of the set of functions

%it ' ' ' i xn

as a solution of (5.1); accordingly

(5.14) \*i\£B (j= 1, ■•■ ,«;*£<«).

In consequence of these inequalities of (5.10) and of (5.8a)

I Pi  I £ *•
Hence by the inequality of Schwarz and by (5.10)

I pn,i \ g e~x,nbu (cf. (5.11)).

Accordingly, the function C(X) of (5.12a) will satisfy

I _ ,  , I 2 ^—, , ,   i   . „ 2 —2X (   3 3I CO) I  g S 8,-E (jO2 gJe mm

for all real X and for all rStr0. Now, by (5.14), (5.9) and (5.11)

„1/2 ^ Wl/2/JeX«;

whence

(5.15) I C(X) I g Hn*bu.

On choosing 77 of (5.13) as

7) = Fm26 + e (e > 0),

by virtue of (5.12), (5.13) and (5.15) it is concluded that

1 du
-St tu (all X St 6(#m2 4- 2m - 1) 4- e = X0).
2 ct7

Similarly, it is shown that

1 du
-g - €m (all X g - X0).
2 A

Therefore

m S: ce2"   (all X Sr X0), m g ci<r2"   (all X g - X0)

for all /St/„; here c, Ci are positive constants. Now e (>0) may be taken arbi-
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trarily small. Thus, on writing v = x\-{- ■ ■ ■ -\-x\, we find that

lim i/e2X< = + co (all X > b(Hn2 + 2n - 1)),

(5.16)
lim ve^' = 0 (all X < - b(Hn* + 2« - 1)).

t

With the aid of reasoning of the type employed subsequent to (3.8), from

(5.16) it is inferred that

(5.17) I C(x\ H-+ xl\e')\g 2b(Hn + 2n - 1),

and

(5.17a) I C(xu J «01 £ HHn2 + 2n - 1).

In view of (5.14) it is clear that

C(xi + •••+*»J e) 2£ 0.

Theorem 5.1. Consider the nonlinear differential system, as described in

connection with (5.1)-(5.3a). In view of the statement with reference to (5.8)-

(5.8b) (note transformation (5.5)) there is no loss of generality in assuming (5.8)-

(5.8b). If a set of functions

Xl,        , xn

satisfies the system for all t St /0, so that

I «/| S ff (/-l, ••,»),

/Äe« necessarily

0 g C(xi 4- • • • 4- *?, I e') g 2o(7Jw2 4- 2« - 1).

ilfore precisely, (5.16) wi/J AoW.

It is observed that the information supplied by the inequality, last dis-

played in the above theorem, amounts to an assertion to the effect that

x\-\- ■ ■ ■ -\-x\ cannot approach zero (as    >=c) faster than at a certain rate.

Consider the case when, for t—> oo,

(5.18) lim pi,At) = lim p-' '"''"(t) = lim r = 0.

The function p0(t) of (5.4), (5.4a) will then tend to zero with 1/t. There exists

a "least" monotone non-increasing function m(t), continuous for /St/0, for

which

(5.18a) p(t) g m(t),      lim m(t) = 0.
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If one had m(h) =0 for some h^Zh we would have

/<(/; *x, •••,*») = 0    (all t |S h; i « 1, • • • , »);

the system (5.1) would then be trivial from our point of view. Hence we may

take

(5.18b) m(t) > 0.

In (5.16), on letting v = x\-\- ■ ■ ■        we have

lim v exp { [2(Hn2 + In - l)m(r) + e/2]t] = + °°,

(5-19) '
lim i) exp {[- 2(Hn2 + 2n - l)w(r) - «/2]*} =0

for all e>0 and for all t^to. For any e, such that

0 < e g e0 < 4m(t0)(Hn2 + 2n - 1),

the equation

2(flr«2 + 2n - l)w(r) = e/2

will have a solution t = te2t/0. Substitution of t=t6 in (5.19) will yield

lim veet = oo,        lim ve~'' = 0;
t t

that is,

(5.20) Ca{x\+ ■ ■ ■ + xl\ e) = 0.

We have established

Theorem 5.2. Consider the nonlinear differential system (5.1). Suppose that

the functions, involved, vanish for t—>°o, as indicated in (5.18). Then for every

solution

of (5.1), defined for t^to, we shall have (5.20).

With the aid of a reasoning of the type used subsequent to Theorem 3.2

we obtain the following corollary to Theorem 5.2.

Consider the system (5.1). Let p0(t) be the function of (5.4), (5.4a). If the

integral

(5.21) f p0(t)dt

diverges, then for every solution xu ■ ■ ■ , xn of (5.1) (with \ x,-\ gH) we shall

have
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(5.22) C„ (x\ + • • • + xn | exp J p(t)dtj = 0

for every continuous function pit) (2:0) such that

■    lim^ = 0.
!■->» p{t)

If the integral (5.21) converges (or, more generally, if lim p0(t)=0), then for

every solution Xi, ■ ■ ■ , xn one has (5.22) for every continuous function p(t)

(2:0) for which

J *0

Po(t)
lim-        = 0,        I   p(t)dt diverges.

pif)

6. Method of successive approximations. In this section we shall establish

certain "growth" properties for solutions of the nonlinear system (5.1), mak-

ing use of the solutions of the corresponding linear problem

doc'
(6.1) —^ = lj(t; x) = pi,j(t)xi + ■ • ■ + pn.j(t)xn (j = 1, • ■ • , »).

dt

We shall use solutions of (6.1) as the first approximation.

For some continuous function p°(t) we have

(6.2) \pT--'Jn(t)\gp\t).

We shall write

(6.3) q,- = fid!; x) = <*,(/; xu ■ ■ ■ , x„) + ßj(t; %u ' 1 1 . *•>),

(6.3a) ctj(t; xi, ■ ■ ■ , xn) = X     p]1'   ''"(fixl1 ■ ■ ■ x'n° = X (0*»*»»
Jl+--- + Jn=2 >sm=l

n

(6.3b) /3,-(*; Xi, • • • , xn) =     X ' 1 '      = X r/

here

(6.3c) p,- (0 = pi  {t),      u (t; x) = tj {t; x).

In order to carry out the method of successive approximations a special

continuity condition for the functions

(6.4) Tj (t; x) = rj (z; xm)

is needed. It will be convenient to introduce a hypothesis in the nature of a

Lipschitz condition.
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Hypothesis 6.5. The functions (6.4), involved in (6.3b), satisfy inequalities

(6.5a) I r-m(t; *i + *i, • • • , I» + x„) - r"j'm(t; zi, • • • , z„) | g ri{t)x* (t /0),

whenever

(6.5b)        \zj\gz*,      \xj\gx*   0* = 1, •••,«), s*4-x*^ff;

Aere ri(z) is continuous.

The following lemma will be stated without proof.

Lemma 6.1. Under Hypothesis 6.5 the functions qj = qAt; x), involved in the

system (5.1), satisfy the inequalities

(6.6) I qj(t; «i + *i, •••,*» + *») - ?*(*; zi, • ■ • , z„) I g go(0(z* +

(j = 1, • • ■ , n; t^to), where

(6.6a) q0(t) = 2n*(p°(t) + r«(t)) + ttWfi®

[cf. (6.2), (5.3) (r° = /■»(<)), (6.5a)], whenever (6.5b) Ao/ds.

We shall now prove the following result.

Lemma 6.2. Effecting on t, if necessary, a suitable transformation

(6.7) r = I   q'(f)dt (continuous q'(t) > 0),
» «0

the function qo(t), involved in (6.6), way replaced by a constant q0. Moreover, it

can be arranged at the same time to have the \ pi.At) \ of (6.1) uniformly bounded.

In fact, if q0(t) is uniformly bounded we may define go as the least upper

bound of g0(0- In the contrary case the integral

f qo(t)dt
J to

will diverge; the transformation (6.7), with q'(t) =qo(t), will yield the system

dxj       1 1 .
—- = —— lf(t; x) 4-— qj(t; x) = I At; x) 4" $i(r; x),
dr      q0(t) q0(t)

for which the function g"o(r), corresponding to go(0> is given by

SoM = 1 (0 £ /< *>).

If it were desired to have q0(t) in (6.6) replaced by a constant and at the

same time to have the |p<,,-(i)|, in (6.1), uniformly bounded, we would pro-

ceed as follows. Let p(t) be the "least" continuous function such that

I put) I g p(t).
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If qo(t) is not uniformly bounded, let q'{t) be the "least" continuous function

such that

qo(t),      Pit) g q'(t)-

Then the integral

(6.8) f q'{t)dt

will be divergent and the transformation (6.7) will produce the desired effect.

If g0(0 is uniformly bounded, but pit) is not, then we still define q'(t) as above.

The integral (6.8) will be divergent again. The transformation (6.7) will serve

the purpose.

The developments in the sequel will be under the following hypothesis re-

lating to the linear problem (6.1).

Hypothesis 6.9. There exists a matrix solution X(t) = {xi,j{t)) (i, 7 = 1,

• ■ ■ , n) of the matrix equation

(6.9a) XW(t) = Xit)Pit),      P{t) = (/»,„•(/))

such that

(6.9b) I XiM I g (p,(/)       (* - u •••,»;< £ to),

while the elements x,-,,(f) from the matrix X~l(t) = (*,•,,■(<)) satisfy

(6.9c) I *<„■(*) I g —*(<)•
<P:it)

Here the <p,(0. <p(0 are continuous. There exists a continuous function 6(t) so that

(6.9d) g MO g g M*) g g «PnW.

(6.9d0 lim <?>,(/) = 0 (j=l, •••,*»),

1
(6.9d2) <t>it)6it) g b,      —<t>mit)it - t') g b0        (t ^ t0; some t' < t0),

2 6 it)
<?m{t)it-t')\+t' :

(6.9d3)-> 0  [monotonically as t (3; t0) —» + °° ; some e' > Oj,
6(f)<t>i(t)

(Pmit)
(6.9d4) lim-— it - t') = 0.

Moreover, the functions <bi(t)<p\l(t) (X = 1, ■ • • , n) are monotone non-increasing.

Further along in the text an important example of linear differential sys-

tems will be given for which conditions of Hypothesis 6.9 hold.
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If C=(ci,j) is a matrix of arbitrary constants with determinant | C\, dis-

tinct from zero, then

CX(t)

will constitute a matrix solution of (6.9a). With (6.9b), (6.9di) in view, we

form functions
m

*/:o(0  =  Z) Ci,TXr,j(t) (J =  1, ■ ■ " , «);
T=l

for a fixed i these functions will constitute a solution of (6.9a). Accordingly

(6.10) Xj-o(t) = Cixuj(t) + ■ • • + cmxm,j(t) (j = 1, ■ • • , n)

will constitute a solution of the linear system.

A solution of (5.1) will be obtained in the form of series

(6.11) Xj(t) = Xj:o(t) + Xf.lit) + • • • + *HS) + ■ ■ ■        (j = 1> • • ■ , »),

where

dx;-n

lj(t; x-.o) (j = 1, • • • , «),
dt

doc ji p

dt
h(t; X:,) + gjAt) U = 1. ■ • ■ . n; v = 1, 2, • • • );

here

(6.12) gLv{t) = qj(t; x-.,-i + z:„_2) — qj{t; z;v_2) f> = 1, 2, • • • ),

where z:_i = 0 and

Zfi, = Xj-.o + Xj-.i + ■ • ■ + Xi:v    [v > 0),        gj(t; Z;_i) = 0.

The notation above, for instance for /,•(/; x:v), is to be understood in the sense

that

lj(t'j  X;v)   —  lj(t\  X\\v, , Xnlv)'

If, with g/,»(0 is thought of as known, the       (j=l, • • • , n) will be

given by

n

(6.13) *j:,(/) = 2 ^'(t)xUt) (i = 1, • ■ • , *),
X-l

where

(6.13a) wx-v(t) = X I   gr,v(u)xr,\{u)du (X = 1, ■ ■ • , w),
T-l W
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provided that the integrals here can be evaluated(8). In determinant form the

xT,\ are given by

(6.13b) (- l)'+xAxr,x =

%1,T-1,  Xl,T+l,   ■   ■   ■, X\,n

*X-1,1>

XX+1,1,

Xn,lj

where A denotes the determinant

(6.13c)     A = I (xij(t)) I = 7 exp j  (fi.i(u) + • ■ ■ + pn,n{u))du.

The constants c%, • • « , C„ of (6.10) will be left arbitrary, except for the

inequalities

(6.14) I ct\ £ C„ (j = 1, • • • , m; c0 > 0).

We take Cn sufficiently small and to sufficiently great so that

x0*(t) = mco4>m(t) g \H,
r 2   —1 . 2

q0[mc0 + 2nnoC09  (t)<bm(t)(t — t')\ g 1 (w0 = (n/e')bq0m ),
(6.15)

and so that

(6.15a)

(6.15b)

x?{t) = nn0c0e  (t)<pm(t)(t - t') g 2 H,

(cf. (6.9d2)).

In this connection q0 is a constant, which according to Lemma 6.2 can be used

in (6.6) in place of qo(t); (6.15b) may be satisfied on noting that, in view of

(6.9d4), the constant b0 of (6.9d2) can be made arbitrarily small by taking t0

sufficiently great.

By (6.10), (6.14), (6.9b) and (6.9d)

(6.16) I Xj:o{t) I g mc0<pm(l) = x0*(t) (cf. (6.15)).

In consequence of (6.12) and of Lemma 6.1 (with qa(t) replaced by a con-

stant go)

*«:o) - qAt; o, • ■ • , o) I g qo(x0*(t)y,

(8) With the capital letters denoting matrices (of «2 elements'), it is observed that a matrix

solution of XU1 = XP+G may be expressed in the form X=WX0, where Z"' = X0P and

W^ = GXöl. This will yield (6.13), (6.13a).
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where x0*(t) is the function of (6.16). Accordingly, by (6.9c)

I I 2 2   2 1 —
I gT,i(«)*T,x(«) I g qom c0<bm(u) —— <p(u) (« St t0).

Thus, in consequence of (6.9d2),
2

I I 2 2 <Pm(U)
(6.17) I gT,i(«)*r,x(«) I g bq0m Co ———— •

0(w)<px(«)

Now
2 1+e' 2

<bm(u)(u — F) <t>m(u)(u — t') <bi(u)
(6.18) Jx(«) =

e(u)d>x(u) 6(u)4>i{u) 4>\{u)

The two factors in the second member above are monotone non-increasing for

wSt/', as follows from (6.9d3) and by the statement subsequent to (6.9d4);

the first member in (6.18) will have the same property. Hence

(6.19) h(u) g h{t) (for all u * ä hl cf. (6.18)).

From (6.17) on using (6.19) we derive

If I f" 2 2 <Pm(u)
I   gr.i(u)xT,\(u)du\ g I bqomco———— du

IJ«, \    Jt d(u)4>x{u)

—i—«'
I\(u){u — t') du

(6.20) J
2 2 / —1—e'

g bqom c0I\(t) I   (u — t') du

1 2 2 <p!»(/)(* - 0
= — 6g0w Co-———— •

e' 6(t)d>x(t)

In consequence of (6.13a) and (6.20)

x
w

l ™ I 7*'
'   (0  l    =     X        I gT,l(«)*T,x(«)d*

T=l I «7 00

2 <pm(<)(/ - t )

g n0Co-————
8(t)<t>x(t)

here n0 has the value assigned in (6.15). Hence, by virtue of (6.13) and (6.9b),

one has

I %iü I m £| wX,1(/) I I xx,,<0 I g nn0cld~\t)<pl(t)(t - f) = *f{j);
x=i

in this connection, we note, (6.15a) is satisfied.

In view of (6.12)
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g 1.2(f) = ffK'5 *it + z:o) — qi(t\ z:0) (z:0 = X-.q).

Thus, by Lemma 6.1,

I gf.t(t) I ̂  go[*o*(0 +

= öo mco + nnoCo-—- <Pm(t)xr(t).
L 6{t) J

Hence, in view of (6.15), |g,-,2(f)| = <Pm(t)x?(t).

Whence by (6.9c) and (6.9d2)

■                              I                     <Pm(u) — <pm(u)
I gr,2W*r.x(«) I g **(«) -—<p(u) g bxf{u)

<b\(u) d(u)4>\(u)

(6.21) 2 1+f.
2 (<Pm(u)(u-t'))    (<bm(u)(u - f) )

= bnn0c0<-> <->(« — t )
[      0(u)      ) \     0(«)*x(«) j

and, in consequence of (6.9d2),

11 2 — 1—t'
\ gr,2(u)xr,\(u) I £ bb0nn0Coh(u)(u — /') (cf. (6.18))

for mSt^o. This, together with (6.19), implies

J* gr,2(tt)*r,x(w)a'w

that is,

/gT, 2 («)*t,X (u)dU
00

Accordingly by (6.13a)

1 2
g — bbonnacoh(i)(t — t) ;

^ 1 . 2 *«(/)(* - O
g — bb0nn0ca-————

e' »(0*x(0

(6.22) I w '(t) I g tmsd—-—- (»2 = (l/e')bbonno),
0(f)<PxW

and, by virtue of (6.13),
2

(6.23) I *,.,«) I g 2| «/"'(fl I &(<) ̂ »Wo *"(f)(' ~ J = x*(2, <).
x=i 0(0

In view of the definition of w2, given in (6.22), comparison of (6.23) and

(6.15a) will yield

n

e

inasmuch as (6.15b) holds.

x*(2, t) = — bb0xf(t) g x}(t) = 2-1x1*(/),



290 W. J. TRJITZINSKY [September

Suppose that for some N > 2 we have

(6.24) I XfiM I g x*(t) = 2-<-1>x1*(z) (v = 1, • • • , N - 1),

where x*(t) is from (6.15a). It will be established by induction that (6.24)

takes place for v= 1, 2, • • • .

In view of (6.24)

I *w-*(.t) I ̂  I **•.»(<) I + • • • + I I ̂  *o*(0 4- xf(0
4- 2-1xi*W H-+ 2-<JV-3>x1*(f).

For N = 2 the last member above will consist of x0*(t) only. Thus

(6.25) I zm-2(t) I g *»*(*) 4- 2x?(t) = z*(t)

and, by virtue of (6.15), (6.15a), one has z*(t) gH.

From (6.12) (with v = N) and Lemma 6.1 it is concluded that

I gj:l?(t) \ = I qÄH 4" *:.!V-l) — qj(t; t-.M-4t) \ g ?<r(z* 4" X*)x*

here x*, z* are from the inequalities

■ i ^ ^ _fTV_2) Hi

I I £ *  = *.v-i(0 = 2        aci(0 (cf. (6.24)),

I iwM(<)| ^ 2* = z*(/) (cf. (6.25)).

Thus, by (6.15) and (6.15b)

I giAt) I ̂  ?o(*o*(0 + 2*f(ö)2-t»-»)xf(0

( 2 #»(<)(< - Ol
(6.26) = 9o<wco 4- 2wM0co-\4>m(t)2-<»-»x?(t)

I 0(0 J

g 2-<*-2V»M*i*(0-

In view of (6.26) and (6.9c)

I grAu)XrAu) I   £  2-W-«*1*(«) ̂ ^*(«).

The second member, here, is equal to the second member of (6.21), multiplied

by 2_(JV_2). Carrying out the steps from (6.21) to (6.22), with the indicated

modification, from (6.13a) it is deduced that

2

-iS—t) 2  <t>m(i)(t — t)
(6.27) J* gr,N(u)xT,},(u)dtIS 2 MW2C0

6(t)4>x(t)

With the aid of (6.13) (for v = N) from (6.27) one finds

2

I      .. I     -<*-« 2   2 4*(00 — *)
I *£»(*) |^2       w n2c0-—-

6{t)
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Substituting the expression w2 from (6.22) and making use of (6.15b), one

obtains

2

I , . I    '      -(W-l) 2 4>m{t){t — t') -CV-1)   * 0
I Xj:N(i) I g 2       nn0c0-—-       = 2        xi (t) = xN(t)

0(0

for t^t0.

Thus, by induction it has been established that (6.24) holds for all v = 1,2, ■ ■

Turning now to the series (6.11) and recapitulating the inequalities

(6.28) I x,:0(0 I g mco4>m(t) g 2~1B,    \ Xj:,(t) \ g 2-<"-1W(0

t* = 1, 2, • • • ),
where

2

*, 2 4>m(t)(t — t') _2
(6.28a) Xi (0 = «c0-g 2  H (« = «»0)i

0(0

we obtain

00

(6.29) I x}(t) - x,:0(0 I ̂  E 2rl*~nxm = 2xf(t) (g \H).

Theorem 6.1. Consider the nonlinear differential system (5.1) [cf. (6.1),

(5.1b), (5.1c), (5.3), (6.2)] under Hypotheses 6.5, 6.9; it is supposed that on

making use of Lemma 6.2, the function q0(t) (cf. (6.6a)) involved in (6.6) has

been replaced by a constant qa. The series (6.11), with integrations suitably per-

formed, will be convergent for t^t0 and will represent functions Xj(t) — ■ ■ -,n)

constituting a solution of (5.1). This solution is approximated by the solution

*,:o(0 (i = 1, •••,«; cf. (6.10))

of the linear problem. The approximation is in the sense indicated in (6.29)

[(6.28), (6.28a)]. The

x,{t) (j = 1, • • • , n)

contain m arbitrary constants a, • • • , cm, subject to inequalities

\ Ci I g c0 (i = 1, • • ■ , m; c0 > 0).

The numbers c0, to are to be chosen according to the italicized statement in connec-

tion with (6.15)-(6.15b).

Note. The above developments hold in their essential features when com-

plex values are admitted and t is restricted to a ray. It is also observed that

results of the type given in Theorem 6.1 will continue to hold when the hy-

potheses on the qi{t; x) (in (5.1b)) are somewhat lightened; in establishing
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Theorem 6.1 we have not used the fact that

lim r'f'   ',n{t; x) = 0     (as x\ + ■ • ■ + xl —> 0).

The hypotheses originally given, however, are necessary for certain significant

further investigations regarding some questions of interest in dynamics.

With a view to an important application of Theorem 6.1 let us consider

the following case. After reducing q0(t) in (6.6a) to a constant go, using if

necessary a transformation indicated in Lemma 6.2, suppose that the linear

problem (6.1) presents the classical "irregular singular point" problem, with

the singular point at i= » ; that is, suppose that the pi,,;(/) in (6.1) are func-

tions, which at least on the interval (to, +00) are asymptotic (at /=-|-°o)

to series (possibly divergent) of the form

3*''"[ao + aix-1'" + ■ • • + a^-'i' + ■ • • J (integers k (> 0), //)•

This, of course, would include constants, polynomials, rational functions, as

well as functions analytic in the complex /-plane for 1t\ Siro>0 and, possibly,

having a pole at 2 = a>. With regard to the analytic theory of the problem of

the "irregular singular point" (for linear differential equations) it is to be said

that a complete solution from various points of view has been given by W. J.

Trjitzinsky?).

On taking account of the developments given in (T) and of (6.13b), (6.13c)

it may be shown that, except for (6.9di)-(6.9d4), all the conditions of Hy-

pothesis 6.9 can be made to hold with the following meaning of the symbols

involved. We take t0 (>0) sufficiently great; the <pi(t) are certain functions

of the form

4>i(t) = {exp \jkJPl* + fan-it**-1*1" H-+ fait1"]}r-Y

(6.30) [y > 0; ft, <piiV real; integers p (> 0), p (> 0);

p = integral multiple of k];
<p(t) is given by

(6.30a) j>(t) = y"t" (some a ^ 0; y" > 0).

With to suitably great and the <pi(t) suitably ordered, not only will condi-

tions (6.9b), (6.9c) be satisfied for a certain matrix solution X(t) of (6.9a),

but also (6.9d) as well as the condition stated subsequent to (6.9d4) will be

satisfied. Now the remaining relations (6.9di)-(6.9d4) will not hold, with

(6.31) t' = 0,      6(t) = r«,

(') W. J. Trjitzinsky, Analytic theory of linear differential equations, Acta Mathematica,

vol. 62 (1934), pp. 167-226, in the sequel referred to as (T).

W. J. Trjitzinsky, Laplace integrals and factorial series in the theory of linear differential

and linear difference equations, these Transactions, vol. 37 (1935), pp. 80-146.
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in every case; however, (6.9di)-(6.9d4) will take place in an extensive

variety of cases. By (6.30)

*<(<) = 7'tri exp + trusty))],

where the |ßi(0| are uniformly bounded. Having arranged (6.9d), necessarily

<Pl,M — <t>2,u <     ■ ■   < <p„i(1,

if we have yii>0. To insure (6.9di) it suffices to have

(6.32) </»!,„ g        g 0m,„ < 0.

Under (6.32) conditions (6.9dx), (6.9d4) will hold. Finally, (6.9d3) will be se-
cured (with to sufficiently great) provided that in addition to (6.32) one has

(6.33) 2<bmiU < fa,,*

The truth of the latter statement follows from the fact that

k**-***H*y exp {t»i"[(2<pm,ß - 4>iJ + P**ßi.M)

is equal to the first member in (6.9d3), except for a constant factor, |j8i,m(/0|

being uniformly bounded.

It is observed that, if (6.32) holds for some m^l, we shall have (6.33)

satisfied at least for m = l. Accordingly, it is noted that if in (6.30) at least one

<pi,ß, say (pi,u, is negative (while p/p>0), all the conditions of Hypothesis 6.9

will be satisfied (with functions (6.30)-(6.31)) on the interval

(to, + 00) (h suitably great).

With (6.32), (6.33) valid for some m^l, the solution

Xj(i) (j = 1, • • ■ , n)

of the nonlinear problem (5.1), referred to in Theorem 6.1, will be approxi-

mated by the solution xj:o(t) (j=l, • • • , n) of the linear problem as follows:

I    / \ i 22/ \ 1+01
I Xj(t) — Xj-.o(t) \ g 2nco<pm(t)t

= n0Cot exp

[t S: t0; I ßm(t) I g ßm < °o ; constant n0 > 0; <bm,u < 0];

here

I Xj:o(t) \ g mc0(bm(t)      (J « 1, - - • , »5 cf. (6.30)).

If n/p>0, approximation results of essentially the above type are obtained

in all cases for intervals, extending to infinity, along suitable rays

angle of t = constant,
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provided that on those intervals the nonlinear component of the problem is of the

type which we specified above.

We shall have p/p>0, whenever the singularity, at /= », of the linear

problem is formally irregular.

University of Illinois,

Urbana, III.,

The Institute for Advanced Study,

Princeton, N. J.


