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1. Introduction. Classical differential geometry is the metric theory of eu-

clidean 3-space P3. Its generalization, Riemannian geometry, is the metric

theory of an »-dimensional Riemannian manifold^) V„. On the whole, the

development of these geometries has proceeded in two main directions. Natu-

rally these two directions are not mutually exclusive; occasionally they over-

lap in the common development of some subject.

One approach is the study of the metric transformations of the manifolds

as a whole upon each other. This is the intrinsic theory of the space. In classi-

cal geometry, this point of view yields rather meager results since the intrinsic

theory of R3 is almost synonymous with the discovery of the complete group

of motions in R3. In Riemannian geometry, the intrinsic theory has consider-

ably greater significance. The discovery of the process of covariant differ-

entiation with respect to the first fundamental form of Vn and of the Riemann

curvature tensor of Vn are important milestones in the development of this

theory. This approach reaches its culmination in the fundamental theorem

which states the conditions under which two Riemann spaces are isometric.

The other approach is the study of curves, surfaces and other subspaces

and configurations in the enveloping R3 or V„ and their behavior when the

Presented to the Society October 28, 1939; received by the editors April 11, 1940, and, in

revised form, March 27, 1941.

(l) We denote an «-dimensional Riemann space, Einstein space, euclidean space and a

space of constant curvature by Vn, En, Rn and Sn respectively.
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enveloping manifold undergoes any metric transformation. In its most com-

mon development today, this study is based upon the process of covariant

differentiation. As is well known, by repeated use of this type of differentia-

tion, a system of Frenet equations of the subspace is obtained. These equa-

tions involve a number of metric geometric objects(2) : the (« — 1) curvatures

and arc length for curves, the coefficients of the first and second fundamental

forms for hypersurfaces, and so on. These geometric objects constitute the

foundation upon which the detailed geometry of curves, surfaces and sub-

spaces is built.

Classical differential geometry concerns itself almost exclusively with this

second approach and a very considerable portion of Riemannian geometry

has also evolved in this direction. The development of conformai Riemannian

geometry, however, presents a different picture. Here the main emphasis has

been upon the intrinsic conformai theory of the manifolds; that is, the in-

vestigation of the conformai transformations of Riemann spaces as a whole

upon each other. This point of view is maintained in the early papers of

Weyl(3) and Schouten(4) on conformai Riemannian geometry which mark the

modern beginning of that subject. The fundamental conformai curvature

tensor is discovered in these papers and is used in order to obtain a complete

characterization of conformally euclidean Riemann spaces. These results are

a continuation of classical theorems such as the theorem of Liouville on the

conformai transformations of R3 on itself.

The central problem of the intrinsic theory is the question of the conformai

equivalence of Riemann spaces F„. In order to effect a solution of this prob-

lem, T. Y. Thomas has considered the conformai tensor ga/g11" where g„ is

the metric tensor of F„ and g is the determinant | g,y|. This tensor remains

invariant under conformai transformations of the metric tensor of V„. The

Christoffel symbols(5) formed with respect to this tensor (called the conformai

parameters) have a complicated law of transformation under coordinate

transformations and one cannot define a simple covariant derivative of ten-

sors by means of these parameters. However, by formal methods based upon

(2) By a geometric object we mean an abstract object having a unique set of components,

depending on the coordinates and their differentials to a specified order, in any coordinate

neighborhood of the manifold. Hence the law of transformation of the components under co-

ordinate changes must be transitive.

(3) H. Weyl, Reine Infinitesimalgeometrie, Mathematische Zeitschrift, vol. 2 (1918), pp.
-384^11.

(4) J. A. Schouten, Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit

quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung,

Mathematische Zeitschrift, vol. 11 (1921), pp. 58-88.

(6) These Christoffel symbols were first defined by J. M. Thomas in another way. Cf.

J. M. Thomas, Conformai invariants, Proceedings of the National Academy of Sciences, vol. 12

(1926), pp. 389-393.
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the conformai parameters, it is possible to obtain a solution to the conformai

equivalence problem for Riemann spaces (6).

The investigations of conformai Riemannian geometry by Cartan(7) and

Schouten(8) affords another method for the development of this subject. This

method depends upon the introduction of (» + 2) homogeneous coordinates

(the generalization of tetracyclic and pentaspherical coordinates) into the

local euclidean space Rn of the V„. Still another path for the study of in-

trinsic conformai geometry is indicated by the recent results of Schouten and

Haantjes(9) which suggest a projective treatment of conformai geometry.

Thus there exists a variety of general methods for the development of the

intrinsic conformai theory of Riemann spaces. While this formal intrinsic the-

ory is complete, the conformai theory of configurations in a Riemann space

has been largely neglected. This fact is all the more remarkable when one con-

siders that such a theory would always have real significance whereas this is

rarely the case for the corresponding metric theory of configurations in a gen-

eral Vn. To illustrate this point, we note that while a curve in a general Vn

has («—1) curvatures which are metric invariants, these invariants are not

very meaningful if the Vn does not admit any metric transformations other

than the identity (as is usually the case). This state of affairs is never en-

countered in the conformai theory of configurations since every V„ always

admits an infinite number of conformai mappings on conformally equivalent

Riemann spaces.

One of the earliest results belonging to the conformai theory of configura-

tions in Vn is the theorem which states that the lines of curvature of a hyper-

surface of Vn remain invariant under conformai transformations of Vn, first

proved for a general Vn by Schouten and Struik(t0). They also proved a con-

siderable number of similar results, some of which are not purely conformai

theorems since they depend upon metric properties of the configuration and

upon the particular conformai transformation to which the V„ is subjected.

(6) T.  Y.  Thomas,   The Differential Invariants of Generalized Spaces,   1934, chap.  4.

O. Veblen, Formalism for conformai geometry, Proceedings of the National Academy of Sciences,

vol. 21 (1935), pp. 168-173.
(7) E. Cartan, Les espaces à connexion conforme, Annales de la Société Polonaise de Mathé-

matique, vol. 2 (1923), pp. 171-221.

(8) J. A. Schouten, On the place of conformai and projective geometry in the theory of linear

displacements, Proceedings, K. Akademie van Wetenschappen, Amsterdam, vol. 27 (1924), pp.

407-424.
(') J. A. Schouten and J. Haantjes, Beiträge zur allgemeinen(gekrümmten) konformen Differen-

tialgeometrie. I, II, Mathematische Annalen, vol. 112 (1936), pp. 594-629; vol. 113 (1936),

pp. 568-583.
(l0) J. A. Schouten and D. J. Struik, Un théorème sur la transformation conforme dans la

géométrie différentielle à n dimensions, Comptes Rendus de l'Académie des Sciences, vol. 176

(1923), pp. 1597-1600. Also cf. J. A. Schouten and D. J. Struik, Einführung in die neueren

Methoden der Differentialgeometrie, vol. 2, 1938, pp. 199-215 for this topic as well as a general

discussion of conformai Riemannian geometry.
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The recent investigations of Sasaki(u), Modesitt(12), and the author(13) are

of this general character. The papers of Kasner(14), Lipke(15), Schouten(16),

and the writer(17) on conformai geodesies (natural families of curves) also

belong in this category.

A number of investigators have used the formal methods which were de-

vised to obtain a solution of the equivalence problem in the conformai in-

trinsic theory, in order to develop a conformai theory of curves and other

subspaces. Among these developments are the results(18) of Sasaki(19) and

Yano(20). The formal apparatus used in these papers is necessarily quite com-

plicated because their methods follow those used in the intrinsic theory. The

various derivatives which have been devised for the development of the in-

trinsic theory have a strongly formal character and their structure is more

complicated than that of ordinary covariant differentiation.

But while this formal apparatus may be inevitable in the case of the in-

trinsic theory, it is not essential for the development of the conformai theory

of a subspace. For the subspace introduces additional structure into the

Riemann space Fn by means of which we find a relative conformai scalar(21)

at points of the subspace. By means of this relative conformai scalar, it is

possible to define a new simple type of differentiation (with respect to the

subspace) which plays a role analogous to ordinary covariant differentiation

in metric Riemannian geometry. This differentiation process enjoys all the

usual properties of covariant differentiation as well as a number of others

which give it its distinctive conformai character.

(11) S. Sasaki, Some theorems on conformai transformations of Riemannian spaces, Proceed-

ings of the Physico-Mathematical Society of Japan, (3), vol. 18 (1936), pp. 572-578.

(12) V. Modesitt, Some singular properties of conformai transformations between Riemann

spaces, American Journal of Mathematics, vol. 60 (1938), pp. 325-336.

(13) A. Fialkow, Conformai transformations and the subspaces of a Riemann space, Bulletin

of the American Mathematical Society, abstract 43-9-328.

(u) E. Kasner, Natural families of trajectories: conservative fields of force,'these Transactions,

vol. 10 (1909), pp. 201-219.
(ls) J. Lipke, Natural families of curves in a general curved space of n dimensions, these

Transactions, vol. 13 (1912), pp. 77-95.

(16) J. A. Schouten, Über die Umkehrung eines Satzes von Lipschitz, Nieuw Archief voor

Wiskunde, vol. 15 (1928), pp. 97-102.
(17) A. Fialkow, Conformai geodesies, these Transactions, vol. 45 (1939), pp. 443-473.

(18) Possibly the work of Hlavaty also belongs in this category. These papers are not ac-

cessible to the writer. Cf. V. Hlavaty, Zur Konformgeometrie III, Proceedings, K. Akademie van

Wetenschappen, Amsterdam, vol. 38 (1935), pp. 1006-1011.

(19) S. Sasaki, On the theory of curves in a curved conformai space, Science Reports of the

Imperial University of Tokyo (1), vol. 27 (1939), pp. 392-409; On the theory of surfaces in a

curved conformai space, ibid., vol. 28 (1940), pp. 261-285; Geometry of the conformai connexion,

ibid., vol. 29 (1940), pp. 219-267.
(20) K. Yano, Sur la théorie des espaces à connexion conforme, Journal of the Faculty of

Science, Imperial University of Tokyo, vol. 4 (1939), pp. 40-57.

(sl) This term is defined in §2.
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By "conformai differentiation," we arrive at a sequence of normal vector

spaces and fundamental forms for the subspace which are unchanged by con-

formal transformations of VH. These "conformai fundamental forms" con-

stitute the foundation upon which a detailed conformai geometry of subspaces

may be built. Formally, this entire theory is considerably simpler than the

previous investigations of conformai Riemannian geometry, its technical as-

pects being no more involved than those of the ordinary metric geometry of

Riemann spaces. While we are concerned with the same general subject as

that dealt with by Sasaki and Yano, there is no actual overlapping either of

results or of methods. We note, however, as is shown in §15, that our results

may be used to develop a conformai theory of curves based upon the con-

formal tensor ga/glln which is formally analogous to the investigations men-

tioned above.

In the present paper, we develop the foundations of the conformai theory

of curves, reserving the treatment of other subspaces for later publication(22).

We note that this separate treatment is not prompted by pedagogic reasons;

alone, but is a natural separation. For in our development of the conformai

geometry of a subspace of V„, two mutually exclusive cases arise which must

be treated separately: (1) curves and (2) subspaces whose dimensionality ex-

ceeds one.

It is well known that there is a metric (congruence) theory of curves in

the plane but no conformai theory. That an analytic curve can have no con-

formal properties follows from the theorem : Every analytic curve tn the plane

is conformally equivalent to a straight line. It is the object of this paper to show

that a conformai theory of curves does exist in any Riemann space whose

dimensionality exceeds 2 and to develop this theory. Accordingly, we study

those properties of a curve which remain unchanged when the enveloping

Riemann space F„ of dimensionality « > 2 undergoes any conformai mapping,

not necessarily on itself.

The principal tool is a new kind of tensor differentiation which has

conformai meaning—"the conformai derivative." By systematic use of the

conformai derivative we derive the conformai analogues of the ordinary

(metric) Frenet equations. We find « — 1 differential "conformai curvatures"

-iii Ji, ■ ■ ■ , Jn-x and an integral "conformai arc length" S which are un-

changed by any conformai transformation of the Riemann space. This means

that if Vn*-+Vn, C<^>C by a conformai map, then the J's are the same functions

of S for C and C.
The converse holds in spaces which are conformai to a euclidean space.

(22) Some of the principal results in the curve theory are stated without proof in a previous

note having the same title as the present paper which appeared in the Proceedings of the Na-

tional Academy of Sciences, vol. 26 (1940), pp. 437—439. Corresponding results in the conformai

theory of a subspace appear in two abstracts in the Bulletin of the American Mathematical

Society, abstracts 46-11-487 and 47-3-156.
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In this case, we have the fundamental conformai equivalence theorem: If Vn

and Vn are conformai to a euclidean space and the J's for both C and C are the

same functions of S, then a conformai mapping exists for which F„<-»F„, C<->C.

This is the conformai analogue of the metric congruence theorem which holds

in a euclidean space and in a space of constant curvature.

We also prove the existence theorem : 7« awy F„, a curve exists for which

the J's are preassigned continuous functions of S. This curve is uniquely deter-

mined by a set of initial conditions which is found explicitly.

The conformai curvatures of a curve C in F„ have rather simple geometric

properties if VH is conformai to an Einstein space or, more particularly, to a

euclidean space. Thus if Vn is conformally euclidean then Ja = Q (1 ect¿n~2)

if and only if C is conformally equivalent to a curve in a euclidean n-space

whose (a + l)st metric curvature vanishes. Another example: If Vn is conformai

to a euclidean space then the n — 1 conformai curvatures of a curve and their

derivatives with respect to the conformai length constitute a complete set of con-

formal differential invariants of the curve.

If « = 2, the results of this paper apply if the conformai transformations

are restricted to mappings applied to spaces of constant curvature which are

similar to and include the inversive transformations of the plane.

While the results of this paper bear a close analogy to those which hold

in the metric theory, in some cases the proofs are markedly different. Thus,

the first of the "conformai Frenet equations" is not obtained, as in the classic

case, by differentiating the unit tangent vector. For it will be seen later that

the conformai derivative of the unit tangent always vanishes identically. As

another important point of difference, we note that only « — 2 of the conformai

curvatures occur as coefficients in the conformai Frenet equations. The

(w— l)st conformai curvature, while as essential as the other curvatures, is

found in an entirely different way and does not have the same properties as

the others.

These essentially novel features which distinguish the conformai geometry

of curves from the metric geometry are also present in an analogous form ¿n

the corresponding theory for any subspace. For example, a hypersurface has

three "conformai fundamental forms" instead of the anticipated two forms

and four sets of integrability conditions instead of the classic Gauss-Codazzi

equations. Furthermore, the conformai behavior of subspaces whose dimen-

sionality is at least 4 is typical, while the cases of dimension number 3, 2,

and 1 respectively are increasingly degenerate. There is no corresponding ana-

logue in the metric theory.

As an important special case, this theory obviously includes the "natural

geometry" of curves in euclidean «-space under the continuous group of con-

formal mappings of the euclidean space upon itself. The transformations of

this group are the products of inversions with respect to a hypersphere, mo-

tions and transformations of similitude  (Liouville's theorem). This means
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that our results constitute the inversive theory of curves when applied to this

continuous group of transformations of a euclidean space. In particular, the

curves along which all the conformai curvatures are constants are the paths of the

inversive group.

A detailed inversive geometry of plane curves and of curves and surfaces

in 7?3 has been developed by Thomsen, Blaschke and Takasu in their books

on conformai differential geometry(23). Their investigations constitute a the-

ory of curves and surfaces in R2 and 7?3 which is complete in its essential

parts and anticipates many of our results for this important but special case.

However, their methods depend upon the systematic use of tetracyclic and

pentaspherical coordinates and therefore differ completely from the methods

which are employed here. The inversive theory of plane curves has also been

developed by a number of other writers using still different methods.

We note that the subject of this paper is also somewhat connected with

the "natural geometry" of a curve associated with any group of transforma-

tions of the plane into itself. This theory was originated by Pick(24) and has

subsequently been developed by Kowalewski(26) and his students.

2. Riemann spaces conformai to V„, conformai tensors. Let Vn be a real

Riemann space whose coordinate manifold is of class (26) Cm and whose

real metric tensor, defined over the manifold, is positive definite(27) and of

class Cm_1 with m = l. Briefly, we say F„ is a Riemann space of class(28) Cm.

(23) W. Blaschke and G. Thomsen, Vorlesungen über Differentialgeometrie, vol. 3, 1929;

T. Takasu, Differentialgeometrien in den Kugelräumen, vol. 1, 1938.

We are obliged to a referee for these references. Due to our unfamiliarity with tetracyclic

and pentaspherical coordinates, it is difficult for us to determine precisely the extent to which

duplication of results occurs. In general, these books would appear to contain most of our theo-

rems for curves in Ri and for curves and surfaces in R3 under the inversive group. These books

also contain other results on the detailed inversive'geometry of R2 and R¡ which lie beyond the

scope of our present investigations. These references have been incorporated into the revision of

the introduction and we have also included references to a number of papers which have ap-

peared since this paper was first written.

(24) G. Pick, Natürliche Geometrie ebener Transformationsgruppen, Sitzungsberichte der

Académie der Wissenschaften, Vienna, vol. 115 (1906), p. 139.

(25) G. Kowalewski, Vorlesungen über allgemeine natürliche Geometrie und Liesche Trans-

formationsgruppen, 1931, chap. 3.

(M) The definitions of the class of a coordinate manifold and of a Riemann space are based

upon the discussion which appears in the paper by T. Y. Thomas, Recent trends in geometry,

American Mathematical Society Semicentennial Publications, vol. 2 (1938), pp. 98-99, 104. In

particular, if the coordinate manifold is of class Cm, then the admissible coordinate systems are

related to each other by transformations of class Cm.

(27) The greater part of the following discussion and of the results of the paper will hold even

if the metric tensor is indefinite provided that it is not singular. The only real novelty arises

when a vector is a null vector. We shall not consider the indefinite case.

(28) we shan assume the reality, existence and continuity of whatever functions occur in

the proofs. At the outset of the proof of an important theorem we shall simply indicate sufficient

conditions for the satisfaction of this assumption in order to avoid frequent interruptions of the

discussion for essentially non-geometric matters.
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Suppose(29) {x*} are admissible real local coordinates in a coordinate neigh-

borhood of any point of F„. In each coordinate neighborhood, we write the

first fundamental form of F„ as

(2.1) ds2 = gijdx^x'.

Since the results of this paper are local theorems which hold for a sufficiently

small neighborhood of a point we shall restrict ourselves to a portion of F„

which is a neighborhood U(P) of a point P coverable by a single coordinate

system {x*}. We shall refer to U(P) as the Riemann space F„ and use similar

language in connection with other Riemann spaces which appear in the paper.

Let(30) Vn be a real Riemann space of class Cm whose first fundamental

form may be written as

(2.2) ds2 = gijdx'dx'

where {x*} are allowable local coordinates. Then(sl) F„ is conformai to F„ by

means of a transformation of class Cm (briefly : F„ is conformai to Vf) if a one-

to-one point transformation 7 exists between the points P of V„ and the

points P of Vn which may be written (locally) as

(2.3) x{ = x^x1, x2, • • • , x"),        xi = x'(xl, x2, • ■ • , x")

so that the real functions

¿'(x1, x2, • • • , xn), x*(xl, X2, • • • , x")

are of class Cm and

(2.4) ds = e'ds

at corresponding points. It follows that a(x') is a real function of class Cm~1

and that the form (2.2) is positive definite. We refer to a(x{) as the conformai

mapping function of V„ on F„, or briefly, as the mapping function. Whenever

we say that F„ is conformai to F„, it is to be understood that the conformai

transformation is of class Cm.

The transformation 7 may be written in the simple form

(2.5) x*' = xl

after a suitable change of coordinates. For if we transform the coordinate

(29) Throughout this paper the indices h, i, j, k have the range 1, 2, ■ • • , n. It is to be under-

stood that a tensor equation in which an index is not summed is valid for each value of the index

within its range. A covariant or contravariant index which appears twice in an expression is to

be summed over the appropriate range.

(30) We denote a Riemann space conformai to Vn by V». Thus En and Rn signify spaces

which are conformally equivalent to an Einstein space and a euclidean space respectively. A

geometric object in Vn corresponding to the geometric object F in V„ is denoted by F.

(31) This clause may obviously be replaced by " Vn is conformai to Vn by means of a trans-

formation of class O."
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neighborhoods of F„ according to (2.3) considered as an admissible coordinate

transformation, points in Vn and Vn with the same coordinates correspond

and the conformai transformation becomes (2.5). Throughout this paper, un-

less a contrary assumption is explicitly made, we shall always assume that

coordinate systems have been chosen so that (2.5) holds. In these coordinate

systems,

(2.6) ga = e2°gij,        ¿a = e-2*^

where g" and f *' are the contravariant components of the metric tensors. Con-

versely, if (2.5) is a point transformation of the points of F„ and F„ and (2.6)

holds at corresponding points where the mapping function a(x') is a real

function of class Cm_1, it follows that F„ is conformai to F„.

The problem of the conformai equivalence of Riemann spaces leads quite

naturally to the study of the conformai Riemann space VH. The conformai

Riemann space V„ of class Cm is a space whose coordinate manifold is of

class Cm and whose fundamental geometric object, defined over the manifold,

is the set of all second order, symmetric, positive definite tensors of class O-1,

(2.7) {e^gi,},

any two of which are equal except for a positive multiplicative scalar factor

of class Cm~1. The conformai tensor gij/gVn constructed from any tensor giS be-

longing to (2.7) is independent of the particular tensor which is chosen. For

this reason, T. Y. Thomas(32) has defined the conformai Riemann space Vn by

using this tensor instead of the set (2.7) as the fundamental geometric object

Of Vn.

It is natural to associate the set of all conformally equivalent Riemann

spaces

(2.8) {Vn)

of class Cm whose metric tensors (in some allowable coordinate system) be-

long to (2.7) with the conformai Riemann space Vn. Indeed, as is easy to see,

the geometric properties of Vn (which are independent of the factor e2") are

conformai properties of the set of Riemann spaces (2.8). Throughout this

paper, whenever we refer to the conformally equivalent Riemann spaces Vn,

Vn, it will be understood that these spaces are a»y two spaces of the set of

conformally equivalent Riemann spaces (2.8).

The above discussion shows that, formally, our conformai theory of curves

is the theory, under the identity transformation, of a curve and an enveloping

coordinate manifold on which is defined a second order, symmetric, positive

definite tensor up to a positive scalar multiplicative factor. It is shown in §15,

that our results may be used to develop a conformai theory of curves which

is based directly on the conformai tensor g,,/g1/n.

(32) j. y. Thomas, loc. cit., p. 119.
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Let T^'.'.'/j" be components of a tensor at a point P of F„ whose values

depend upon geometric objects of F„ and of its subspaces (33). Let F„ be any

Riemann space conformai to F„ and let T^'.Y.)' be the components of the

tensor at P whose values depend in the same way upon the corresponding

geometric objects of F„ and its corresponding subspaces. Then if (2.6) holds

and

(2.9) r,¡...,; = ({)r¿...¡

we call Tp'.l'.j' a relative conformai tensor of weight u. The law of transforma-

tion of TpY.'.j* between any two Fn as well as between any two coordinate

systems is consistent. If u = 0, the tensor has the same components in F„

and Vn- In this case, we call T}'.'.$m a conformai tensor. If u=v — w, we say

that 7)'.'.'.']- is a conformetric tensor. As will be seen below, these latter tensors

have both metric and conformai properties.

Under the assumption that a relative conformai scalar Q exists in F„, one

may construct a conformetric tensor or a conformai tensor corresponding to

every relative conformai tensor. More generally, under the same assumption,

if TjK'.'j" obeys (2.9), one may construct a corresponding relative conformai

tensor which satisfies an equation like (2.9) with u replaced by an arbi-

trary u'. For suppose that the transformation law(34) of Q is Q = e"Q. Then

Q"'-"- T)\'.'.)•" is a relative conformai tensor which satisfies (2.9) with u re-

placed by u'. We note that every relative conformai tensor (including con-

formetric tensors) is the product of a conformai tensor by a relative conformai

scalar.

As a consequence of our definitions it follows that if the components of

a relative conformai tensor are zero in V„, they are zero in any F„. This fact

permits us to write conformai tensor equations which retain their meaning

under conformai transformations. The sum, difference, inner and outer prod-

uct of conformetric tensors (conformai tensors) is also a conformetric tensor

(conformai tensor).

If X' is a conformetric contravariant vector, the condition (2.9) becomes

\i = e~a\i. It follows that the direction of X* in F„ coincides with the direction

of X* in Vn. Since |,,XiXî' = g,AiX'', the length of X* remains unchanged under

any conformai mapping. Thus X' has a conformally invariant direction and

(metric) length. Conversely, any vector for which this is true must be a con-

formetric vector. If the length of a conformetric vector is unity, then the

vector is called a unit conformetric vector. Any conformetric scalar is a con-

formal scalar or invariant. It is easy to show that any conformetric tensor

(M) Examples of such geometric objects which will be used in this paper are: the metric

tensor g¡,, the Christoffel symbols of the second kind, the unit tangent and principal normal of

a curve.

(34) There is no loss of generality in this assumption, for if Q = {e°)i-Q, the relative con-

formal scalar | Q\ '" has the desired transformation law.
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which is not a scalar (and only these tensors) may be represented in the usual

way(35) by means of adjoint w-beins of conformetric vectors. As follows from

(2.6), gij and g{' are conformetric tensors. Hence the indices of any con-

formetric tensor (but not of a conformai tensor) may be raised or lowered

using gij, gi¡ in the usual way and the result will be a conformetric tensor.

In this paper, we consider the conformai geometry of a curve in V„. The

curve introduces additional structure into F„, by means of which a relative

conformai scalar is found at points of the Curve. In view of the existence of

this relative conformai scalar, one may find a conformai vector corresponding

to any conformetric vector, and conversely. Thus it is chiefly a matter of con-

venience whether we use conformetric vectors or conformai vectors. Our work

is based upon unit conformetric vectors. The "conformai derivative" of such

vectors is somewhat simpler than the "conformai derivative" of conformai

vectors. However, we note that the analogous conformai theory of any sub-

space whose dimensionality exceeds one is developed by the use of conformai

tensors.

3. The conformai derivative. We suppose that the class, defined in §2, of

any two Riemann spaces F„ and F„ belonging to (2.8), is at least 2, that is,

m = 2. Then it follows from (2.6) that (36)

(  i ) (i) i i ih

(3.1) <     > = <     > + Ojcr,k + 5k0-,j - gjkg <r.h

where

jk)' \jk)

are the Christoffel symbols of the second kind for F„ and V„ respectively. Let

xi = x'(z)

represent a real curve C in V„. Let dx{/dz 9*0 at each point of this z-interval

for at least one value of i. We also suppose that the functions x{(z) are of

class Cp where p is a fixed integer subject to the inequalities

(3.2) m = p = 2.

Then it is easy to show that s = s(z) is an allowable change of parameter

where 5 is an arc length parameter determined up to an additive constant

and a choice of sign. Hence the equation of C may be written as(37)

(35) A. Duschek and W. Mayer, Lehrbuch der Differentialgeometrie, vol. 2 (1930), pp. 14-15.

(36) The comma denotes covariant differentiation with respect to the x's and the form (2.1)

and the ay are the Kronecker deltas.

(") Note that x*(z) and x'(s) are different functions of their respective variables. This re-

mark also applies to the functions x'(z) and x'(~s) which are defined below.
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x' = x'(s), ai < s < bi,

where x'(s) are of class C. Then the unit tangent v' and the principal normal

p' are given by

dx*
(3.3) vl =-,

ds

d2xi        { i ) dx> dxk

(3.4) p¡ =-+ <^     }-
ds2 \jk)  ds    ds

The curve C in F„ which corresponds to C under the conformai trans-

formation (2.5) is

x* = x'(z)

where x'(z) and x'(z) are the same functions of z and corresponding points

have the same value of z. The conditions (3.2) also apply to C. As shown

above in the case of C, the curve C may also be referred to an arc length

parameter S and written as

x¡ = x;(s), äi < s < bi.

Naturally the points for which s = S do not correspond since metric arc length

is not a conformai parameter. The unit tangent v{ and the principal normal fi'

of C are given by equations similar to (3.3) and (3.4). From these equations

and (2.4), (2.6), (3.1), (3.3) and (3.4), we find tha.t

(3.5) V = er'v\

(3.6) fi'= e-2'^ - o-,h(gih - vW)].

The tensor gih — piph is the projection tensor(38) of the vector space orthogonal

to v\ If we write ¿u, and fii for the covariant components of the principal nor-

mals, Pi=gijP', ßi=gijfi' and it follows from (2.6) and (3.6) that

(3.7) fii  =  Pi  —  <T,i + ff,kVkVi

where v, is the covariant tangent defined by Vi=gijvi.

Let X*(¿) be the components of a conformetric contravariant vector of

class Cl defined along C where t is any (not necessarily allowable) conformai

parameter along C related to z (or s) by a parameter transformation of class

C1. Then dx'/dt exists and is continuous. Since X' is a conformetric vector,

(3.8) V = e-*X¡.

We write the absolute derivative with respect to / and the form (2.1) of this

vector as DK/Dt so that

(38) Duschek-Mayer, loc. cit., pp. 44-45.
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D\l      âV        ( i)      dxk

(3.9) -=-+\      \\b-
Dt        dt (hk)       dt

If we write the analogous equation for D\'/Dt and simplify by the use of

(3.1), (3.8) and (3.9), we obtain

75\¡ VDX1 dxi dxk H
(3.10) — = er>-+ a,h\h-ghk\h-gi¡o,i   .

Dt \_Dt dt dt J

We substitute the values for a,h and ajg{' which are obtained from (3.6) and

(3.7) in (3.10) and simplify the resulting equation by the use of (2.4), (2.6),

(3.3) and (3.8). This gives

D\l _   dxi _  dxk rZ)Xi dxi dxk    ~|
—- + fih\h-gHkX" — fil - er'   —- + ßhk" —-ghk\h —- m¿   .
Dt dt dt LDt dt dt     J

It follows that bX'/b/c given by

bXs      7>X' dx' dxk
(3.11) =--hwX*-ghk\h-M¿

btc       Dt dt dt

is a conformetric vector, that is,

bX¿ bXj

btc btc

The subscript C is used in the symbol b/b¿c to indicate that the definition

of this symbol depends upon the curve C as well as the process of differ-

entiation. Since b/btc will always be evaluated with respect to the same curve

C in Vn, we shall usually write b/bt for b/btc without danger of ambiguity.

In order to arrive at a meaning for the operator b/bt when applied to any

tensor, we assume that b/bt satisfies the following requirements^9) :

beb      D<t>
(a) — = -

bt       Dt

if <p is any scalar;

bX¡      D\l        i j ds
(ß) -=-h 0,-X —

bt        Dt dt

where X' is any contravariant vector (not necessarily a conformetric vector)

and Çt) = viiLj—ixiVj;

(39) This discussion is analogous to a similar one for ordinary covariant differentiation by

Mayer. Cf. Duschek-Mayer, loc. cit., vol. 2, pp. 31-33.
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b b5 b7
(7) -(ST)=--T + S —

bt bt bt

where 5 and 7 are any tensors

(5) §(^R(^:)
where i and j aré any two indices of the tensor 7, one contravariant and the

other covariant. (That is, the contraction operation for tensors >.<_.■ and the

b/bt operation are commutative.)

On the basis of these properties, we shall find a unique expression for

b7/b/. We first consider a covariant vector £,. Then, according to (a),

b D
— 0<%) = — (x«'fc).
bt Bt

Because of (7) and (8), this may be written as

b\¿ bf,      UK Db
—■*« + X< —- - —fc + \*-
bt bt        Dt Dt

It follows chat X*(b£¡/b¿) is an invariant for all X' and hence b£,/b/ is a co-

variant vector (if it exists). In this last equation, we substitute the value for

b\{/bt given by (ß) and simplify. This gives

/bfc      Db        j    ds\
X'(--+0^, —) = 0.

\ bt        Dt dt )

Since X* is an arbitrary vector, it follows that

b& _ D& _    i    ds

bt        Dt dt

or

b£,      7>£; dx* dx>
(3.12) —- = —- - I* — M + &/**«<,■ —- •

b/c       7>¿ dt dt

It is clear that b/bt as applied to covariant vectors £¿ satisfies those conditions

(a) to (5) which have meaning in this case.

To extend this definition to a tensor of any kind T)\.'l}", we form the in-

variant

(3.13) 7,-,...,, (i)X   ■ • • („)X    (D&i • • • («,)!,.

where the XJ and £¿ are arbitrary vectors. If we apply the b/bt operator to
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(3.13) and proceed as in the derivation of (3.12), using (a) to (5) and (3.12),

we find that

..     1ii---i, —   _., ■* >"!••■ Í,  "i     2-i1h-i, "'•     ,.
(3.14) ^ ö/ -1 dt

_  V      H---« h    »i

Z_(   •* J'l ■ ■ ■ lß-lhJß+\ ■ ■ ■ /."Jfl

It follows that br/'.'.'.'^/b/ is a tensor of the same kind as T]'..'.)' and that

the definition of bT/bt stated in (3.14) satisfies conditions (a) to (5). Equa-

tions (3.11) and (3.12) are special cases of (3.14).

The definition of bT/bt stated in (3.14) may be based upon symmetric

coefficients of connection Tj* just as ordinary covariant differentiation is

based upon the Christoffel symbols {%]■ We define the Y% by(40)

[ i \ i i i
Tjk =   l.,f+ VjOk + A1*5* ~ giM

k

and note that (3.14) is equivalent to

0     il...,-.        d     ,-,.. .,• ™      ¿,.. ■ia_lhia+1 ■ ■ -i.   ia dx

Oí ai a=l Of

• i.       rfr*

~~   2_,   7 jj . . . jp_tA j/3 + 1 • ■ ■ j',1 Í0ÍC '
(3=1 dt

We now find the law of transformation of bTJy.'.j'/bt when TJK'.'.}" is

a relative conformai tensor of weight u; that is, when TjK'.'.f" obeys (2.9).

As follows from the definition of Y)k and (2.6), (3.1), (3.6) and (3.7),

—i i ao~       i i i
Yjk = Tu H-(vjôk + Vköj — gjkv ).

ds

By means of this relation  and  the definition  for  bTJ'.'.'.j'/bt by means of

the Yjk, we find upon applying the b/bt operator to (2.9) that

Th...j,=* e   i-—Th...i+(u + w-v)--Th...i,  >

(40) Since the r^ differ from the Christoffel symbols

by a tensor, it is immediate that they must transform like coefficients of connection under co-

ordinate transformations. For example, cf. L. P. Eisenhart, Non-Riemannian Geometry, Ameri-

can Mathematical Society Colloquium Publications, vol. 8, 1927, p. 48.
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If Q is a relative conformai scalar of weight —1 so that Q = e~"Q, the last

equations may be written in invariant form by noting that they are equiva-

lent to the equations

,,...,•„       b     <,...,„ ./d\ogQ\    ,■,...,„
s*,.., = b7r'--" +<• + •" ^-5-} **•••*■
—>1 •••>'„   _      <ru     <!•••<■

*-> Ï1 • • - /.   —   e    ■* i'l • • • V

Hence •SJ1'.'.'/' is a relative conformai tensor of weight u. In particular, if

T^'.'.'.j' is a conformetric tensor so that u=v — w, it follows that bT)\.'.]»/bt

is also a conformetric tensor. This fact exhibits the conformai property of the

operator b/bt and thus justifies the definition: The tensor bT]1'.'..)'/bt defined

by (3.14) is called the conformai derivative (with respect to the curve C) of T]1'.'..)-

with respect to t.

The conformai derivative at a point is thus dependent not only on the

metric of Fn but also on the curve C (or rather, on the second order element

of C). This dependence of differentiation on a curve as well as the space is

analogous to the similar dependence of parallel displacement of vectors in a

general Riemann space. In this respect the conformai derivative also re-

sembles the derivative (with respect to a curve) which has been defined for

any Finsler space by Synge(41) and Taylor(42). Indeed, it is very likely that

the results of this paper may be generalized to apply to any Finsler space.

The geometry which is based upon the conformai derivative will appear

in a separate paper. We note here a number of fundamental properties of the

conformai derivative which are elementary consequences of the preceding re-

marks and the definition :

(A) 7Ae conformai derivative with respect to a conformai parameter of a con-

formetric tensor is a conformetic tensor.

(B) The conformai derivative of any tensor is a tensor.

(C) Conformai differentiation of the sum, difference, inner and outer product

of tensors obeys the same rules as ordinary differentiation.

(D) The conformai derivative of g.y, gij, 8) is zero ; that is,

bgij     bg''      bb)
(3.15) —- = — = — = 0.

bt        bt        bt

(E) The conformai derivative (with respect to a curve C) of the unit tangent

vector of C is zero, that is,
bvi

(3.16) -= 0.
bt

(41) J. L. Synge, A generalization of the Riemannian line element, these Transactions, vol. 27

(1925), p. 64.
(42) J. H. Taylor, A generalization of Levi-Civita's parallelism and the Frenet formulas, these

Transactions, vol. 27 (1925), pp. 255-257.
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The conformai derivative (3.14) is with respect to t which is a conformai

parameter, that is, corresponding points of C and C have the same value of /.

The equations of C and C are frequently given in terms of metric arc length

parameters s and s. In this case, the conformai derivative of T'/.'..'« with

respect to ¿ is given by (3.14) with / replaced by 5. It follows that

(3.17) fr;;:::N~«.
bs ds  bt

Since

dl dt
(3.18) — = e-' —,

ds ds

dt/ds is a relative conformai scalar and it follows from (3.17) that if T}\.'.)"

is a conformetric tensor then bTJK'.'.j'/bs is the product of a relative con-

formal scalar by a conformetric tensor. The conformai derivative with respect

to 5 has the properties (B), (C), (D), and (E) mentioned above. We note that

the existence of a conformai parameter t implies the existence of a relative

conformai scalar. For according to (3.18), dt/ds is a relative conformai scalar.

Conversely, let Q be a relative conformai scalar which we may assume trans-

forms so that Q = e~"Q. Then the solution / of the differential equation

dt/ds = Q(s) is a conformai parameter.

A simple geometric interpretation of bX'/b/ is possible in terms of the

ideas of projection and ordinary (metric) differentiation. We denote by N^X'

the projection of X" in the vector space normal to an arbitrary vector c/>\ Then

if \p\ \pi are the unit contravariant and covariant vectors which span the vec-

tor space determined by <j>'

A^X'' = X< - XV* •*'•

Let

(3.19) u*=NX

where v* is the unit tangent to the curve C. It follows that

X* = co* + av<

where

(3.20) uhi = 0

and a is a scalar. Then

bX*       bw*'      da bv{
■- =-1-v{ + a-
bt bt       dt bt

according to (C). According to (3.11), (3.16), (3.20) and the last equation,
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bX<       Du1 dx{      da
- =-h PhUh-1-v\
bt        Dt dt        dt

By absolute differentiation of (3.20) with respect to t and the form (2.1) and

use of (3.3) and (3.4), we obtain

Duh ds
-vh + whph — = 0.
Dt dt

Now
Dw{     Deo*      Duh

N,— =-n-vK
Dt       Dt        Dt

ft follows from (3.19) and the last three equations that

bX; D da
(3.21) - = N, — N,\i-\-vi

bt Dt dt

which is the desired interpretation. In particular, if X¿ is orthogonal to the

curve C then a = 0 and Nr\i=\i so that

b\l D\f

(3.22) -= N„-
bt Dt

It follows that if X* is orthogonal to C then bX'/bi is also orthogonal to C.

It is also possible to define a derivative which has the property that when

applied to a conformai vector it yields a conformai vector. If we suppose

that X' is a conformai vector of class C1 then

(3.23) X¿ = X\

We proceed with this equation precisely as with (3.8) and find that

bX¿       bX¿
=- =-h aX¿
bt bt

where b\'/bt is defined by (3.11) and a is a scalar. It follows from this equa-

tion that

DX¡ bX*
(3.24) T^ = A7*^-

<Dtc btc

is a conformai vector. In view of the more complicated structure of OX'/Otc,

our work shall be in terms of conformetric vectors and the conformai deriva-

tive.

Another type of differentiation for which the derivative of a conformai

vector X* of class C1 is a conformai vector may be defined if a nonzero rela-
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tive conformai scalar Q of class C1 exists along the curve. We may assume

that the law of transformation of Q is

(3.25) Q = e~°Q.

Then in virtue of (3.23) and (3.25), QX' is a conformetric vector and, in ac-

cordance with  (A),  b(Q\')/bt is also a conformetric vector. This fact and

(3.25) show that SX1/5/(c,q) defined by

5X¿ bOX¿      dlogQ bX1'
(3.26) - = Ç-i-i—=-—-X<+ -

ot(c,Q) btc dt b.'c

is a conformai vector. The type of differentiation defined for contravariant

vectors by (3.26) may be extended to conformai tensors TJK'.'.j". One readily

finds by reasoning similar to that used in the derivation of (3.26) that

oT¡¡'.'.'.j^/8t(c,Q) defined by

(3.27) ÔkCM bt°

dlogQ    «,-..« b      ,,...<.
= (w - v) —-7;i...)f + -— Th...u

dt btc

is a conformai tensor. As a consequence of (3.24) and (3.26), we note that

DX¿ 5X¿
(3.28) -= iVx-

<Dtc 8t(c,Q)

While the results of this paper are based upon the b/b¿ process, they may be

derived equally well using the 8/8t type of differentiation defined by (3.27).

If Ty.Y.j' is any tensor (not necessarily a conformai tensor), we define

8Tij1'.'.'.ij"/8tic,Q) by means of (3.27). Since 8Ti\'.'ij'/8t^c,Q) will always be

evaluated with respect to the same curve C, we may write 8/8tQ for 8/8t(c,Q)-

We easily prove that the properties (B) and (C) hold for the 8/81q type of

conformai differentiation and that (A), (D), and (E) are replaced by the anal-

ogous statements:

(A')  The 8/8tQ derivative of a conformai tensor is a conformai tensor.

(D')  The 8/8tQ derivative of Q2ga, Q~2g{', 8) is zero.

(E') The ô/ô/(c,Q) derivative of the conformai vector Q~l v' which corresponds

to the unit tangent of C is zero.

Just as b/btc differentiation may be defined by means of the Y)k, so the

definition of 8/8t(c,Q) differentiation may be based upon symmetric coeffi-

cients of connection T¡k. These T¡k are defined along points of the curve by

means of the equations(43)

(43) The footnote concerning the law of transformation of the r)k also applies here so that

the Tu, transform like coefficients of connection under coordinate transformations.



454 AARON FIALKOW [May

n'4 /*l    i   / ál°go\í    ,    /        ,        ¿logö\j

(   . à\o%Q\

Then a simple calculation shows that (3.27) is equivalent to

-,'!• • •'»
h ■ AT-      ■" w Hvk
" rr, 'I'"«. UM1\---1, Y^   rp 'I' - ''»-I ft,o+l- •■!.)'«   B*

8t(C,Q) dt a=X dt

■* Jl- • •Ji-l*J/S+l-- -J.1 J/J

t

Í-1

a"»

* ~~r
dt

The law of transformation of the Yjk under a conformai transformation of F„

is found by using the definition of Y'Jk and equations (2.4), (2.6), (3.1), (3.5),

(3.6), (3.7) and (3.25). It is

ik =  Yjk.

The conformai invariance of the Y]k provides another proof of (A'). In the

same way, it may be shown that if T'\'.j' is a relative conformai tensor of

weight u then

* Í1 • • • )',   T   V ■ 1  j, . . . ;,
otQ at

is also a relative conformai tensor of weight u. We remark that the conformai

theory of a general subspace is based upon conformai tensors and a type of

"conformai differentiation" analogous to the ô/5t{c,o.) differentiation.

4. The conformai Frenet equations. We suppose that the inequalities (3.2)

hold throughout this section unless it is stated otherwise. Let <i)0*(i) where l

is the conformai parameter defined in the previous section be an arbitrary

unit conformetric vector of class Cr (m-l^r^l) defined along C. Then the

corresponding vector defined along C in V„ is given by ix)Öi = e~' ^O1 and must

also be a vector of class C. We shall derive conformai analogues of the ordi-

nary Frenet equations for the vector (1)8i subject to the assumption that the

"normals" in these equations exist and are of class C1. For the satisfaction of

this last assumption it is sufficient but not necessary that(44)

(4.1) m = p = n + 1, r ^ n.

By conformai differentiation of (i)i9' with respect to /, we obtain b^6i/bt.

If brijo'/bíí is not identically zero, at points where at least one component does

(«) We may weaken these assumptions by replacing n by the integer t which is defined be-

low.
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not vanish we may write

b (1)0'
(4.2) -i— -*!,(„««

bt

where 77i^0 and (2)0' is a unit vector, that is,

(4.3) gijmeim6'=l.

Both 77i and ^8' are determined except for an initial choice of sign.

By conformai differentiation with respect to t of

(4.4) gi, ayO* (1)0> -   1

and use of (3.15) and (4.2), we obtain

(4.5) g{, w$* w6i - 0.

We suppose that the class of (2)0' is C1. Then, since (2)0' is a unit vector,

b (2)0*/b/ is normal to (2)0*. If b (2)0'/b/ is not contained in the linear vector

space determined by (i)0', it may be written as

b (2)0*
(4.6) —— = AIW$* + ü2(3)0i

bt

where ,3)0' is a unit vector normal to (i)0* and (2)0' and HiT^Q. From (4.4)

and (4.6) we find that Ai=ga(b (2)0'/b¿) a,0'. Now, if we differentiate (4.5)

conformally with respect to t and use (3.15), (4.2) and (4.3) we obtain

b (2)0'
Bi + map—— = 0.

bt
Hence (4.6) becomes

0 (i)O'
4.7) —— = -Hi (1)0' + i72 me\

bt

Equations (4.2) and (4.7) are the first two analogues of the Frenet equa-

tions^5). We shall prove the general formula by means of the customary

proof by mathematical induction. Suppose

b („)0i
(4.8) —-   =    -   üa_,   («.DO1' +   Ha  (a+1,0'

bt

with the convention(46) 770 = 0 where <x = l, 2, ■ ■ ■ , I— 1 and where the vec-

tors (0)0' satisfy the relations

(46) For the general metric Frenet equations cf. L. P. Eisenhart, Riemannian Geometry,

1926, pp. 103-107. Also cf. Duschek-Mayer, loc. cit., pp. 59-62.
C) If l = n, we also make the convention that H„ = 0.



456 AARON FIALKOW [May

(4.9) giiW)e  (7/ = 8y

where /?, 7 = 1, 2, • • • , /. If the class of (¡)0* is C1 we shall show that the equa-

tions (4.8) and (4.9) hold if the ranges of a, ß, y are each increased by one.

The conformai derivative b ^)Bi/bt has a representation of the form

b (off*
(4.10) —- = AxWei+ ■■ ■ +AiWei + o>i

bt

where g¡3- ((S)0W = O (ß=l, 2, ■ ■ ■ , ï). As above, we find

b (off*
Aß = gu <««'——, ß= 1,2,- ■ ■ ,1.

bt

As a result of (4.9), we find that

b (off*

For/3 = /,thisshowsthat,4¡ = 0. Ifwe substitute for b(/S)0*/b/(j3 = l, 2, • ■ ',1 — 2)

from (4.8) and use (4.9), we find that ^4i = -¡42= ■ ■ ■ =A¡-.2 = 0. In the same

way, the work for ß = l — l shows that A ¡_i = — 77¡_i. Furthermore if co* is not

identically a zero vector, then at points where at least one of its compo-

nents does not vanish we may write u>i=Hi-(¡+i)0* where Hi9*0 and

gij (¡+x)0i (¡+1)0' = 1. Then (4.10) becomes (4.8) with a=l and the Ith formula

holds. It is clear that (4.9) is also true for the greater range of ß, y.

This process of constructing successive 8', H may be continued until we

arrive at a vector {r)8i (whose class is assumed to be C1) such that b (T)ff*/b¿ is

contained in the linear vector space determined by (i)0*, (2)0*, ■ ■ • , (T)ff*. Then

77r = 0 by definition and (4.8) and (4.9) hold for a, ß, 7 = 1, 2, • ■ ■ , r. In

this case, by definition, HT+l= ■ ■ ■ =Hn = 0. We shall sometimes write

(T+i)0*, • • • , („)0* for any vectors which obey (4.9). Of course, r^«. We call

(4.8) where the (1,)0* obey (4.9) for a = 1, 2, ■ • • , r the conformai Frenet equa-

tions in Vnfor the vector (i)0* a«¿ the parameter t.

If F„ is mapped conformally on F„, as already shown, (off* must exist and

have at least one continuous derivative. Hence an equation corresponding to

(4.2) in Vn exists and may be written as

b (no*      _
(4.11) _^=tf1(2)0i

bt

where (2)ë* is a unit vector. According to §3 (B), b a)ei/bt = e~'(b a)0*/b¿)- This

last equation and (4.2) and (4.11) show that {2)6i is a unit conformetric vector,

that is, (2)ff* = «-'7 (2)0* and that 77i is a conformai scalar, that is, Hx — H. It

follows that the classes of (2)ff* and (2)0* are equal.

Since the class of (2)0* was assumed to be O, this must also be true of (2)ff*
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so that the second conformai Frenet equation in F„ is valid. A comparison

of this equation with (4.7) using the properties of the conformai derivative

readily shows that (3)8{ is a unit conformetric vector and 772 is a conformai

scalar and that (3)0' and {3)0' are of class C1.

This method of reasoning may be continued and leads to the following

conclusion: If the conformai Frenet equations in V„ exist then the conformai

Frenet equations in Vn also exist, that is,

b („)0¿ _ _.        _ _. _ _
Z —   —   üa-l (a-l)0' +  Ha (a+l)0'> üo  —   HT  —   0,
bt

-' -1 ß

ga (3)0   (7)0   = ày

where a, ß, 7 = 1, 2, • • • , t. In addition the (a)0' and Ha satisfy the equations

(4.12) („)0¿ = e~" «,)0\        Ha = Ha.

If / is replaced by another conformai parameter t' and we denote the quan-

tities in the corresponding conformai Frenet equations(47) by primes, then

(<*)0'¿ = (a)0¿, H'a = (dt/dt') Ha. Hence the (a)8{ are independent of the paramet-

rization and the i7a are multiplied by the same conformai scalar dt/dt'. In

the same way if the metric arc length 5 is used instead of t, one finds that the

(a)0' are unchanged and i7a are multiplied by the same relative conformai

scalar dt/ds. We call 77i, 772, ■ • • , 77r_i the associate conformai curvatures of

the vector (1)ö' and the parameter t of orders 1, 2, • • • , r —1 and say that

(2)0', (3)0', • • ■ , (r)0l are the associate conformai directions of the vectors (i)0'

of orders 1, 2, • • • , t —1. We also say that (2)0\ (3,0', • ■ • , (T)0' are obtained

from (i)0' by the Frenet process.

When the vector (1,0* is normal to C, u„_i = 0. For according to the discus-

sion following (3.21) and the conformai Frenet equations, if 77i772 • • ün_2^0

then (1)0% (2)0', • • • , (n-i)0' are all normal to v\ Now, if 77„_i^0 then (n)0'

would also be orthogonal to vl. Since this is impossible in virtue of (4.9) it

follows that 77„_i = 0, w8l = v\ If HiH2 ■ ■ ■ i7„_2 = 0 then 77„_i = 0 by defini-

tion.

The familiar and most useful metric Frenet equations are those obtained

when the first vector is the unit tangent vi and the parameter is a metric

arc length parameter s. In this case, the equations are

D Mv*
(4.13) - = - ka-i (a-i)?' + ka („-¡-i)*',      a = 1, 2, ■ - ■ , »,

Ds

where we make the convention that &0 = &n = 0. The metric invariants

ki, ki, ■ • ■ , kn-i are the successive (metric) curvatures and QyP* ( = v'),

12)V\ ■ ■ , (n)f' are the unit tangent and successive unit (metric) normals

which obey the relations

(") These equations exist if the conformai Frenet equations for the parameter t exist.
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(4.14) gii (a)V   tf)V   = 5a.

The conformai Frenet equations given by (4.8) hold for any first vector

(i)0* and any parameter t. In order to derive an exact analogue of (4.13), we

must indicate a "natural" vector and a "natural" conformai parameter which

will play roles analogous to the roles of vi and 5 respectively in the Frenet

equations (4.13). We note that the obvious selection for ,1)0*, namely vi, is

an unfruitful one. For in view of (3.16), the first associate conformai curva-

ture of vi vanishes identically.

In order to obtain a solution of this problem, for the remainder of this sec-

tion we shall replace the assumption stated in (3.2) by the inequalities

(4.15) m = p = 3.

Then the components of the vectors p' and ßl have continuous first deriva-

tives. If we consider a conformetric vector whose components in Vn

are ß{ then, according to (3.6), the corresponding components in V„ are

e-'\ßi-a,h(gih-vivh)]. It follows from §3 (A) and (3.17) that

bfi{ r b , , v "1
-j— = e~2'   — {e-' [m* - a,h(gih - v'vh) ] M .
bs Lbs j

Since ß' and fi' are normal to e*, (3.22) applies so that the last equation be-

comes

_ Dp* r      Dp1 "I
(4.16) N, — = e~3'    A7„-ahkvk(gih - vV)

Ds L      Ds J

where

(4.17) Chk — a ,hk — 0-,nO~,k-

Now according to the Frenet equations (4.13),

T> (2)"* .     .
pl = kx mvl,       —-— = — «i»'' + k2 (3)v\

Ds

Hence Nv(Dpi/Ds) = (dkx/ds) ^v^kxki ^v1 and an analogous equation ob-

tains for N,(Dßi/Ds). In virtue of these equations', (4.16) becomes

dkx _ _ Ydkx ~|
(4.18)   -(2)^ + kxk2 (3)P* = e-M -mv* + kxk2 mwf - o-hkvk(gih - vV1)   .

as L ds J

We now find an equivalent expression for ank which will permit us to write

(4.18) in an invariant form. Under the assumption (4.15), the Riemann curva-

ture tensors Rhijk of Vn and Rhijk of F„ exist and are continuous. The Ricci

tensor Ri} and the invariant curvature R of Vn are defined by Rn = ghkRknk,
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R=g''Rij with analogous definitions for the corresponding tensors in F„. A

straightforward calculation, using (2.6) and (3.1) as well as the definitions

of Rhijk, Rij and R gives(48)

e~2"Rhijk = Rhijk + ghkO~ij + gijChic — ghjO-ik — gikChj

(4.19)
+   (ghkgij —  gh,gik)àiO-,

and

20)     (W ~ 1)(M ~ 2)0hk = (W ~ 1} *^** ~ Rhk^~ *^ ~ ghkR}

— \(n — 1)(» — 2)Ai<rghk

where Aio- is the differential parameter of the first order defined by A^ =g''<7,,cr,¡.

If(49) «>2, it follows from (2.6), (3.5) and (4.20) that (4.18) may be written as

dki . . 1     _
— (2)?* + kiki mv H-RhkVk(gih - vivh)
ds n — 2

Vdki 1 "I
= e"3"    - (2)^ + *lfe2 (3)^ H-RhkVk(gih - vlvh) \.

L ds n — 2 J

This is the invariant form(50) of the law of transformation of Dp'/Ds.

We suppose that the members of this equation are not zero and write

dki 1
(4.21) 7V =-mv' + kik2 (3)^ H-Rhkvk(gih - j-VO

ds « — 2

(4S) For example, cf. L. P. Eisenhart, loe. cit., pp. 89-90, especially equations (28.5) and

(28.9).
(49) The assumption n>2 is to hold throughout §§5-12 inclusive. The case n = 2 is consid-

ered in §14 and it is shown that the theorems which we obtain in §§5-12 apply in a modified

sense.

(60) It is also possible to write the law of transformation of the principal normal given by

(3.7) in an invariant form. For, as a consequence of (3.1),

( ij S       I ij S
But

1   log ?"
dx'us-

where g= |g,t|  is the determinant whose elements are the components of the metric tensor.

(For a proof of this statement, cf. L. P. Eisenhart, loe. cit., p. 18.) Hence

a = —r log g'«" - — - log g"2".
dx' dx>

If we substitute this expression for <r,, in (3.7), it becomes

*1     ^   i      -1'2»/.*      _*_\ ,     <*    ,        mn.k k   .
IH + — r log g     (Si — v m) = Mi + — log g     (Si — y n).

dx? axr

Thus a conformai geometric object is defined. As it is not a tensor, a formal theory based upon

it would be quite complicated and we shall therefore not consider it further in this paper.
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where gijV'Vi=^ ar>d write an analogous equation for J2f¡\ It follows that ni

is a unit conformetric vector, that is, the direction of ni remains unchanged

if Vn is subjected to a conformai transformation. We call 77* theirs/ conformai

normal of the curve C and shall also write it as (1)Ti*. The quantity J which

is the unique positive root of J2 is a relative conformai scalar having the

transformation law

(4.22) J = e-'J.

We call J the relative conformai curvature of C. As a result of (2.4) and (4.22),

5 defined (up to an additive constant and choice of sign) by

(4.23) S =  j Jds

remains invariant under conformai transformations and is a conformai scalar.

We call S a conformai arc length parameter of C. If the values of the same arc

length parameter are Sx and S2 at two points Px and P2 of C, we call | Sx — S2\

the conformai arc length or conformai length of the arc PxP2 (or P2Px) of C. It

is clear that the conformai length is independent of the choice of the con-

formal arc length parameter. Since 5 is a conformai scalar, the conformai

length of an arc of a curve is unchanged by any conformai transformation of V„.

The vector rj! and the parameter ,S have roles in the conformai theory analo-

gous to those of p' and 5 in the metric theory.

As a consequence of (4.15)  and  (4.21),  the parameter transformation

(4.23) is of class C1 so that we may apply the preceding results of this section

with the conformai parameter S replacing /. We note that the inequalities

(4.24) m ^ p ^ « + 2

which are analogous to and here replace (4.1) are sufficient to insure the exist-

ence of conformai Frenet equations for the vector 77' and the parameter 5.

The conditions (4.24) include (4.15). We summarize some of these remarks

in the theorem

Theorem 4.1. Let C be a curve of class Cp (p^3) in a Vn of class Cm (m = p)

and dimensionality w > 2 and let the relative conformai curvature of C be different

from zero. Let the classes^) of the first conformai normal ix)Vi and of each suc-

cessive unit normal ^2)r)i, (S)*?*, • • • , ^-¡rt' obtained from m,ni by the Frenet process

be O. Then there exists a set of scalars Jx, J2, ■ ■ ■ , JT-x (r = n — l) such that

b  (,a)V%
(4.25) =  — Ja-x (o-Dn* + J» {a+i)V\       Jo = Jr = 0; a = 1, 2, ■ ■ ■ , T,

bS

where S is a conformai arc length parameter. The („)7i* form a normalized r-bein

(5l) It is unnecessary to assume the existence of the (<,)*)'. For njij* exists and the existence

of („)7j* if Ju-iT^O follows from the fact that ta,_i)7j' has a derivative.
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orthogonal to the tangent vector v{

i i <* _
gij («)ri   W)V   = °ß, a, ß = 1,2, ■ ■ • , t,

ga WV v   = 0.

If C<-»C, V„<->Vn by a conformai transformation, then equations analogous to

(4.25) hold in F„ and at corresponding points of C and C, the directions of the

(„)??' correspond

(4.26) (a)TJ'' = e~" („^ a = 1, 2, • ■ • , r,

and the J's are equal

Jy    =   J y, 7 t,    ¿,    '    *    '     ,    T 1.

We call (4.25) the conformai Frenet equations. In writing these equations

we have replaced (i)0'', {2)8\ ■ ■ ■ , (,>#*; Hi, H2, ■■ ■ , 77r_i in (4.8), (4.9) and

(4.12) by (1)77* (-i}*')i (2)^7% ■ • • , m»?'; /i, J2, ■ ■ ■ , Jr-i which we call the./írsí,

second, ■ ■ ■ , rth conformai normals; first, second, ■ ■ ■ , (r-l)st conformai cur-

vatures.

The vector (i)X' defined by

(4.27) (1)\- = 7-1 „>„'

is a conformai vector as follows from (4.22)"and (4.26). Systems of conformai

Frenet equations which involve only conformai vectors and conformai scalars

may be derived corresponding to the initial conformai vector (i)X' by use of

the derivatives defined in (3.24) and (3.26). We suppose that the relative con-

formal scalar Q defined in (3.25) is J. Then one easily finds as a consequence

of (3.26), (3.28), (4.25) and (4.27) that

S („jX*
(4.28)       - = - 7a_i (a_i)X¡ + Ja (a+ijXí,   /„ = Jr = 0; a = 1, 2, • • • , t,

ôSj

O („^
(4.29) —- = - 7«_i („-dX* + 7« (a+ijXi,   Jo = JT = 0; a = 1, 2, ■ • • , r

DS

where the conformai vectors (a)X' correspond to the {a)Vi; that is,

(u)X'   =  7_1   (a)Vl, (a)X'   =    (a)X*.

5. The (« —l)st conformai curvature 7n_i. As a consequence of the re-

marks in the paragraph preceding (4.13), since ij' is orthogonal to p\ a curve

can have at most « — 2 nonzero conformai curvatures arising in the conformai

Frenet equations. We shall now construct still another conformai invariant,

unrelated to Jit 72, • • • , 7T_i and the conformai Frenet equations, which

plays the role of the (« —l)st conformai curvature 7„_i. This curvature is as

essential as the others in the development of the theory. However, the défini-
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tion of 7„_i differs completely from that of the other conformai curvatures.

Indeed, as we shall show later, there are important qualitative differences in

the properties of the first (« — 2) conformai curvatures and the («—l)st con-

formal curvature. This is natural because J\, J2, ■ ■ ■ , Jn-i are measures of

the variation of the conformai normals whereas Jn~x is defined in connection

with the variation of the relative conformai curvature.

It is assumed that (4.15) holds throughout this section except where it

is explicitly replaced by another assumption. If we multiply the respective

members of (3.6) and (3.7) by each other and sum,

-2 2  2 /d^\2
(5.1) kx = *kx + 2W.«¿ + Ai^ - Í — J

where Axip = gi,'\l/,4',j and

(5.2) f = e~'

and d\p/ds =\l/,hVh. We differentiate the last equation with respect to s and the

form (2.1) and use (3.4). This gives

dhP
- = 4'.hkVhvk + ^..M*.

ds2

When the value of ^,¿/u* from this equation is substituted in (5.1), it becomes

-2 22 dty      /dtpQ'- h   k

(5.3) kx = th + 2t-I — ) - 2W.**""  +Ai*.
ds2

Since, in virtue of (4.17) and C5.2),

Chk =   — $.hk/<l',

(4.20) becomes

— 2ipip,hk + àx^-ghk

= 2^1"—L- (R\k - Rhk) - _-—- (ghkR - ghkR)].
In- 2 2(» - 1)(« - 2) J

This equation and the fact that vi=y¡/vi show that (5.3) is equivalent to

2—22 dhP      /¿"A2

(5.4) ¿i+á:=>M¿i+a:) + 2¿—- (js),

where

(5.5) K. =-~-zr [R - 2(» - DA***],
(» — 1)(» — 2)

and Â^ is defined by an expression constructed from the analogous quantities
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in Vn. If Vn is an Sn of constant curvature K, then A^ is found to be equal to K.

If Vn is an Einstein space En of constant mean curvature p, then F^=p/(n — 1).

Now let Q(s) be any nonzero relative conformai scalar of class C2 which

transforms according to the law

(5.6) Q(S) = W(s).

According to (2.4) and (5.2), ds/ds=\J/~1. If we use this fact and differentiate

(5.6) with respect to s, we obtain

#     r dQ dQ _ H
-T = \-f-Q2--f-Q2 \/Q2Q,ds      L ds ds       J

dhj,     fd2Q_         d^   _        dQ   dQ _—- =   — QQ*--QQ*- — (^
ds2      Lds2 ds2 ds    ds

+2(fy5'-(f)*Q']/«'5*
Substitution of these results in (5.4) shows that

[«S-.(-sy-rf+«tf]/tf

This expression is equivalent to (5.1) if Q(s) obeys (5.6). It is therefore the

invariant form of the law of change of the first curvature of a" curve when F„

is subjected to a conformai transformation. We summarize these results in

the theorem

Theorem 5.1. 7e/ Q(s) be a nonzero relative conformai scalar defined along

a curve in a F„ (« > 2) whose law of transformation is Q(s) = e~'Q(s). Then

r ¿2Q /dQ\2 2 Tr      2l 4

is a conformai scalar.

If we replace the assumption (4.15) by the stronger inequalities

(5.8) m>p^5,

then these conditions are sufficient that J(s) defined by (4.21) and having

the transformation law (4.22) be a relative conformai scalar of class C2. Theo-

rem 5.1 applied to J(s) yields the conformai invariant

r      d2J /dJ\2        i        r   21     4
(5.9) ,„_[„__,(      )_ft + ^j/7.
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We call Jn-i the (n-l)st conformai curvature of the curve C. If J is referred

to a conformai arc length parameter 5, we find by use of (4.23) that (5.9)

becomes

r      d2J /dJ\2        2       rrl     2

In a similar way, the conformai scalar (5.7) may be written in terms of Q

and its derivatives with respect to 5.

We note that if Jn-i exists in a F„ of class C3 then it follows from the

definition of Jn-x and (4.22) that Jn-x must exist in F„. This observation plus

a similar one implicit in the italicized statement containing (4.12) shows that

if the conformai curvatures Jx, Ji, ■ ■ ■ , Jr-x, Jn-x exist for a curve C in a V„ of

class Cz, then the conformai curvatures also exist for the conformai image curve C in

Vn. Since the conformai arc length of a curve remains invariant under con-

formal transformations, it is always possible to pick conformai arc length

parameters 5 and 5 on C and C so that corresponding points are given by

5 = 5. Then, according to Theorem 4.1 and the preceding paragraphs, all the

conformai curvatures (if they exist) and S are the same at corresponding

points of C and C. As an immediate consequence of this remark, we have the

theorem

Theorem 5.2. If n>2 and Fn<->F„, C.<-^C by a conformai map, then a con-

formal arc length parameter S may be chosen so that corresponding points of C

and C have the same value of S and the conformai curvatures Jx, Ji, ■ ■ • , Jn-x

are the same functions of S for C and C.

The analogous theorem in the metric theory of a curve is well known.

6. The existence theorem. In §§4 and 5, it was shown that any curve in

Vn which satisfies certain general conditions determines (except for sign) r

( = n — 1) continuous conformai curvatures. We now prove the following con-

verse :

Theorem 6.1. Let Vn be any Riemann space of class C4 awa" dimensionality

«>2. Suppose that

(6.1) Jx(S), J2(S), ■■ ■ , Jr-x(S), Jn-x(S), T = n-l;a<S<b,

are any continuous functions no one of which, except possibly Jn-x vanishes iden-

tically in any subinterval ofa<S<b. Let x0 be the coordinates of any point P ofVn;

Jo, I-o a»y two real numbers of which the first is positive; v^, wVo, (vVo, ' ' ' i Wo

any normalized (r+l)-bein at P; p0 any vector at P orthogonal to v'0; and Sa any

real number so that a<So<b. Then there exists a curve

(6.2) xi = x*(S)

of class C3 defined in some subinterval of a<S<b about S0 which has S as a
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conformai arc length parameter and the functions (6.1) as conformai curvatures.

For S = So, the curve passes through P so that its moving conformai (r+l)-bein

and principal normal take the positions v^, (1)T?Ó, (2)77o, " ' " i w^o and Po respec-

tively and the values of the relative conformai curvature and its derivative with

respect to S at P are Jo and L0 respectively. Any other curve with these properties

will coincide with (6.2) in the common interval of definition.

Briefly, this theorem states that curves exist in F„ whose conformai curva-

tures are any arbitrary continuous functions of the conformai arc length and

that any such curve is uniquely determined by a number of initial conditions.

For the proof, we consider the system of [2 + «(r + 3)] differential equations

oV
-= 7-V,
dS

r = j-A -1 .*!•■*'»** - twr*y + 72 (»i*
dS L     \jk)

-RikVi(gH- »V)   ,
« — 2 J

d (dv{

dS \jk

(6.3)   d (2)^

dS
= - 7-l| * J- mv'"k - J-'gjk (in'itV - Ji(S) (DT,'- + 72(5) oij«,

d <.t)V{
=    -  7-1 j   *   j-    („tjV   - J~lgik  (rtf'/iV  - Jr-l(S)  (,-DTÁ

dS (jk

dJ
-= 7,
dS

dL     j-1r
—- - —-  727„_i(5) + 372 + gikpip"
dS        2   L

+ 7-íé-ñ \R-2(n- l)R,^"})]
(n — 1)(« — 2) J

in the [2+w(t+3)] unknowns J, L, x\ v{, p{ (utj', («n*, • • • , (r)»?'. This

system of equations has been obtained by rewriting equations (3.3), (3.4),

(4.21), (4.25) and (5.10) in the normal form for ordinary differential equations

using the definitions of the conformai derivative, 5 and Ä^ which are given by

(3.11), (4.22) and (5.5) respectively. The right members are continuous for
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any ac* in the coordinate system; any vl, ¡j.', <„)??' (a = 1, 2, ■ • • , t); any /dif-

ferent from zero; any L; and any S in the interval a<S<b. They are of class

Cl in all the dependent variables since the g„ are of class C3. Therefore we can

apply the fundamental existence theorem for such a system of differential

equations.

According to this theorem, there exists a set of functions J(S), L(S),x¡(S),

vi(S)'l ^(S), (a)T]i(S) of class C1 satisfying (6.3) which are defined in a suffi-

ciently small interval 7 of a<S<b about So and which assume the values

Jo, L0, v0, nl, ia)ri0 for S = S0. Any two solutions of (6.3) which have the same

initial conditions are identical in their common interval of definition. It is

readily seen that J(S) is of class C2. Hence, as a consequence of the special

form of the first two equations, x*(5) are actually of class C3. The existence

theorem applies to a fixed coordinate system. Nevertheless the solutions in

one coordinate system will transform under a change of coordinates into the

solutions in any other since the differential equations (6.3) may be written

in the invariant form, tensor = tensor.

The solutions x*(S) determine a curve C whose parametric equations are

(6.2). We now show that the dependent variables in (6.3) as well as the J's

actually have the geometric significance for C that is stated in the theorem.

Let
Aaß(S) = gjkwvKS) mvk(S),

Aoo(S) = gikVi(S)v»(S),

A0a(S) = gikv'(S) Mvk(S),

B(S) = gikV'(S)^(S),

Ca(S) =gikPi(S)ca)vk(S).

We prove that these quantities keep their initial values, that is,

Aaß(S) = ol       Aoo(S) = 1,
(6.4)

AoJS) = 0, B(S) = 0

all along C. A straightforward calculation using (6.3) shows that

dAcß

(6.5) dS

dAoa

-   — J   lCaAop  — Ja-xA (a-l)/3 + JaA (a+l)/3
dS

— J~lCßAoa   — Jß-xAtf-X)a  + JßA(ß+x)a,

dA oo
= ¿BJ-\

dS
J     Ca(l   —  Aoo)   — -7a-l-4o(a-l)  + JaAo(a+X),

dB
— = /-Wm*(1 - ¿oo) + JAox.
dS
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The derivation of these equations is somewhat simplified by noting that

dAaß/dS = DAaß/DS, and so on.

In these equations, we think of Aaß, A0o, A0a, B as independent variables

and the other quantities as known functions of 5 given by the solution of

(6.3). Then (6.5) is a system of ordinary differential equations in the normal

form, and the right members satisfy the conditions for the existence of a

unique solution determined by arbitrary initial values of the A's and B and

for 5 in the interval I on which the solution of (6.3) is defined. It is easy to

verify that (6.4) is a solution of (6.5) for S in 7. Since the v0, («)7/0, pl0 were

chosen so that (6.4) holds for S = So, it follows that (6.4) is true for any 5

belonging to I. Consequently j^is orthogonal to/i* and vi, (<,)?;* form a normal-

ized (r+l)-bein all along C. Since ^4oo = l, vi = dxi/ds where s is a metric arc

length parameter and dS = Jds. It is then readily seen from the second equa-

tion in (6.3) that p* is the principal (metric) normal, and from the third

equation that J and (dji* are the relative conformai curvature and the first

conformai normal of C. After this result, it is immediate that 5 is a conformai

arc length parameter, the J's are the conformai curvatures and the (a)V* are

the conformai normals of C. This completes the proof of the theorem.

The set of geometric objects M= {x\ vi, (a)V\ M*. J, L] which together

with 5 comprise the set of initial conditions of the theorem may be defined

independently of any curve in F„. The vi, (a)rji form an arbitrary normalized

(r+l)-bein and p{ is any vector normal to v{ and / and L are any scalars of

which the first is positive. Under any conformai transformation of V„, the

respective objects of M transform according to the laws (2.5), (3.5), (4.26),

(3.7), (4.22) and

(6.6) L = e-'(L--a,iVi)

respectively. The set {x\ vi, („)»?*> J, L} is called an M-set. The order of the

./If-set is the integer t+1 whose maximum value is «. The role of an Af-set

of order t+1 in the conformai theory of a curve is analogous to that of a

normalized (r+l)-bein in the metric theory. If the geometric objects of an

Af-set have the geometric significance described in Theorem 6.1 for some

curve C, then the Af-set is said to be associated with C at the point whose co-

ordinates belong to M.

One may refer the curve C to a metric arc length parameter s. For (4.23)

defines 5asa function of s which may be substituted in the equations (6.2)

of C. Since / has two continuous derivatives and x'(S) are of class C3, C is

also of class C3 when s is the parameter of the curve.

If Vn is an Einstein space En of constant mean curvature p then since

(6.7) 7?(j=-pg„-

the term RJkVk(gi' — piv')/(n — 2) is identically zero in the third equation of

(6.3). As a result, it is readily seen that in this case the hypothesis of Theo-
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rem 6.1 may be weakened so that E„ is a space of class C3 instead of class C4

and the remainder of the theorem will hold as stated.

We now show that if F„ is an En, the hypothesis of Theorem 6.1 may be

weakened in the same manner as for an En. Suppose that En is of class C3 and

that cr(x') is a mapping function (necessarily of class C2) which maps En con-

formally on En. Let Ji(S), 72(S), • • • , 7T_i(S), 7„_i(S) be the preassigned

conformai curvatures and let an Af-set M= {x\¡, ?ó, wVo, fio, Jo, Lo} and S0 be

a set of initial conditions of the sort enumerated in Theorem 6.1 and suppose

that M, So is the set of quantities in En corresponding to these initial condi-

tions under the mapping determined by a(x{). In accordance with the preced-

ing paragraph the set A7, So and the 7's determine a curve C of class C3 in £„.

Geometric objects like those of the set Af exist at all points of C and have con-

tinuous first derivatives.

Let C be the image of C in E„. Since C is of class C3, P', fi\ (i)7j', 7 all exist.

As a result of the existence of J, (4.22) holds. From (4.22) and the fact that J

and a are each of class C2, it follows that 7 is also so that L exists and is of

class C1. It follows that S1 is a conformai arc length parameter for C as well

as for C. Both curves have the same parametric equations in terms of the

parameter 5.

Since d)r]' exists, t\):ñi = e~'{X)-ni. From the classes of a and (ijtj', we infer

that (1)77* has a continuous derivative so that the first conformai Frenet equa-

tion

holds. It follows from Theorem 4.1 that 7i = /i and «>»j« = «"*(«)ij*. Hence <2)7j'

has a continuous first derivative and we may proceed as before. In this way

one shows that all the conformai normals exist and have continuous first

derivatives and that the (existent) conformai curvatures of C are the pre-

assigned functions J\, J2, ■ • • , Jr-i, Jn-i- The initial conditions given by M,

So must be satisfied because of the manner in which C was constructed. The

unique determination of C follows readily from the known uniqueness of C.

Thus the conclusions of Theorem 6.1 hold in the case of an En even if the

class of En is only C3. In particular, the existence theorem applies when the

space is an Rn of class C3.

7. The conformai equivalence theorem. The fundamental theorem in the

metric theory is the congruence theorem for a curve in a euclidean space or a

space of constant curvature: All curves in Sn with equal curvatures ka(s) are

congruent, that is, they may be made to coincide by a motion in S„. We now

develop some minor results leading to the analogous theorem in the conformai

theory of a curve in any conformally euclidean space i?„. The present proof

is based upon the existence theorem. Another proof which does not use the

results of Theorem 6.1 exists and depends upon the following ideas: Suppose
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G and C2 are curves in two conformally euclidean spaces whose conformai

curvatures are the same functions of their conformai arc lengths. Then a

mapping is established between G and C2 so that points with equal values

of the conformai arc length parameters correspond. It may then be shown that

this mapping may be imbedded in a conformai transformation between the

two spaces. This conformai transformation necessarily maps the spaces on

each other in such a manner that G and G correspond. The proof just out-

lined will not be given in this paper.

If an Sn of constant curvature K is mapped conformally on an Sñ of con-

stant curvature K' where Sn and Sñ are spaces of class C3 and « > 2, then one

readily finds from (4.19) and (4.20) that the mapping function a(x{) satisfies

the differential equations

(7.1) an = - § [e2'K' - K + Ai«r]fc«.

Conversely, if a transformation whose mapping function is a solution of (7.1)

is applied to Sn, the image space must be Sñ ■■ Suppose that both 5„ and Sñ

are euclidean spaces. Then K = K' = 0. In this case (7.1) may be written as

(7.2) V^ = -fgu
2f

where \p is defined by (5.2). Let the xi be cartesian rectangular coordinates.

Then g», = 5j and (7.2) becomes

av      Ai* i
—:—; =-h.
dx'dx1       2\p

The solution of these equations is easily found to be

(7.3) 4* = a, a > 0,

or

n

(7.4) i = £ô(x* - d¿)2, b > 0,
¿=i

where a, b, d* are real constants. The point given by x* = d* is a singular point

of any conformai transformation associated with (7.4). It follows that every

mapping function that maps Rn (n>2) on itself conformally must satisfy (7.3)

or (7.4) and conversely. We consider the group of conformai transformations

of R„ into itself more fully in the next section. At present, we only prove the

following theorem :

Theorem 7.1. A conformai transformation of Rn (n>2) into itself exists

which transforms any given M-set M into any other given M-set M of the same

order.
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It is shown in §8 that if the order of Af is « then the transformation is

uniquely determined. The proof of the theorem follows. Let the sets M and Af

be {x\ vi, („jt;*, pt, J, L] and {x\ v\ (a)V\ pi, J, L\ respectively. We consider

two cases.

(1) Suppose fii —pi and 7/7 = 7/7 at the point P whose coordinates**'be-

long to A7. Then a unique positive(52) constant a exists so that 7 = a/, 7 = a7.

If we subject i?„ to the magnification of similitude with center at P deter-

mined by \p = e-° = a it follows from (3.7), (4.22) and (6.6) that [pa, J, L]

transform into {fii, J, L\. Suppose that the magnification transforms vi, Mn{

intoi»'', (a)77''. Then the normalized bein v'*, (a)7;'*at P may be mapped on v\

(a)7j' at P by a motion in i?„ where P is the point whose coordinates x* belong

to Af. Since fii, J, L are metric geometric objects, this motion leaves them un-

changed. Hence Af is transformed into Af by means of a magnification of

similitude (7.3) followed by a motion.

(2) Suppose at least one of the equations in the hypothesis of case (1) is

untrue. We choose cartesian rectangular coordinates in i?„ so that P is the

origin of coordinates and yl = j'i=l, v^ = vy = Q, (7 = 2, 3, • • • , »). It follows

that pi — fii = 0. We now determine unique constants b, d 'so that a conformai

transformation associated with (7.4) transforms Af into Af. At the origin, we

find from (7.4) that

n

e-= bJZd1'1 c.i = 2di/zZdj2.
J=l i

If we substitute these values in (3.7), (4.22) and (6.6) and write

Ai = (pi - fid/2,        B = J/J,        D = (77 - 7l)/27

we find

¿i = 0, d-» = AyZ2d'\        y = 2, 3, • • ■ , «,

B = b¿2 di%, D = bd\
i

These equations lead to

2 J!-,       2 2

bB = B ¿ZAi + D ■
7=2

Since 7>0and 7>0, B>0 and the above equation gives a unique solution

for b. The value of b obviously cannot be negative and also cannot be zero

sincein this latter case Ai = A2= ■■■ =An = D=Q which is impossible accord-

ing to the hypothesis. Then á'=7*/o and dy = BAy/b. The unique numbers

d1, d2, ■ ■ ■ , d" cannot all be zero for the reason just given. Hence the origin is

(B) The positive sign of a and, in case (2) below, of b is due to our definition of / as non-

negative. If both positive and negative J's were permitted, the present discussion and the con-

formal equivalence theorem would be needlessly complicated.
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not a singular point of any transformation associated with (7.4). Any such

transformation T would transform {m, J, L\ into \ßu J, L\. If it also

changes v\ Mr]i at P into v'{, (a)??'* at P' then the norrhalized bein v'\ («)»?'*

at P' may be transformed into V\ (a)?j* at P by a motion Z\ of R„. Then T\T

transforms M into M. The proof of the theorem is thus completed. A similar

theorem exists for any R„ and may be proved by mapping 7?n conformally

on R„ and using Theorem 7.1. We may now easily prove the fundamental

conformai equivalence theorem:

Theorem 7.2. Let (i)7?„ and (2)Rn be conformally euclidean spaces of class C%

and dimensionality »>2 awa" let G and C2 be curves in (i)P„ and mRn respec-

tively whose conformai curvatures are the same functions of the conformai arc

length. Then a conformai transformation exists so that (x)Rn<^>(2)Rn a«á G<->G-

In short, this theorem states that curves in Rn's whose Jx,J2, ■ • ■, JT-x, Jn-i

are the same functions of 5 are conformally equivalent. To prove the theorem,

we note that conformai transformations Tx and T2 exist which map (i)7?„ and

(2)7?„ respectively on 7?„. For these transformations we also have G—>G and

G—>G respectively where G and G are curves in Rn. Since Jx,J2, • ■ •", Jr-x, Jn-t

exist for G and G, in accordance with the italicized statement preceding The-

orem 5.2, they exist for G and G also. As a consequence of Theorem 5.2, the

J's for G and G are the same functions of their respective conformai arc

lengths 5.

Let Pi and P2 be two points which belong to G and G respectively such

that the conformai arc length parameters for G and G at Px and P2 have

the same value S0. Yet Mx and M2 be the Tlf-sets associated with G and G

respectively at Px and P2. As a consequence of Theorem 7.1, a conformai

transformation T of Rn into itself exists which transforms Mx into M2. This

same transformation transforms G into some curve C passing through P2

for S = So and having the associated Af-set M2 at P2. For reasons like those

given in connection with G and G, the J's for C and G are the same func-

tions of S. It follows from Theorem 6.1 that C coincides with G in a suffi-

ciently small neighborhood of P2. Hence the conformai transformation

T^TTx transforms u)7?„ into (2)Rn mapping sufficiently small arcs of G and

G on each other. This proves Theorem 7.2. As a result of Theorem 6.1 and

Theorem 7.2, the equations

Jx  = Jx(S), J2  = J2(S),   ■   ■■   , /T_!  = Jr-x(S), Jn-x  = Jn-x(S)

may be regarded as conformai intrinsic equations of a curve in Rn determin-

ing the curve up to a conformai transformation of the space. A detailed con-

formal geometry of curves could be developed by a study of important

particular conformai intrinsic equations.

8. Groups of conformai transformations in euclidean space R„ and in a

conformally euclidean space Rn. A euclidean space Rn admits a group G of
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conformai transformations of the space. According to the italicized statement

preceding Theorem 7.1, the mapping function which is associated with any

of these transformations must satisfy (7.3) or (7.4). Suppose that 7i and 72

are two transformations of G which are associated with the same ip. Then 7i

and 72 induce changes in the metric element of arc ds of Rn which may be

written as

dsi = yf/^ds,        ds2 = yp~lds

respectively. If we write the point transformations as

7,(7) = Pi,        T2(P) = 72

then the point transformation T3 defined by T3(PÎ) = P2 is a conformai trans-

formation belonging to G for which the induced change in metric is dsi = dsi.

Hence 73 is a euclidean motion and 72 may be written as 72= 737i.

If yp is given by (7.3), one transformation associated with \p is a magnifica-

tion of similitude having any point of Rn as center. If \p is defined by (7.4),

one transformation associated with \p is readily found to be the inversion with

respect to the hypersphere whose center is given by xi = di and whose radius r

is b~112. For the equations of this inversion are

r2(x' — dl~)
x'1 = -=±-— + d\

£,(*' - d')2

From these equations, we find that

£ aV'2 = -¡=-— £ dx*'
i       [zu** - di)2]2 r

which is a conformai transformation of R„ with ip given by (7.4). These results

and the remarks of the first paragraph of this section prove the theorem of

Liouville(63).

Theorem 8.1. The most general conformai map of Rn (n > 2) on itself is the

product of an inversion with respect to a hypersphere by a motion or the product

of a magnification of similitude by a motion.

Now in the proof of Theorem 7.1, it was noted that the geometric objects

{pi, J, L] belonging to the two Af-sets Af and Af uniquely determine the

constants a or b and dl which define a mapping function associated with a

transformation of G. Hence if the orders of Af and Af are each w so that the

v*, mv' form normalized «-biens, it is readily seen in consequence of Theorem

8.1 that the two Af-sets determine a unique transformation of G.

(53) por n>3i this theorem was proved by S. Lie, Über Complexe, insbesondere Linien- und

Kugelcomplexe, mit Anwendung auf die Theorie partieller Differentialgleichungen, Mathematische

Annalen, vol. 5 (1872), pp. 145-246. Also cf. L. Bianchi, Lezioni di Geometría Differenziale, 2d

edition, vol. 1, 1902, pp. 375, 376.
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Suppose that the geometric objects in M are fixed while those which be-

long to Af range over all admissible values. Then the corresponding conformai

transformations range over the totality of transformations belonging to G.

Hence the geometric objects of Af determine the parameters of G. The nor-

malized «-bein at ariy point provides «(« + l)/2 independent constants, the

vector p.* orthogonal to vi contributes « — 1 additional constants and /, L are

two more parameters. As a result the group G has exactly (»+l)(« + 2)/2 es-

sential parameters.

Let Rn (n>2) be a conformally euclidean space and suppose that Tx is a

conformai transformation which transforms Rn into Rn. If T is any trans-

formation belonging to G, then the conformai transformation T=TxlTTx

maps Rn on itself. The totality of these transformations { T} form the com-

plete group G of conformai transformations of Rn upon itself. The group G

is the conformai image in Rn of the group G in Rn and is obviously independ-

ent of the particular mapping Pi. In consequence of the preceding discussion

we have the theorem.

Theorem 8.2. Every conformally euclidean space Rn («>2) admits a con-

tinuous group of conformai transformations on itself having (w + l)(« + 2)/2 es-

sential parameters.

Any path in Rn of the group G is a curve C which is described by a point

as the latter undergoes the transformations of a one parameter subgroup of G.

If Pi and P2 are any two points of C, a conformai transformation belonging

to this subgroup exists which maps C on itself so that Pi coincides with P2.

Now it may be shown that if(54) the relative conformai curvature J?*0 then

the conformai curvatures Jx, J2, ■ ■ • , JT-x, Jn-x of C exist. Hence it follows

from Theorem 5.2 that the Ps have the same values at Pi and P2 and there-

fore each conformai curvature is constant along the curve.

Conversely, let C be a curve of Rn each of whose conformai curvatures is

equal to a constant. In consequence of the conformai equivalence theorem, a

transformation of G exists which maps C on itself so that any two given points

Pi and P2 coincide. These transformations may be chosen (in those cases

where they are not already determined) so that they belong to a one parame-

ter subgroup of G. Hence C is a path of the group G.

The paths in R„ of the group G are readily seen to be the conformai images

of the paths in Rn of G. If R„ is of class C3, the italicized statement preceding

Theorem 5.2 shows that the conformai curvatures of each path of G exist.

If the line of reasoning employed in the discussion of the paths of G is now

followed, we arrive at the following theorem:

Theorem 8.3.  The paths whose relative conformai curvatures do not vanish

(54) It is easy to prove, using the results of §10, that every curve in Rn whose relative con-

formal curvature vanishes is a path of G.
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of the group of conformai transformations of an Rn (« > 2) of class C3 upon itself

coincide with the curves in Rn each of whose conformai curvatures is equal to a

constant.

The results of this and the preceding sections obviously apply to a curve

in Rn which is subjected to any transformation of the continuous group G.

Consequently, at least for curves in R„, the results of this paper might have

been obtained by using the classical methods of Lie and his followers which

depend upon the elimination of the parameters of G. Our results would thus

constitute the inversive theory of curves when applied to the inversive group

G. The present methods based upon the conformai derivative yield consider-

ably simpler proofs than would be obtained by elimination of the parameters

of G and the results have greater applicability, being valid for a curve in

any F„.

From the standpoint of Lie theory, this inversive geometry is simply the

"natural geometry" of curves in an Rn under the transformations of G. It is

analogous to the well known natural geometry of curves in an i?„ associated

with the metric group. It has been shown by Pick(65) that it is possible to

develop a "natural geometry" of curves (at least when the enveloping space

is an P2) for an arbitrary continuous group and this theory has been carried

further by Kowalewski(66) and his students using the methods of the classical

Lie theory.

9. Conformai differential invariants. A conformai differential invariant 77

of a curve . C in F„ whose equations are xi = xi(t) is a scalar function of the

variables :

dxi    d2xi .        .   dgij      d2gij

(9.1)       **«). — ■ —> ••• .<« **«)],—■> nrr--' >dt       dt2 dxh     dxhdxk

defined along C which, at any point P of Ç, has the same value for any admis-

sible change of coordinates x* or of the parameter t and whose value also

remains unchanged if Vn is mapped conformally on F„. This last condition,

which gives 77 its conformai character, is equivalent to the assumption that 77

is invariant if the g„ and their derivatives are replaced respectively by e2"ga

and their derivatives while the other variables in (9.1) are unchanged.

The simplest conformai differential invariants of Care its conformai cur-

vatures. The most important problem concerning conformai invariants is the

discovery of all such invariants. Before answering this question (at least for

curves in an Rn) we discuss the relationship between two apparently distinct

processes for constructing new conformai differential invariants from known

invariants.

(56) G. Pick, loc. cit., p. 139.

(56) G. Kowalewski, loc. cit., chap. 3.
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If 77 is a conformai scalar, then dH/dS, where 5 is a conformai arc length

parameter, is also a conformai invariant. This classical method of construct-

ing new invariants is a direct consequence of the properties of S. In particular,

any function of the conformai curvatures and their derivatives with respect

to 5 is a conformai invariant. A different method is apparently provided by

Theorem 5.1. For the relative conformai scalar Q defined by

(9.2) Q = JH

obeys (5.6) and it follows from Theorem 5.1 that the scalar

r      d2Q /dQV        2       „    si      4

with Q defined by (9.2) is a conformai invariant if the derivatives of Q in

(9.3) exist. We now show that q may be expressed as a function of Jn-i and

conformai differential invariants obtained from H by the classical method.

A straightforward calculation using (4.23) shows that

dQ dJ            dH
— = H-\- J2-,
ds ds              ds

(9.4)
d2^ d2J            dJ   dH            d2H
—- = H-h 3/-\-J3-
ds2 ds2             ds   dS             dS2

If we substitute the values given by (9.2) and (9.4) in (9.3) and use (5.9), we

find

r /dH\2 d2Hl
(9.5) ,= [„„,_,_ 3(-)+2ff— ]/«

This discussion shows that the only conformai scalar that one may construct

by the method implicit in Theorem 5.1 and which is not obtainable by the

classical method is Jn-x itself. To obtain Jn-x, we simply set 77=1 in (9.5).

Every other q is a function of Jn-x and conformai invariants obtained from H

by the classical method.

We return to the problem of finding all conformai differential invariants

of a curve. Since the value of any conformai scalar 77 is independent of the

parametrization of the curve, we may replace t in (9.1) by a conformai arc

length parameter ,S. In virtue of equations (6.3), the successive derivatives

of xi with respect to 5 may be written as functions of the conformai curva-

tures Jx, Ji, • ■ ■ , Jr-x, Jn-x and their derivatives with respect to ,S and of

the gij and their derivatives with respect to the xk and of x\ i>\ (<*)?7\ p\ J, L.

Since the principal normal p* is orthogonal to p\ it may be written as(")

(57) If T<n — 1, we choose (T+n>)\ (r+!)i?*, ' * • , (»-D'7i as any normalized (» — r — l)-bein or-

thogonal to v', mr¡i, (2)1)', • • • , (t)'!'.
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/a* =£aaa (a)77'. Hence 77 is a function/(wi,co2, •'• • , cor) where the co's are to be

replaced by the variables:

oga      d2gij
X*, V\   (a)V{;   Cta, J, 7;   gij,

dxh    dxhdxk

dJi     d2Ji dJ2     d2J2 dJr_i     d2Jr-i
(9.6)     7i,-) -) • • • ; J2,-> -> • • ■ ; Jr-i, -> -

dS     dS2 dS     dS2 dS dS2

dJn-l        d2Jn-l
Jn-1,

dS dS2

Of these variables, the conformai curvatures and their derivatives with re-

spect to S as well as v\ Mn' are conformai geometric objects while ga and

their derivatives with respect to xk and aa, J, L are metric geometric objects.

When the enveloping space of the curve is subjected to a conformai trans-

formation, H is the same function /(coi, u>2, • • • , cor) with the co's replaced by

the variables x\ v\ (a)7j\ da, and so on, which correspond to (9.6) under the

conformai mapping and H = H at corresponding points. We now prove the

following theorem of which the converse statement has already been demon-

strated :

Theorem 9.1. The most general conformai differential invariant of a curve

in an Rn («>2) is a function of the conformai curvatures and their derivatives

with respect to a conformai arc length parameter. Conversely, every such function

is a conformai differential invariant.

In the proof of the theorem, we consider a conformai differential invariant

Ü defined at any point of a curve in an Rn. By means of a conformai mapping

of Rn on Rn, 77 becomes a conformai scalar defined at any point P of a curve

Cin Rn. We therefore first discuss invariants of Cin Pn. In R„, the coordinates

x* may be chosen so that they belong to a rectangular cartesian coordinate

system U such that ga=8), dgn/dxh = 0, d2ga/dxhdxk = 0, ■ ■ ■ throughout a

region of Rn containing P and at P, x* = 0, vi= 8\, (a)7j'= S(„+1). If Rn is sub-

jected to a conformai transformation^8)

a*1    -      /yl( /y<l        y2       »     «     . -V^l -V *    -      yt{  /V*l        -v*¿       ... «V* ** 1
•V        -      .V    V «V    j     A/    j j     Jb     Jf vV       -      "V    V «a/     j     -A>     j j     .V     J

belonging to G, C is mapped on another curve C in Rn and P corresponds to P.

In this transformation, the ¿c' have been chosen so that they belong to

a rectangular cartesian coordinate system U such that ga=8ij, dgn/dxh = 0,

d2gij/dxhdxk = <d, ■ • ■ throughout a region of R„ containing P and at P,

xi = 0, i>'= 8[, (a)Vi= à\a+i)- It is clear that in the coordinate systems í/and U,

the ga and their derivatives as well as x\ v\ („jt;' remain unchanged by con-

(ss) In this proof, we no longer assume that points with the same coordinates correspond

as was done previously.
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formal transformations of G. Of course the conformai curvatures and their

derivatives with respect to 5 also remain constant. Hence in these coordinate

systems, the only possible variables of 77 are aa, J, L.

As a consequence of Theorem 7.1, a conformai transformation of G exists

which transforms the set aa, J, L into any other set äa, J, L with J>0, />0.

Hence a«, /, L behave like independent variables with respect to conformai

transformations of G so that if any of the aa, J, L are effective variables, H

cannot remain invariant. This contradiction shows that H is independent of

aa, J and L. Hence, in the coordinate system U, H may be written as

dJi

2'ls''""'

dJr-X dJn-X \

'-u-jr'""'Jn-u~dj~' '")•

Since the values of H as well as of the Ps and their derivatives with re-

spect to S do not depend on the coordinate system, (9.7) is valid in every co-

ordinate system. (Or otherwise: The values of the ga and their derivatives

and of x\ v\ Mr]i at P behave like independent variables with respect to

coordinate transformations, subject to normality conditions for vl, Mrj{ while

H and the conformai curvatures and their derivatives with respect to 5 re-

main constant. Therefore H cannot involve ga, x\ j>\ ^v1 as effective vari-

ables.) This observation proves the theorem for curves in Rn and conformai

transformations belonging to G. But since H and the J's and their derivatives

with respect to 5 are unchanged by a conformai mapping of R„ on an Rn,

(9.7) is also valid for curves in Rn. The proof of Theorem 9.1 is thus com-

plete!59).

It is clear that a similar proof in the metric theory would show that every

metric differential invariant of a curve in an Rn is a function of the metric curva-

tures and their derivatives with respect to a metric arc length parameter, and con-

versely. We note that Theorem 9.1 is not true in general Riemann spaces. For

in a space Vn whose dimensionality » exceeds 3, the Weyl conformai curva-

ture tensor Cjj* is different from zero(60) if F„ is not an Rn. Then unit vectors

d)0*, (2)0*, (3)0*, («0* any two of which are either identical or mutually orthogo-

nal exist at a point P of F„ such that G# (i)0^ (2)0* (3)0' (4)0* is different from

zero. Now, in accordance with Theorem 6.1, curves G and G exist in Vn

whose conformai curvatures are the same functions of the conformai arc

length and which pass through P so that the 0*'s are vectors of their moving

conformai (r + l)-beins and whose relative conformai curvatures J at P are

(9.7)

/      dJx
H = H[Jx,-

\      dS

d2Jx

dS2

(59) A very short non-constructive proof for the analytic case may be based on Theorem 7.2.

(60) H. Weyl, loc. cit., p. 404, and J. A. Schouten, loc. cit., p. 80.
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any two different positive constants a and b. Since C¡jk is a conformai tensor,

it follows readily from (4.22) and (4.26) that 77 defined by

—2    h i i k

H  = J     Cijk (i)8h (2)0    (3)9    (4)0

is a conformai differential invariant of Ci and C2. Since a¿¿b, H has different

values at P for Ci and C2. Since the values of corresponding conformai curva-

tures and their derivatives with respect to conformai arc length parameters

are the same for Ci and C2, 77 cannot be a function of the conformai curva-

tures and their derivatives with respect to a conformai arc length parameter.

A similar example in the metric theory of a curve in a space which is not a

space of constant curvature could be constructed by means of the Riemann

curvature tensor Rhijk.

10. Conformai null curves. The results of the preceding sections obviously

cannot be applied to a curve C whose relative conformai curvature vanishes

identically. In this case the conformai arc length between any two points of C

is zero, and conversely. Consequently, we call any curve along which 7 = 0,

a conformai null curve(61). As a consequence of (4.21) with 7 = 0, it follows

that in any F„ of class C4 (class C3 if F„ is conformai to an E„), a unique con-

formal null curve is determined by a set of initial values for x\ vi, p\ Hence,

in contrast to the metric case, real conformai null curves exist in F„ even

though its first fundamental form is positive definite. In virtue of (4.22), the

conformai image of a conformai null curve is also a conformai null curve. We

now derive a number of simple properties of these curves. The first of these

is the theorem:

Theorem 10.1. AcurveCin F„(«> 2) is a conformai null curve ifand only

only if a Riemann space F„ awà" a conformai transformation of Vn on Vn exist

such that. C is mapped by this transformation on a geodesic of F„ which is also a

line of principal Ricci curvature of Vn-

In the proof, we begin with the fact that a conformai transformation of F„

on some Vn exists which maps any curve (not necessarily a conformai null

curve) on a geodesic of F„. In other words, every curve is conformally geodesic

in some F„. The proof of this result is simple and will appear in another paper.

As a consequence of this proposition, the given conformai null curve Cis con-

formally equivalent to a geodesic C of some F„. For C, lci = k2 = 0. Of course

the relative conformai curvature 7 of C is also zero. It follows from the defini-

tion of 727j' in the equation analogous to (4.21) that

(10.1) Rhkvk(gih - rv») = 0

at each point of C. If we multiply this equation by gu and sum for i,

(61) In the following discussion we do not consider the non-real conformai null curves which

are solutions of ds2 = gijdx'dx' — 0.
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(10.2) [Rjk - Agjk]vk = 0

where A = R¿kV>Vk. Hence Vk is a Ricci principal direction (62) of F„ so that C

is a geodesic line of principal Ricci curvature. Conversely, if C is a curve of

this kind, kx = íc2 = 0 and (10.2) holds. In virtue of these equations, (10.1) is

true and J2rji = 0. From this equation it follows that J = 0. In accordance

with (4.22), J must vanish identically on any conformai image C of C. This

completes the proof of the theorem.

If V„ is an En, (6.7) holds and RllkVk(gih — vivh) =0 for every curve in £„.

Hence, as a consequence of (4.21), 7 = 0 if and only if kx is constant and k2

is zero. In this case, the curve is a geodesic circle of £„. We state these facts

in this theorem:

Theorem 10.2. Every conformai null curve of an En (w>2) is a geodesic

circle of En, and conversely.

As a result of this theorem, a curve in an En is a conformai null curve if

and only if it is conformai to a geodesic circle in £„. If the En is an R„, any

geodesic circle may be mapped on a straight line of P„ by a conformai trans-

formation belonging to G. This proves the theorem:

Theorem 10.3. The necessary and sufficient condition that a curve C in an

Rn (» > 2) be a conformai null curve is that C be the conformai image of a straight

line in Rn.

As an immediate consequence of the theorem, we note that if G and G

are conformai null curves of two conformally euclidean spaces (i)7?„ and (2)5„

respectively then a conformai transformation exists so that (i)7?„<->(2)7?n and

G<->G. In other words, all conformai null curves in Rn's are conformally

equivalent.

11. Curves in an Einstein space £„. The defining equation (4.21) for the

first conformai normal and the relative conformai curvature of a curve C

in Vn (n>2) becomes

dkx
(11.1) J2V{  =  - (2)1-* +  kxk2  (i)*1

ds

at a point of C whenever the additional equation

(11.2) Rhkvk(gih - v^) = 0

is satisfied. A line of reasoning similar to that employed in connection with

(10.1) and (10.2) shows that (11.2) is the necessary and sufficient condition

that i>i be a Ricci principal direction of Vn. Now the second of the Frenet

equations (4.13) is equivalent to

(62) L. P. Eisenhart, loc. cit., pp. 113-114.
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Dp1 2       i      dki       i i
- =   —   «1  (l)I'   H-(2)1'    +   ¿1¿2  (S)"
Ds ds

where pi = ki a)V' so that (3.22) shows that

bpx      dki
(11.3) —- =-mv{ + klk2 (3)v\

bs        ds

A comparison of (11.1) and (11.3) and the preceding remarks prove the theo-

rem:

Theorem 11.1.  The necessary and sufficient condition that

bp'
(11.4) 7V = --

05

¿>e true at a point of a curve of V„ (n>2) is that the tangent to the curve at the

point be a Ricci principal direction of F„.

Of course, if (11.4) is true at all points of C, then C must be a line of prin-

cipal Ricci curvature of Fn. It follows that (11.4) is true for all curves of F„

if and only if F„ is an En. We suppose this to be the case in the remainder of

the section.

Let C be a curve in En. If we find the successive conformai derivatives of

(11.1) with respect to 5 and make use of (3.22), (4.23) the Frenet equations

(4.13) and the conformai Frenet equations (4.25) we obtain a series of equa-

tions of the form
1 i 1 i 1 i

Bl  (1)7/    =  Ai   (i)V    + A3   (3)J>  ,

2 ii 2 ,' 2 »2 i 2 i

Bl   (1)7?   + B2   (2)77    = A2   mv   + A3   mv   + Ai   wv ,
(11 .o)

i
ta i ta i ta i ta i ta i

Bl   (1)77    + Bi   (2)77    +   •   •   •   + Bu  (a)7J    =  ^42   (2)*    + A3   (3)C    +   •   •   •

_¡_    ," '
T ^ta+2  (u+2)V  .

The B's are functions of the relative conformai curvature, the conformai cur-

vatures (except 7„_i) and their derivatives while the A's are functions of the

metric curvatures and their derivatives. Thus

12 2 dJ 2 3
Bi = J , Bi = 27->        B2 — J Ji,

ds

1 dki             1                             2      d2ki 2
A2 =-,        A3 = k\k2,            A2 =-£i&2,

ds ds2

2 dki                dk2 2
A3 = 2 -ki + ki-}             Ai = ^i^2^3.

ds ds

and
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By means of equations (11.5), we may write J and the conformai curvatures

as functions of the metric curvatures and their derivatives with respect to s.

Thus, from the first equation, it follows that

/dkx\2
J> - (-) + CM,)'.

One readily finds, if w 5= » — 1, that

u> «+1

Bw  =  J • JxJ2  '   *   '  Jw—X,

iij+i       a     w w

jd»     = — Bw + JJu-i7?o>-i,

(11.6)
^«+2  =   kxk2 •   •   •   ku+1,

a" a"~X l    a"_1
^u-fl   = J^u+l   "T"    ^ul^4 O)

ds

We now derive a number of results which interrelate the zeros of the met-

ric and conformai curvatures. The first of these is the theorem(63) which fol-

lows

Theorem 11.2. If kT+\ = 0 and either kw = 0 (w<r+l) or dkT+1/ds = 0

(0 = T = n — 2) at a point of a curve in En (n>2) then JJxJ2 ■ ■ • JT = 0 at this

point.

The proof follows. If JJxJ2 • ■ ■ P_i = 0 at a point P, the theorem is

proved. We consider the case where JJxJi • ■ ■ Jr-x9*0 at P. Suppose that the

hypothesis of the theorem is satisfied at P. Then (11.6) with w = t, t + 1 shows

that yi;+2 = v4;|2=^rÏ3 = 0atP. Now the assumption JJxJ2 ■ ■ ■ JT^x9*0atP

makes it possible to solve the first t equations of (11.5) for o)??', (2)7?*, • ■ • , (T)77*

as vectors in the linear vector space F determined by (2)^*, (3)f*, • • • , (t+i)P'.

Since (i)»?*, mnl, • • • , wV* are independent vectors, they may serve as a basis

for F so that ^v', <3)V\ ■ ■ ■ , (r+of* may be written as linear combinations of

cur;% (2)77*, • ■ • , (r)»?*. If these solutions for the p*'s are substituted in the right

member of the (r + l)st equation of (11.5), it is possible to solve for P/|j (-r+x)Vi

as a vector in the linear vector space V. Since all the conformai normals are

independent, it follows that Pv£{ = P+2Ji/2 • • • Jr-xJ, = 0 which completes

the proof of the theorem.

We now derive a result which is in the nature of a converse of the above

theorem.

(63) If t = 0, we write J<¡ = J. In this case, some of the statements in the proofs of §§11 and 12

are either immediate or vacuous. The slight amendments which this necessitates can easily be

supplied by the reader.
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Theorem 11.3. If 7T = 0 (O^r^n — 2) at a point of a curve in En (n>2)

then kik2 ■ ■ • kT+i = 0 at this point.

We first consider the case where JJiJ2 • • ■ 7T_i?i0 at the point P.

Then, as above, it is possible to solve the first r equations of (11.5) for

<uV. w7?*. " * ' i WJ" as linear combinations of {2)v\ (3)v\ ■ ■ ■ , ^^v1, ^+2)V\

Since 7r = 0, Pv£} = 0 and (T+i)W' is absent from the (r+l)st equation of (11.5).

Hence, if we substitute the above solutions for (1)77', («77', • • • , (T)77' in the

left member of the (r+l)st equation, ArrX\ (r+3)«'' is found to lie in the linear

vector space determined by mv\ ^v1, ■ ■ ■ , {,+2)Vi. As a consequence,

ATTXl = kik2 ■ ■ ■ kT+2 = 0atP.

We now proceed to the case where 77i72 • • • 7T_i = 0 at P. In this case,

anw^O exists so that 7W = 0 and JJ1J2 ■ • ■ 70,-1^0 at P. The discussion of

the preceding paragraph then applies so that kik2 • • • ka+2 = 0 at P. The theo-

rem is thus proved in all cases.

As a consequence of the two preceding theorems, we note this theorem:

Theorem 11.4. 7/¿T+i = 0 (O^tSb-2) along a curve in En (n>2), then

JT = 0. If 7t = 0 along a curve in En, then kr+2 = 0.

The proof is immediate. For if ¿T+i = 0, then Theorem 11.1 shows that

JJ1J2 • ■ ■ Jt — 0. If the 7's are continuous, it follows that a Jw (w^t) exists

which vanishes identically along the curve. Then 7„+i = 7„+2= • • • =7T = 0.

The second statement in the theorem is demonstrated in a similar manner.

We shall not prove but simply note that a theorem analogous to Theorem

12.3 exists in the case of a curve which is contained in a hypersurface 7£n_i

with indeterminate lines of curvature of an enveloping En.

12. Curves in a conformally euclidean space Rn. In the metric theory of a

curve in an Rn (n>2), &T+i = 0 (t^O) implies that the curve lies in a (r+1)-

dimensional totally geodesic subspace of R„. (The same result holds in an Sn.)

We denote such a subspace which is called a (r+l)-plane by PT+i. Hence

PT+i is an PT+i having zero normal curvature in an enveloping Rn. If R„ is

mapped conformally on itself or any other R„, then the image of PT+i in Rn

is denoted by Pr+i and is called a conformai (r+l)-plane. We assume that the

class of Rn is at least C3. Now it can be shown that a subspace having um-

bilical points maps into a subspace with umbilical points under any conformai

transformation of the enveloping space(64). If Rn is mapped conformally on

itself, then it follows that the PT+i of R„ must be umbilical and hence are the

(r + l)-dimensional spheres 5T+i of Rn- This also is a consequence of the fact

that every (r + l)-sphere is equivalent to a (r+l)-plane by means of a suit-

able inversion in Rn. Similarly, any (r+l)-dimensional subspace FT+i of an

Rn having only umbilical points must be a PT+i, and conversely. For if R„ is

(M) For example, cf. J. A. Schouten and D. J. Struik, Einführung in die neueren Methoden

der Differentialgeometrie, vol. 2, 1938, p. 211.
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mapped conformally on Rn, Vr+x is transformed into an umbilical subspace

of Rn, that is, an 5T+i. Since 5T+i is a PT+i, FT+i is one also. The converse is

established by reversing this argument. Thus the PT+i of an Rn are in one-to-

one correspondence with the (r + l)-spheres of Rn- In this section, some rela-

tions between the Pr+i of an Ra and the conformai curvature JT are derived.

In particular, we obtain a conformai analogue of the theorem stated in the

first sentence of this section.

A PT+i in Rn is simply a (r+l)-sphere and is determined by t + 3 points

which do not lie in the same T-sphere. By a conformai transformation of R„

on an Rn, it is readily seen that, in general, a PT+i of 7?„ is determined by

t+3 points of Rn- The osculating conformai (T+l)-plane at a point P of a

curve C in Rn is a PT+i whose order of contact with C at P is not exceeded by

any other PT+i. Since PT+x is determined by t + 3 points, the order of contact

of the osculating PT+i with C is not less than t + 2. If this order of contact

exceeds t + 2, we say that the osculating Pr+1 hyperosculates the curve C.

The discussion of the osculating PT+1 is considerably simplified by first

converting this PT+1 into a PT+i in Rn. We now proceed to this simplification.

Let Pr+i be the osculating conformai (r+l)-plane at a point P of a curve C

in Rn. Then a conformai transformation T exists so that 7?„<-»7?B, PT+]<->PT+1.

Suppose G->G, P<->Pi. Since T is continuous, the order of contact is preserved

and PT+i is a (r+l)-plane in Rn whose order of contact with G at Px is equal

to that of PT+i with C at P. We choose rectangular cartesian coordinates

x' in R„ so that Pi is the origin of coordinates and the moving «-bein

d)"*, (2)^*, ■ • ■ , (n)f' of G takes the position

t 1 t i i i

(12.1) (x)v   = Sx, mV   = ô2, • ■ ■ , („)V   = 5¡n

at P. Since the order of contact of Pr+i with G is at least r + 2, PT+i osculates

G (actually PT+i hyperosculates G since the "normal" order of contact of

an osculating (r+l)-plane with a curve is t+1) and hence must contain

(i)»'*, mvi, • • • > Ct+d"* at Pi(65). As a consequence of (12.1), the equations of

Pt+i are

(12.2)
Xr+2   =   0,      XT+3   =   0,      •   •   ■   ,        Xn   =   0.

If the equations of Care x'=x'(s) where s is a metric arc length parameter,

then these equations may be written as(66)

(65) The well known fact that an osculating PT+i contains the tangent vector and the first t

normals at the point of contact need not be assumed as is done here but may readily be demon-

strated using equations (12.1), (12.3) and (12.4).

(M) The analyticity of the x*{s) is not necessary as we may replace (12.3) by a finite series

using the extended theorem of the mean.
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/dx\           / d2x\     s2
(12.3) ** = (*0o + I-)•** + (-)    —+•••

\ds A \ds2 Jo   2!

where the subscript zero signifies that the corresponding expression is tobe

evaluated for x' = 0. Since dxi/ds = a)V\ we find by successive differentiation

with respect to 5 and use of (4.13) that

dxi i
= Di (i)" ,

ds

d2xl

ds2

(12.4) d3xi

ds3

2 t 2 <
=  T>1   (1)"    + T>2   (i)V

3 i 3 t 3 í
=  T>1   (1)«'    + 7>2   (2)V    + 7>3   WV  ,

d"xl

ds"
= Di   (i)V   + Di   (2)C   +  ■ ■  •   + Da wv

The 7>'s are functions of the metric curvatures and their derivatives. Thus

7)} = l,7>i = 0,7>2 = &i, 7>i = — k\, D\ = dki/ds, D\ = kik2. It is a simple conse-

quence of (4.13), that if O^w^w —2,

ta+i

Dta+i  =   &1&2  -   -   *   k<a+l,

(12.5) „+2 d        „+1 „+1
Da+1  =  -Du+i +   kta'Dta      .

ds

Now by definition, G has contact of order w with PT+i at Pi if the perpen-

dicular distance from a nearby point P2 on Ci to PT+i is an infinitesimal of

order w + 1 with respect to the infinitesimal arc length PiP2. By a comparison

of (12.2) and (12.3), it follows that the order of contact of G with Pr+i is

one less than the lowest power of s which occurs in the expansions of

xT+2(s), xT+3(s), ■ ■ ■ , xn(s) in (12.3). In virtue of (12.1) and (12.4), the equa-

tions (12.3) for i=r + 2, T + 3 are

r+î r+2 5I+2 T+3 S'+3

x      = 7>T+2-h Dr+2-r • • • ,
(r + 2)!  T     T+2   (t + 3)\

T+3 T+3 ST+3

(12.6)

x '    = 7^+3---:-h •
(t + 3)!

where the T>'s are to be evaluated at the origin and it is seen that xT+i(s), ■ ■ ■ ,

x"(s) involve powers of 5 greater than t + 3. Since the order of contact be-

tween G and Pr+i is at least t + 2,
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(12.7) D?+\ = 0

is a necessary condition. If PT+i hyperosculates C, then the order of contact

between G and Pr+i exceeds t + 2, and conversely. Hence

(12.8) D\\\ = 0,        Dt++\ = 0

are necessary and sufficient conditions(67) that the osculating PT+i hyperoscu-

late C. The conditions (12.7) and (12.8) are stated in terms of the metric

curvatures of G- We now find an equivalent statement in terms of the con-

formal curvatures of G at Pi and hence indirectly, in terms of the conformai

curvatures of C at P.

By comparison of (11.6) and (12.5),

tü+2 w 0)+2 w

(12.9) Dw+2 = Aw+2,        Da+x = Aw+1.

According to (11.5) and (12.1), at the origin,

(12.10) ("),?1 = 0'

to)****   =    („)7J"+4   =    ■   •   •    =    MV»   =   0.

It follows from (11.5), (12.1), (12.9) and (12.10) that

"+2 a <a+2

7j„+2  =   Bw  iw)7) ,

(12.11) ri""*"3        t>w+1 "+2 u+1 u+2
Dw+2 = Bw    („)?7      + Bu+x (u+i)1?

As a consequence of (11.6) and (12.11), the necessary condition (12.7) is

equivalent to

(12.12) /*+i/j/2 ■ • • JT-x MT+2 = 0,

and the necessary and sufficient conditions (12.8) are equivalent to

T+1 T + 2 T+2 T + 2

BT (t)T? +   / /l/2    -    •    •    JT-lJT '  (T+X)V =    0,

(12 . 13) r+2 t+3
/        JxJ2  •   •   •  Jt-xJt ' (t+1)77 =   0.

Suppose that JJxJi ■ ■ • JT-x9*0 at Pi. Then (12.12) shows that (T)J7r+2 = 0

at Pi. Then JT = 0 is the only solution of (12.13). For, if possible, let J, be

different from zero at Pi. Then, from (12.13), (r+i)T/T+2 = (7-+i)r/T+3 = 0. As a con-

sequence of (12.10), the rank of the vectors (dt/ , (2)T/i, • • • , (t+i)17* is less than

t + 1 which is impossible. Hence, if JJxJi • • • J,-x9*0 at Pi, (12.13) is equiva-

(") The discussion leading to equations (12.6) did not use the fact that PT+i hyperosculates

C\ and hence applies to the osculating PT+iof a curve C\ in all cases. Hence (12.7) is the neces-

sary and sufficient condition that the osculating PT+1 hyperosculate C\. If (12.8) holds as well

as (12.7), then the order of contact between G and P,+i is at least t+3.
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lent to 7r = 0 at Pi. Since the zeros of J, 7i, Ji, • • • , J, for C and G coincide,

this completes the proof of the theorem:

Theorem 12.1. A conformai (r + l)-plane (O^t^« —2) which osculates a

curve in an P„ («>2) at a point where JJ\J2 - • • 7T_i?i0 hyperosculates the

curve if and only if JT — 0 at the point of contact.

Incidentally, we have shown that if JJiJ2 ■ ■ ■ 7T_if^O and 7T = 0 at P

then C in i?„ is conformai to a G in Rn so that (12.7) and (12.8) hold at the

corresponding point Pi of G- In virtue of (12.5), the solution of (12.7) and

(12.8) ¡seither

dku
(12.14) ku = 0,        - = 0, «^r+1,

ds

or

(12.15) kw = 0, ku = 0, w<u^t+1.

The solution (12.14) with u<t+1 is impossible under the assumption that

JJiJi • ■ ■ Jr-iT^O at P. For if w<r+l, in accordance with Theorem 11.2,

JJiJ2 ■ • • Ju-i — 0 at Pi which contradicts the hypothesis. Similarly Theorem

11.2 shows that the solution (12.15) is possible only if u=t+1. These re-

marks prove the following converse of Theorem 11.2 for a curve in a con-

formally euclidean space:

Theorem 12.2. If JJiJ2 ■ ■ ■ JT-i^0 and 7r = 0 (0^t^«-2) at a point of
a curve C in an Rn (« >2), then C is conformally equivalent to a curve in Rn at

whose corresponding point £T+i = 0 and either dkr+i/ds = 0 or kw = 0 (w<t+1).

If C is in a PT+i of Rn, then this PT+i hyperosculates C at each of its points

so that, in accordance with Theorem 12.2, 77i72 • • • 7T_i 7r = 0 at each point

of G A proof similar to that of Theorem 11.4 shows that 7T = 0 along G Con-

versely, if 7T = 0 along C, the osculating Pr+i of C hyperosculates C at the

point of contact. However this fact need not imply that C is contained in a

PT+i since the osculating conformai (r+3)-plane may differ from point to

point. We shall show that this conjecture is never actually realized and that

7T = 0 implies that C lies in a Pr+i of i?„.

We consider the conformai geometry of a curve C which is in a Pr+i of R„.

Suppose that the equations of the PT+i in Rn which contains the curve C are

xa = y",        a = 1,2, ■ ■ ■ ,t + 1,        xr+2 = 0, • • • , xn = 0,

where the x{ are rectangular cartesian coordinates for Rn and the y" are the

rectangular cartesian coordinates of a point of PT+i. Let 0' be the components

in the x{ of any vector in the tangent vector space of PT+i and \pa the corre-

sponding components in the ya. Then
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(12.16) 4>   = t  •*,«

where the comma denotes covariant differentiation with respect to the y" and

the first fundamental form of Pr+i. In particular, the components v{ in the

x's and 0" in the y's of the unit tangent of C are connected by the equation

vi = 9a-x*a.

Let Dcpi/Ds and D\j/a/Ds* denote the absolute derivatives of 0* and \¡/a

with respect to the arc length of C and the first fundamental forms of Rn and

PT+i respectively. If we find the absolute derivative of both members of

(12.16), we obtain

Zty* Lty"      i i       a ß
(12.17) -=-x,a+x,aß^e

Ds        Ds*

where x,,aß = d2xi/dy"dyß. It is clear from the defining equations of PT+i that

the tensor x*aß satisfies the equation xjaj3 = 0. Therefore (12.17) becomes

D^       LhP"    i
(12.18) -= -r~x.a.

Ds        Ds*

If we equate the projections in the normal vector space of C of each member

of (12.18) and make use of (3.22), we obtain

b<¿>*      bip"    i
(12.19) — = —•*,„.

bs       bs*

Let<l>i = pi,t" = 8a in (12.18). Then

i a       i

P    =   X    -X,a

where p* and Xa are the principal normals of G in Rn and PT+i respectively.

As a result of this last equation, we may apply (12.19) with 0*=pi, \¡/a = \".

If t> 1, after account is taken of Theorem 11.1, we obtain

,„. 2   i *2*tti
(12.20) Ji,  =/   77    •*,„

where J*, r¡*a are geometric objects of PT+i analogous to /, 77* in Rn. A similar

notation is used for other conformai geometric objects in PT+i. We refer to

geometric objects of PT+i and Rn as surface and space geometric objects re-

spectively. (We do not pause to prove that it is unnecessary to assume the

existence of both the set of surface conformai objects and the set of space

conformai objects. The existence of either set implies the existence of the

other.)

- From (12.20)

(12.21) / = /*,
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(12.22) 77   = 7)    -x,a.

Since the metric arc length parameters s, s* may be chosen along C so that

s — s*, equations (4.23) and (12.21) lead to the conclusion that conformai arc

length parameters may be chosen so that

(12.23) S = S*.

Then, from (12.19)

b*'      bp*    i
(12.24 -=—•*.«.

bS       bS*

As an immediate consequence of the definition (5.10), and (12.21) and (12.23),

the last surface conformai curvature J* and the last space conformai curva-

ture 7„_i are equal.

In virtue of (12.22), we may let <pi = ni, \pa = r¡*a in (12.24). If we make

use of the conformai Frenet equations, the resulting equation is

i * * a       i

(12.25) Ji mv  = 7i (2)77    -x,a

from which

(12.26) 7l = 7j, (2)77    =   (2)7?      -x,a.

We now let 0' = (2)77', 4'a — (2)V*a in (12.24) and simplify the resulting equation

by means of (4.25) and (12.25). This gives

* l * a       i

J2   =  J2, (3)7?     =    (3)77    '     X,a-

Proceeding in this manner, we find that the successive surface conformai nor-

mals and conformai curvatures and the corresponding space conformai nor-

mals and conformai curvatures are equal. Since only t —1 of the conformai

curvatures which occur in the conformai Frenet equations of C as a curve in

Pr+i can be different from zero, it follows that the space conformai curvature

Jr vanishes identically.

It remains to consider the cases r = 0, 1 which were excluded in the

above discussion. If t = 0, Cisa geodesic and 7 = 0. Ifr = l,we write Xa = k *^a

where k* is the surface first curvature and £<* is the surface first (metric) nor-

mal of G If we proceed in the same way as above, we obtain

dk*    a     i
(12.27) 7V = —-f ■*.„,

ds*

7i = 0

instead of (12.20) and (12.25).
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Conformai- geometric properties similar to those derived above are en-

joyed by any curve C contained in a Pr+i of an 7?„. For a suitable conformai

transformation exists so that P„<->Pn, Pt+i<->Pt+i, G->G- Accordingly, the

above discussion applies to G in a PT+i of 7?„. However, since the vectors and

scalars mentioned in this discussion are the conformai normals, conformai

curvatures and conformai arc length, in virtue of Theorem 4.1 and Theorem

5.2, the results apply equally well to the curve Cin PT+i in Rn. These remarks

complete the proof of the theorem.

Theorem 12.3. 7/a curve C in an Rn (w>2) is contained in a conformai

(r+l)-plane PT+x (0=r = n — 2) then the Tth space conformai curvature JT van-

ishes along C. If t > 1, the conformai arc length, conformai normals and conformai

curvatures of C as a curve in the space Rn and as a curve in the surface PT+x are

related by the equations :

u = 1, 2, • • • , t,

w = 1, 2, ■ ■ ■ , t — 1,

It is now a simple matter to prove the converse theorem.

Theorem 12.4. If the rth conformai curvature JT (0=T = n — 2) of a curve C

in an R„ (n>2) vanishes identically, then C lies in a conformai (t + l)-plane

Of TLn.

The proof follows. We first consider the case t>1. Let

(12.28) Jx(S), J2(S),  ■■■   , Jr-x(S), Jn-l(S),

be the conformai curvatures of C in R„. According to Theorem 6.1, a curve G

exists in PT+i whose conformai curvatures are the functions (12.28). If the

PT+i is imbedded as a PT+x of Rn, G considered as a curve in Rn will have the

same functions (12.28) for its conformai curvatures as a result of Theorem

12.3. Then the conformai equivalence theorem shows that a conformai

mapping exists so that Rn<-*Rn, G->G- It follows that C lies in the con-

formal image of PT+i which is a Pr+i of P„. This completes the proof for this

case.

We now consider the remaining cases, t = 0 and t= 1. If t = 0, C is a con-

formal null curve and, by Theorem 10.3, C is conformai to a straight line in

R„. Hence C lies in a conformai 1-plane.

If t = 1, the only conformai curvature which is not zero is Jn-i(S). The

results of §14 make it possible to give a proof for this case in precisely the

same manner as was done for t> 1. However, we now indicate an alternative

5 = 5
i *a       t

(«)'/    -x,a,

*
J  = J

J w J  W1

Jn-l   —  Jr-
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proof which is independent of §14. Known existence theorems for differential

equations permit us to establish the existence of a solution k*(s*) of the sys-

tem of equations

d2q / dq\2
(12.29) 2q-^ - 3(—) - ki*Y = q<-Jn-i(Q),

I dki* I
(12.30) q2=   —  ,

I  ds*  I

(12.31) Q = jqds*.

Then a curve Cx exists in P2 whose (metric) first curvature and (metric) arc

length are k? and s* respectively. Let P2 be imbedded as a 2-plane in Rn. Ac-

cording to Theorem 12.3, the only nonzero conformai curvature of G as a

curve in R„ is the last conformai curvature. The relative conformai curvature

7 of G is related to k? by (12.27). Then (12.30) leads to the conclusion that

7 = o. A comparison of (12.31) with (4.23) shows that Q = S. Now the space

first curvature ki equals the surface curvature k*. It follows from (5.9) and

(12.29) that the last conformai curvature of G in Rn is 7„_i(.S). According to

Theorem 7.2, a conformai transformation exists so that P„<->Pn G->G- Hence

C must lie in the conformai image of the 2-plane which contains G. This com-

pletes the proof of Theorem 12.4.

As an immediate consequence of Theorem 12.4, if 7T = 0, C is conformai

to a curve G which is contained in a (r + l)-plane of R„. Hence the (r+l)st

metric curvature of G vanishes. We state this result, which is similar to that

of Theorem 11.4, in the theorem:

Theorem 12.5. If 7T = 0 (O^r^n — 2) along a curve C in an Rn (n>2),

then C is conformally equivalent to a curve in Rn whose (r + l)st metric curvature

kT+i is identically zero.

Since PT+i in R„ is a (r + l)-sphere, we have the following corollary of

Theorem 12.3 and Theorem 12.4: The necessary and sufficient condition that a

curve of R„ (n>2) lie in a (T+l)-sphere of Rn is that JT be identically zero. For

the case « = 3, r= 1, the condition becomes 7i = 0. This condition, when 7i is

evaluated in terms of the metric curvatures of the curve, is known(68), but the

classic derivation differs completely from that of the present paper.

13. Circular conformai transformations. The characteristic property of

the inversive group G defined in R„ is that every circle (including straight

lines) of Rn is mapped on a circle under any transformation belonging to G.

A generalization to any F„ of the circle in Rn is the geodesic circle defined as

the curve whose first (metric) curvature is constant and whose second curva-

(68) L. P. Eisenhart, Differential Geometry, 1909, p. 36.
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ture vanishes identically. It is therefore defined by the equations

dkx
(13.1) -= 0,        k2 = 0.

ds

The ordinary (metric) existence theorem for curves proves that a unique geo-

desic circle is determined by the values of (i)»'i, (2)V\ kx at an arbitrary point

of Vn- A conformai transformation of F„ on F„ which maps the geodesic

circles of Vn and F„ on each other is called a circular conformai transformation.

It is a natural generalization of the inversive transformations belonging to G.

In a manner similar to that of §2, we may define tensors which have an in-

variant character with respect to circular conformai transformations. Analo-

gous to the definitions in §2 we may thus define relative circular conformai

tensor, circular conformetric tensor and circular conformai tensor.

According to the definition of circular conformai transformations, if (13.1)

holds for a curve in F„ then dk\/ds = 0, k2 = 0'is true for the conformai image

in Vn- If these results are substituted in (4.18), we find that the mapping

functions a of the circular conformai transformations coincide with the solu-

tions of the differential equations

(13.2) akkfk(gih - vW) = 0,

where v' is an arbitrary unit vector of Vn- Equation (13.2) is analogous to

(10.1). A line of reasoning similar to that employed in the discussion follow-

ing (10.1) shows that vi in (13.2) is a principal direction determined by atJ-.

Since i>* is arbitrary, it follows that the necessary and sufficient condition that a

be the mapping function of a circular conformai transformation of F„ is that it

satisfy the equations

(13.3) an = <pgij.

Thus a F„ admits circular conformai transformations if and only if (13.3)

has solutions. In a previous paper(69), we have shown that a very large class

of Fn's actually exist which admit such transformations. In particular, as

follows from (4.20), (6.6) and (13.3), a«y conformai transformation between

Einstein spaces of dimensionality « > 2 is circular. Conversely, the conformai

image of an Einstein space under a circular conformai transformation is also an

Einstein space. A detailed study of the existence questions concerning con-

formal transformations between P„'s has been made by Brinkmann(70). We

also note, as was shown at the beginning of §7, awy conformai transformation

between spaces of constant curvature of dimensionality n>2is circular. The con-

verse of this statement is true even if » = 2, that is, if a circular conformai

(69) A. Fialkow, Conformai geodesies, loc. cit., §12.

(70) H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Mathe-

matische Annalen, vol. 94 (1925), pp. 119-145.
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transformation is applied to a space of constant curvature Sn, the conformai image

of Sn is also a space of constant curvature Sñ ■ A proof of this statement has al-

ready been given in §7 if «>2. The following proof also applies to the case

w = 2.

Since Sn<-*Rn by a circular conformai transformation, the conformai image

spaces of Sn and Rn under all circular conformai transformations coincide. It

therefore suffices to prove the above italicized statement for an Rn only. Let

the x' be rectangular cartesian coordinates. Then, if \p is defined by (5.2), the

first fundamental form of any V„ equivalent to the Rn by a circular conformai

transformation is

(13.4) ds2 = iP~2[dxl2 + dx2' + • • • + dxn*]

where, as a consequence of (13.3), \p is a solution of

„    ..    .  =   — <t"r-°i.
ox'dx'

The solution of these equations exists only if <p may be written in the form

n

0 = — 2a/ ^ (ax? + bixi + cl)
<=i

where a, b', c' are real constants and the solution \p is given by

Ti

(13.5) ^ = £ 0**2 + bixi + c').
i=l

A comparison of (13.4) and (13.5) shows that ds2 is the first fundamental

form(71) of an Sn whose Riemannian curvature is 2Z?=i(4ac' —o'2). The itali-

cized statement is thus proved.

Analogous to the present conformai theory of curves, we may develop a

theory based upon circular conformai transformations. In this theory, we

would restrict the conformai mapping functions to solutions of (13.3) and

would consider as the enveloping space of the curve only those Riemann

spaces which admit circular conformai transformations. All the results of the

present theory would also hold with reference to circular conformai trans-

formations. However, a number of new features also present themselves some

of which are now indicated.

As a consequence of (4.18) and (13.3), the vector £' defined by

dki
(13.6) S<=-mS+kikntyv*

ds

is a relative circular conformai vector defined along the curve C which has the

(7i) we are here using a result which is stated in L. P. Eisenhart, Riemannian Geometry,

1926, p. 85.
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transformation law ~i = e-3cr~i. This vector is defined even if n = 2. In a manner 
analogous to that indicated by (4.21), ~i determines a relative circular con-
formal scalar and a unit circular conformetric vector. The conformal Frenet 
equations for this vector and the circular conformal arc length defined with 
the aid of the above relative scalar yields a new sequence of "circular con-
formal normals" and "circular conformal curvatures." If n > 2, the vector}. i 
defined by 

is also a relative circular conformal vector with the transformation law 
~i=e-3cr}.i. Also, as follows from (4.20) and (13.3), if(12) n>2 any two or-
thogonal vectors Wi and 8 i which are relative circular conformal vectors de-
termine a relative circular conformal scalar {l defined by 

Q = RUIJi8 k • 

Of course, in an En, J211 i = ~i and}, i = {l = O. Similar relative circular conformal 
scalars and tensors could be defined using (4.19) and (13.3). 

14. The two-dimensional case. The principal interest of circular conformal 
transformations lies in the possibility of utilizing them in order to develop a 
conformal geometry of curves in a two-dimensional Riemann space. This pos-
sibility is realized in the present section and, except where restrictive assump-
tions are explicitly stated, the results apply to any V2 which admits a circular 
conformal transformation. Obviously the S2'S (including R2 ) are such surfaces. 
According to an italicized statement of the preceding section, circular con-
formal transformations applied to surfaces of constant curvature map them 
on surfaces of constant curvature. Hence the theorems of this sectlon include 
the circular conformal geometry of curves in surfaces of constant curvature 
under any circular conformal correspondence between these surfaces. In this 
case, as will be seen, a complete theory including the equivalence theorem is 
obtained. This circular conformal geometry includes the inversive theory of 
curves in R2 as a special case since the transformations considered in the inver-
sive theory are the circular conformal transformations of R2 on itself. 

But there are many V2's besides the obvious S2'S which admit circular con-
formal transformations. For it may be shown, using the results of a previous 
paper(73), that every V2 applicable to a surface of revolution and only these 
V2's admit circular conformal transformations. The conformal image space of 
any of these V2's under a circular conformal map is a surface which is also 
applicable to a surface of revolution. These remarks indicate the existence of a 
fairly large class of V2's other than S2'S to which the present discussion ap'plies. 

(72) Ifn=2, 0=0. 
(73) A. Fialkow, loc. cit., p. 471, equations (12.7) to (12.10) inclusive. 
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Any vector X' defined along a curve C in one of these F2's may be resolved

into tangential and normal components and written as

X¿ = a mv* + ß wv*.

As a result of (3.21) and the Frenet equations (4.13) for C, the conformai de-

rivative of X' is defined by

b\¿      da dß
(14.1) —- - — (1)V< + — (1)F«.

bt       dt dt

The circular conformai vector £¿ in V2 defined by (13.6) becomes

dk
JW = — mvi

ds

where, since no ambiguity is involved, we have written k for the geodesic

curvature of Cin F2 instead of the usual ki and where similarly to (4.21), we

have written ^' = J2r¡i. Hence the unit circular conformetric normal is given by

(14.2) 77*"= ± m^

where the algebraic sign agrees with the sign of dk/ds and the relative circular

conformai curvature J is defined by

dk l1'2
(14.3) 7= +

ds

It follows that 7 is identically zero if and only if C is a geodesic circle of V2.

We exclude these curves from the present discussion. The quantity 7 has the

transformation law (4.22) and the normal 77' or ^p* transforms according to

(14.4) (2>pi = e~°/.

Indeed, since the vector space normal to ^p* is one-dimensional and is a con-

formal geometric object, ^p* must be a conformetric vector whose direction

remains unchanged under all conformai transformations (even including the

non-circular ones). As in the conformai theory, the circular conformai arc

length parameters S are defined by (4.23) with 7 determined by (14.3). As a

consequence of (4.23) and (14.3), dS2= ±dk ds and JdS= ±dk. In virtue of

(14.1) and (14.2), the circular conformai Frenet equations become the trivial

equation b77'/bS = 0 so that no "curvatures" arise in connection with the

Frenet process.

We now define the circular conformai invariant of the curve C in F2 which

is analogous to 7n_i in the conformai theory. If we multiply (4.19) by

(i)fh &)V* a)»' <.2)Vk and sum using (3.5), (13.3), (14.4) and ga d^W^O, we

obtain

(14.5) e2°K = K -2<p- Akt
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where K and K are the Gaussian (or Riemann) curvatures of V2 and of its

circular conformai image F2. Differentiation of (5.2) shows that Ai^=^2Aia.

This fact and equations (5.2), (5.3) and (14.5) lead to the conclusion that

_ dhP      /d<p\2
k2 + K = +2(k2 + K) + 2t----   -).

ds2      \ds/

If we proceed with this equation as with (5.4), an analogue of Theorem 5.1

is obtained and the circular conformai curvature Jx defined by equation (5.9)

with n = 2, f^ = K is a circular conformai invariant. According to (14.3),

T   dk d3k /d2k\2 /dk\2l   /

ti4-6)  /i=L4*^-5fe)-4(t"+,c)u)J/4

The formally simpler quantity H defined by

T   dk d3k /d2k\2 2 fdk\~\   /(dk\

' L   ds ds3        \d72) ~~ \ds) ]/ \ds)

is obviously a circular conformai invariant, being equal to ±4Jx.

The invariant H was first obtained in the special case where K = K = 0

by Mullins(74) as a differential invariant of a plane curve under the group of

inversions of P2 into itself. He found H in a different form than that given

above using the methods of the Lie theory. This invariant was also found by

Liebmann(76), Kubota(76), Morley(77), and Patterson(78) in connection with

the inversion geometry of the plane. Their methods differed from that of

Mullins and the present paper, depending in most cases upon the use of the

Schwarzian derivative. Some of these writers referred to S and II as the "in-

versive length" and "inversive curvature" respectively of a plane curve. The

books of Blaschke-Thomsen(79) and Takasu(80) develop the inversive geome-

try of plane and space curves based upon the use of tetracyclic and penta-

spherical   coordinates.   Recently,   Maeda(81)   obtained   a   number   of   new

(") G. W. Mullins, Differential Invariants under the Inversion Group, Columbia University

dissertation, 1917.

(75) Liebmann, Beiträge zur Inversionsgeometrie der Kurven, Sitzungberichte der Bayerischen

Académie der Wissenschaften Munich, vol. 1 (1923), p. 79. This paper is not accessible to the

author.

(™) T. Kubota, Beiträge zur Inversionsgeometrie, Tokyo Imperial University Science Re-

ports, vol. 13 (1924-1925), p. 243.

(77) F. Morley, On differential inversive geometry, American Journal of Mathematics, vol. 48

(1926), p. 144 and Inversive Geometry, 1933, pp. 137-142.

(7S) B. C. Patterson, The differential invariants of inversive geometry, American Journal of

Mathematics, vol. 50 (1928), p. 556.

(79) Blaschke-Thomsen, loc. cit.

(80) T. Takasu, loc. cit.

(81) J. Maeda, Geometric meanings of the inversion curvature of a plane curve, Japanese

Journal of Mathematics, vol. 16 (1940), pp. 177-232.

dk

ds
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geometric interpretations of the inversive curvature of a plane curve by

methods which depended upon the use of functions of a complex variable

and the Schwarzian derivative.

We now enumerate those theorems of the previous sections for which ana-

logues exist in the circular conformai geometry of V2. A simpler phrasing of

many of these theorems is possible if « = 2. In all cases the proof in the two-

dimensional case, after trivial modifications, parallels the proof already given

with the understanding that « = 2 and that S, J, Ji, 77' have the significance

indicated in this section and that the word "conformai" is to be replaced

by the words "circular conformai." In particular, we note that the expression

Rjkvk(gii — viv')/(n — 2) is to be omitted wherever it appears in a proof. After

these conventions, we list the following theorems (besides those already men-

tioned) as having two-dimensional analogues for all surfaces applicable to a

surface of revolution: Theorems 5.2, 6.1, 10.2. In Theorem 6.1, the class of V2

may be C3 instead of C4. In Theorem 10.2, the condition that F2 be an E2 is

universally true and should be omitted. The following theorems have ana-

logues only if F2 is an S2: Theorems 7.1, 7.2, 8.1, 8.2, 8.3, 9.1, 10.3. The theo-

rems of §11 are trivially true for curves in F2 and the theorems of §12 are

trivially true for curves in S2. We note however as a consequence of (12.27),

(14.3) and (5.9) with « = 2 (or the equivalent equation (14.6)) that Theorem

12.3 has the following analogue if t = 1 (using the notation of the theorem):

If a curve C in an Rn (or Sn) is contained in a 2-sphere P2 of Rn (or S„) then the

first space conformai curvature 7i vanishes along C and the following equations

hold:

S = S*, J = J*, Jn-l = Ji*

where S*, J*, 7* are the circular conformai arc length, relative curvature and

curvature respectively of C in P2. This result may now be used to prove Theo-

rem 12.4 for the case t = 1.

The equivalence theorem for curves in the inversion geometry of the plane

was proved in a different form by Kubota and stated in the present form by

Morley and Patterson. The plane curves along which 77 is a constant were

studied by Mullins who showed that they are the inversive images of the

logarithmic spirals. According to the two-dimensional analogue of Theorem

8.3, they are the paths of the inversive group.

In this section, we have developed the circular conformai theory of curves

in a F2. While a curve has circular conformai invariants, it cannot have any

conformai invariants since every analytic curve in a F2 is conformally equiva-

lent to a straight line in R2. However the horn angle formed by two tangent

curves G and G in a F2 does have a conformai invariant which we now derive.

Since « = 2, &2 = 0 so that, as before, we may write k for k\. Also

(14.7) gU  =   (l)"i (l)V' +   (i)Vf (2)V'.
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If we use (4.13), (14.4) and (14.7), then (3.6) is equivalent to

(14.8) k = e~'(k- a,hvh).

Similarly (4.18) becomes, after account is taken of (14.4) and (14.7)

dk /dk \
(14.9) - = r"  --»,»(,/„/  ,

ds \ds /

It follows from (14.8) and (14.9) that

Ldsn,      ¿5(2) J/>(1) <"(2)

where the subscripts (1) and (2) refer to the geometric objects of G and G

respectively, is a conformai invariant of the horn angle. It is the measure of

the horn angle discovered by Kasner(82) for the plane case who also proved

that it is sufficient for a conformai characterization of the horn angle (except

possibly for invariants of infinite order). Kasner's results have been extended

to any two-dimensional Riemann space by Comenetz(83). A very detailed ge-

ometry of horn angles based upon the above measure has been developed by

Kasner(84). We note that the method of this paper may be utilized to obtain

conformai invariants of a horn angle in any F„ (w>2). However the results

are not as significant as in the two-dimensional case since each of the constitu-

ent curves of the horn angle has conformai properties of « > 2.

15. Curves in a conformai Riemann space V„. In this section, we show

how our previous results may be used to develop a theory of curves in a Vn

which is based upon the tensor g.,/g1/n. Following T. Y. Thomas, we define

the conformai Riemann space V„ of class Cm as the space whose coordinate

manifold is of class Cm and whose fundamental geometric object Ga, defined

over the manifold, is of class Cm~1. The tensor G¿,- is a symmetric, positive

definite relative tensor of weight — 2/» with respect to coordinate transforma-

tions, that is,

, dxh    dxk

(15.1) Ga = A-2'"Ghk —---
dx'1   dx'>

where A is the Jacobian |d:*:'/óV'| of the transformation. It follows from

(15.1) that G= | Gi,\ is a scalar, that is,

(82) E. Kasner, Conformai geometry, Proceedings of the Fifth International Congress of

Mathematicians, vol. 2 (1912), p. 81.

(83) G. Comenetz, Conformai geometry on a surface, Annals of Mathematics, (2), vol. 39

(1938), pp. 863-871.
(84) E. Kasner, Trihornometry: A new chapter of conformai geometry, Proceedings of the

National Academy of Sciences, vol. 23 (1937), pp. 337-341 and Fundamental theorems of tri-

hornometry, Science, vol. 85 (1937), pp. 480-482.
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(15.2) G'=G.

For reasons stated in §2, we restrict ourselves to a portion of Vn which

is a neighborhood Uof a point coverable by a single coordinate system {x*}.

We shall continue to refer to U as the conformai Riemann space Vn. Let F

denote the set of all positive functions fi of class Cm_1 defined over Vn which

are relative scalars with respect to coordinate transformations having the

transformation law

(15.3) i2' = |A|1/"-a

If ß belongs to F, then the geometric object ga defined by

(15.4) gt,= WGij

is a tensor, that is,

dxh    dxk

hi = ghk ■
dxn   dx'j

We note as a consequence of (15.4) that

ß  =  gl/2„/Gl/2»_

If Q is any other scalar in F then

(15.5) it, =~Q2Gii

is also a tensor. Also, as follows from (15.3), e" defined by
"S"

(15.6) e" = —
Ü

is an absolute scalar with respect to coordinate transformations. As a conse-

quence of (15.4), (15.5) and (15.6),

(15.7) Sii = e2tr„
so-

Let U and U be any two coordinate neighborhoods of class Cm whose

points correspond to those of U by means of point transformations which are

of class Cm in the local coordinates of the neighborhoods. Then, as was shown

in §2, allowable coordinate systems {**} may be chosen in U and U so that

corresponding points of Uand Uand of U and [/have the same coordinates.

Throughout this discussion, we assume that the coordinates {x'\ are chosen

so that points with the same coordinates correspond. In these coordinate sys-

tems, the tensors g„- and g¿, defined over U and U respectively determine two

Riemann spaces F„ and F„ of class Cm whose respective metric tensors they

are. According to (15.7), the induced transformation which maps points of U
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and U with the same coordinates is a conformai correspondence of the points

of Vn and F„. As ß ranges over all values of the set F, the corresponding a's

range over all functions of class Cm~1 over U and the |,y are any tensors re-

lated to one of them by (15.7). Associated with Vn is the set of conformai

correspondences of class Cm whose domains are the F„. We denote this set

by(86) *.

Corresponding to any geometric object in Vn, there exists a set of geo-

metric objects, one in each Riemann space F„, which are in conformai corre-

spondence by means of the transformations of M'. For example, corresponding

to a tensor Tj ; ; ; Jj in Vn are the set of conformai tensors in the V_n whose

components coincide with those of 7j".;;'". Conversely, every conformai ten-

sor in the Vn determines a unique tensor in Vn. Indeed relative conformai

tensors in the V„ also define tensors in V„. For, in accordance with the re-

marks of §2, every relative conformai tensor in V„ corresponds to a unique

conformai tensor if a relative conformai scalar exists in the space. As a conse-

quence of these remarks, any theorem concerning conformai geometric ob-

jects in the Vn which is independent of the particular mapping function a(x'),

and hence depends only on the set F and not on the particular function ñ

belonging to F, is also a theorem about geometric objects of Vn. These obser-

vations apply to the conformai theory of curves in conformally equivalent

Riemann spaces which is developed in the previous sections of the paper.

Consequently the previous results also constitute a theory of curves in Vn-

If the Weyl conformai curvature tensor C£t of Vn vanishes, V„ is a flat

conformai space. In this case, the F„ are the conformally euclidean spaces Rn

which are related by the correspondences of ^ and the previous theorems lead

to a complete theory of curves in Vn.

In what follows, we give the outline of the theory of curves which is based

(formally) upon the tensor (?</. If we write e* = ß, then (15.4) becomes

gij — e^Gij which is analogous to (2.6) with <r, g¿,-, |¿,- replaced by <j>, Ga, ga re-

spectively. Of course the analogy is not complete since <f> is not a scalar and

Ga is not a simple tensor with respect to coordinate transformations. How-

ever, this complication does not affect the argument which follows since we

remain in the same coordinate system. However, the geometric objects which

we define (arc length, curvatures, normals) are absolute scalars and vectors

with respect to coordinate transformations.

Let
_ xl = xl(s)

(m) We may assume that G is constant. If G were a nonconstant function A (at"), the equiva-

lence theory for V„ would be reducible to the corresponding theory for a Riemann space. For,

as a consequence of (15.2) and (15.7), the tensor f¡¡ defined by

/«- U»A,U.»]-M
has the same components for every ß belonging to F. The equivalence theory of Vn is there-

fore the equivalence theory of the Riemann space whose metric tensor is /»;.
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be the equations of a curve C in Vn. We define

{;}

as the Christoffel symbols of the second kind formed from G a and 0*, ¿* by

the equations

dx*

d2xi       ( i Ïi ) dx' dxk

ds    ds

where s is determined by

dx' dxi

ds    ds

Hence 0* and £* are the formal analogues of the unit tangent and principal

normal of the corresponding curve C in F„. The "relative curvature" / and

the vector (ijn* of C are defined by an equation analogous to (4.21) so that,

as in (4.22),

(15.8) J = e~*J,        (1)77* = e-* (i)n*

where the geometric objects J and a)??* refer to the curve C in Fn. Therefore S,

defined by

/
Jds

is equal to the integral invariant Sgivenby (4.23). Since S remains unchanged

under transformations of coordinates, this is also true of S so that S is a scalar.

It plays the role of an "arc length parameter" for the curve C in Vn.

We define (rA* by (iA*=/_1 («n*. It follows from (15.8) that (i)5.*=(i)X*

where <i)X* is defined by (4.27). Since (yX* is a conformai vector, (i)à* must

transform like a vector under coordinate changes. It is the "first normal" of C.

Let rjt be defined by an equation similar to (3.29). Then

^}+v< + «<^>; + v' + «-^

-G„(, + ,^7>

Then, as in (3.31), it follows that T)k = Y'¡ik. Since the Yjl transform like coeffi-

cients of connection under coordinate transformations, this is also true for
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the T)t. We use these T)t to define the "derivative" of any tensor lj'."'£ in

a manner analogous to the definition given by (3.30). Consequently, this de-

rivative has properties similar to those described in (A'), (B), (C), (D') and

(E'). In particular, the analogue of (A') states that the T% derivative of any

tensor Pj'.'.'.'j^ transforms like a tensor of the same kind under coordinate

transformations.

If this derivative is applied successively to (rA' a sequence of equations

analogous to (4.28) is obtained. They are

-—-  =   —   Ja-1  (a-lA* +  Ja  („+l)à'      Jo  =   JT  —   0, «  =   1,  2,   •  •   •   ,  T,
öS

and are the Frenet equations of the curve C. The proofs of §4 show that the /„

are scalars and that the („A* are vectors with respect to coordinate transfor-

mations in Vn. They are the "curvatures" and "normals" of C. The "(« —l)st

curvature" Jn-i may be obtained as in §5 and the other results of this paper

also have application here.

We note that the 8/8S process of differentiation defined by means of the

T't is with respect to and depends upon the curve C in Vn and is therefore

not appropriate for the purpose of obtaining a characterization of the entire

space Vn (unless one could define a congruence of curves intrinsically in Vn).

While the applicability of the derivative appears limited in this sense, its

simple structure and conformai properties noted in §3 make it a suitable tool

in the theory of curves.

Brooklyn College,

Brooklyn, N. Y.
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