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1. Introduction. Classical differential geometry is the metric theory of eu-
clidean 3-space R;. Its generalization, Riemannian geometry, is the metric
theory of an n-dimensional Riemannian manifold(!) V,. On the whole, the
development of these geometries has proceeded in two main directions. Natu-
rally these two directions are not mutually exclusive; occasionally they over-
lap in the common development of some subject.

One approach is the study of the metric transformations of the manifolds
as a whole upon each other. This is the intrinsic theory of the space. In classi-
cal geometry, this point of view yields rather meager results since the intrinsic
theory of R; is almost synonymous with the discovery of the complete group
of motions in R;. In Riemannian geometry, the intrinsic theory has consider-
ably greater significance. The discovery of the process of covariant differ-
entiation with respect to the first fundamental form of V, and of the Riemann
curvature tensor of V, are important milestones in the development of this
theory. This approach reaches its culmination in the fundamental theorem
which states the conditions under which two Riemann spaces are isometric.

The other approach is the study of curves, surfaces and other subspaces
and configurations in the enveloping R; or V, and their behavior when the

Presented to the Society October 28, 1939; received by the editors April 11, 1940, and, in
revised form, March 27, 1941,

(1) We denote an n-dimensional Riemann space, Einstein space, euclidean space and a
space of constant curvature by V,, E,, R, and S, respectively.
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enveloping manifold undergoes any metric transformation. In its most com-
mon development today, this study is based upon the process of covariant
differentiation. As is well known, by repeated use of this type of differentia-
tion, a system of Frenet equations of the subspace is obtained. These equa-
tions involve a number of metric geometric objects(?): the (n—1) curvatures
and arc length for curves, the coefficients of the first and second fundamental
forms for hypersurfaces, and so on. These geometric objects constitute the
foundation upon which the detailed geometry of curves, surfaces and sub-
spaces is built.

Classical differential geometry concerns itself almost exclusively with this
second approach and a very considerable portion of Riemannian geometry
has also evolved in this direction. The development of conformal Riemannian
geometry, however, presents a different picture. Here the main emphasis has
been upon the intrinsic conformal theory of the manifolds; that is, the in-
vestigation of the conformal transformations of Riemann spaces as a whole
upon each other. This point of view is maintained in the early papers of
Weyl(®) and Schouten(*) on conformal Riemannian geometry which mark the
modern beginning of that subject. The fundamental conformal curvature
tensor is discovered in these papers and is used in order to obtain a complete
characterization of conformally euclidean Riemann spaces. These results are
a continuation of classical theorems such as the theorem of Liouville on the
conformal transformations of R; on itself.

The central problem of the intrinsic theory is the question of the conformal
equivalence of Riemann spaces V.. In order to effect a solution of this prob-
lem, T. Y. Thomas has considered the conformal tensor g;;/g'/» where g;; is
the metric tensor of V, and g is the determinant |g;;|. This tensor remains
invariant under conformal transformations of the metric tensor of V,. The
Christoffel symbols(®) formed with respect to this tensor (called the conformal
parameters) have a complicated law of transformation under coordinate
transformations and one cannot define a simple covariant derivative of ten-
sors by means of these parameters. However, by formal methods based upon

(%) By a geometric object we mean an abstract object having a unique set of components,
depending on the coordinates and their differentials to a specified order, in any coordinate
neighborhood of the manifold. Hence the law of transformation of the components under co-
ordinate changes must be transitive.

(3) H. Weyl, Reine Infinitesimalgeometrie, Mathematische Zeitschrift, vol. 2 (1918), pp.
384-411.

(4) J. A. Schouten, Uber die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit
quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung,
Mathematische Zeitschrift, vol. 11 (1921), pp. 58-88.

(®) These Christoffel symbols were first defined by J. M. Thomas in another way. Cf.
J. M. Thomas, Conformal invariants, Proceedings of the National Academy of Sciences, vol. 12
(1926), pp. 389-393.
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the conformal parameters, it is possible to obtain a solution to the conformal
equivalence problem for Riemann spaces(®).

The investigations of conformal Riemannian geometry by Cartan(?) and
Schouten(8) affords another method for the development of this subject. This
method depends upon the introduction of (#+2) homogeneous coordinates
(the generalization of tetracyclic and pentaspherical coordinates) into the
local euclidean space R, of the V,. Still another path for the study of in-
trinsic conformal geometry is indicated by the recent results of Schouten and
Haantjes(®) which suggest a projective treatment of conformal geometry.

Thus there exists a variety of general methods for the development of the
intrinsic conformal theory of Riemann spaces. While this formal intrinsic the-
ory is complete, the conformal theory of configurations in a Riemann space
has been largely neglected. This fact is all the more remarkable when one con-
siders that such a theory would always have real significance whereas this is
rarely the case for the corresponding metric theory of configurations in a gen-
eral V,. To illustrate this point, we note that while a curve in a general V,
has (—1) curvatures which are metric invariants, these invariants are not
very meaningful if the V, does not admit any metric transformations other
than the identity (as is usually the case). This state of affairs is never en-
countered in the conformal theory of configurations since every V, always
admits an infinite number of conformal mappings on conformally equivalent
Riemann spaces.

One of the earliest results belonging to the conformal theory of configura-
tions in V, is the theorem which states that the lines of curvature of a hyper-
surface of V, remain invariant under conformal transformations of V,, first
proved for a general V, by Schouten and Struik(!?). They also proved a con-
siderable number of similar results, some of which are not purely conformal
theorems since they depend upon metric properties of the configuration and
upon the particular conformal transformation to which the V, is subjected.

(®) T. Y. Thomas, The Differential Invariants of Gemeralized Spaces, 1934, chap. 4.
O. Veblen, Formalism for conformal geometry, Proceedings of the National Academy of Sciences,
vol. 21 (1935), pp. 168-173.

(") E. Cartan, Les espaces d connexion conforme, Annales de la Société Polonaise de Mathé-
matique, vol. 2 (1923), pp. 171-221.

(8) J. A. Schouten, On the place of conformal and projective geometry in the theory of linear
displacements, Proceedings, K. Akademie van Wetenschappen, Amsterdam, vol. 27 (1924), pp.
407-424.

(®) J. A.Schouten and J. Haantjes, Beutrige zur allgemeinen(gekriimmien) konformen Differen-
tialgeometrie. 1, 11, Mathematische Annalen, vol. 112 (1936), pp. 594-629; vol. 113 (1936),
pp- 568-583.

(1) J. A. Schouten and D. J. Struik, Un théoréme sur la transformation conforme dans la
géométrie différentielle & n dimensions, Comptes Rendus de I'Académie des Sciences, vol. 176
(1923), pp. 1597-1600. Also cf. J. A. Schouten and D. J. Struik, Einfihrung in die neueren
Methoden der Differentialgeometrie, vol. 2, 1938, pp. 199-215 for this topic as well as a general
discussion of conformal Riemannian geometry.
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The recent investigations of Sasaki(!!), Modesitt('?), and the author(1?) are
of this general character. The papers of Kasner(), Lipke(%), Schouten (),
and the writer('”) on conformal geodesics (natural families of curves) also
belong in this category.

A number of investigators have used the formal methods which were de-
vised to obtain a solution of the equivalence problem in the conformal in-
trinsic theory, in order to develop a conformal theory of curves and other
subspaces. Among these developments are the results('®) of Sasaki('®) and
Yano(??). The formal apparatus used in these papers is necessarily quite com-
plicated because their methods follow those used in the intrinsic theory. The
various derivatives which have been devised for the development of the in-
trinsic theory have a strongly formal character and their structure is more
complicated than that of ordinary covariant differentiation.

But while this formal apparatus may be inevitable in the case of the 1n-
trinsic theory, it is not essential for the development of the conformal theory
of a subspace. For the subspace introduces additional structure into the
Riemann space V, by means of which we find a relative conformal scalar(?!)
at points of the subspace. By means of this relative conformal scalar, it is
possible to define a new simple type of differentiation (with respect to the
subspace) which plays a role analogous to ordinary covariant differentiation
in metric Riemannian geometry. This differentiation process enjoys all the
usual properties of covariant differentiation as well as a number of others
which give it its distinctive conformal character.

(W) S. Sasaki, Some theorems on conformal transformations of Riemannian spaces, Proceed-
ings of the Physico-Mathematical Society of Japan, (3), vol. 18 (1936), pp. 572-578.

(12) V. Modesitt, Some singular properties of conformal transformations between Riemann
spaces, American Journal of Mathematics, vol. 60 (1938), pp. 325-336.

(B) A. Fialkow, Conformal transformations and the subspaces of a Riemann space, Bulletin
of the American Mathematical Society, abstract 43-9-328.

(4) E. Kasner, Natural families of trajectories: conservative fields of force,'these Transactions,
vol. 10 (1909), pp. 201-219.

(1) J. Lipke, Natural families of curves in a general curved space of n dimensions, these
Transactions, vol. 13 (1912), pp. 77-95.

(%) J. A. Schouten, Uber die Umkehrung eines Satzes von Lipschitz, Nieuw Archief voor
Wiskunde, vol. 15 (1928), pp. 97-102.

(1) A. Fialkow, Conformal geodesics, these Transactions, vol. 45 (1939), pp. 443473.

(18) Possibly the work of Hlavaty also belongs in this category. These papers are not ac-
cessible to the writer. Cf. V. Hlavaty, Zur Konformgeometrie 111, Proceedings, K. Akademic van
Wetenschappen, Amsterdam, vol. 38 (1935), pp. 1006-1011.

(1) S. Sasaki, On the theory of curves in a curved conformal space, Science Reports of the
Imperial University of Tokyo (1), vol. 27 (1939), pp. 392-409; On the theory of surfaces in a
curved conformal space, ibid., vol. 28 (1940), pp. 261-285; Geometry of the conformal connexion,
ibid., vol. 29 (1940), pp. 219-267.

(2°) K. Yano, Sur la théorie des espaces & connexion conforme, Journal of the Faculty of
Science, Imperial University of Tokyo, vol. 4 (1939), pp. 40-57.

(21) This term is defined in §2.
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By “conformal differentiation,” we arrive at a sequence of normal vector
spaces and fundamental forms for the subspace which are unchanged by con-
formal transformations of V,. These “conformal fundamental forms” con-
stitute the foundation upon which a detailed conformal geometry of subspaces
may be built. Formally, this entire theory is considerably simpler than the
previous investigations of conformal Riemannian geometry, its technical as-
pects being no more involved than those of the ordinary metric geometry of
Riemann spaces. While we are concerned with the same general subject as
that dealt with by Sasaki and Yano, there is no actual overlapping either of
results or of methods. We note, however, as is shown in §15, that our results
may be used to develop a conformal theory of curves based upon the con-
formal tensor g;;/g!/» which is formally analogous to the investigations men-
tioned above.

In the present paper, we develop the foundations of the conformal theory
of curves, reserving the treatment of other subspaces for later publication(??).
We note that this separate treatment is not prompted by pedagogic reasons
alone, but is a natural separation. For in our development of the conformal
geometry of a subspace of V,, two mutually exclusive cases arise which must
be treated separately: (1) curves and (2) subspaces whose dimensionality ex-
ceeds one.

It is well known that there is a metric (congruence) theory of curves in
the plane but no conformal theory. That an analytic curve can have no con-
formal properties follows from the theorem: Every analytic curve in the plane
is conformally equivalent to a straight line. It is the object of this paper to show
that a conformal theory of curves does exist in any Riemann space whose
dimensionality exceeds 2 and to develop this theory. Accordingly, we study
those properties of a curve which remain unchanged when the enveloping
Riemann space V., of dimensionality #>2 undergoes any conformal mapping,
not necessarily on itself.

The principal tool is a new kind of tensor differentiation which has
conformal meaning—*“the conformal derivative.” By systematic use of the
conformal derivative we derive the conformal analogues of the ordinary
(metric) Frenet equations. We find »—1 differential “conformal curvatures”
Ji, Ja, -+ -, Ja1 and an integral “conformal arc length” S which are un-
changed by any conformal transformation of the Riemann space. This means
that if V,—V,, CoC by a conformal map, then the J's are the same functions
of S for C and C.

The converse holds in spaces which are conformal to a euclidean space.

(2) Some of the principal results in the curve theory are stated without proof in a previous
note having the same title as the present paper which appeared in the Proceedings of the Na-
tional Academy of Sciences, vol. 26 (1940), pp. 437-439. Corresponding results in the conformal
theory of a subspace appear in two abstracts in the Bulletin of the American Mathematical
Society, abstracts 46-11-487 and 47-3-156.
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In this case, we have the fundamental conformal equivalence theorem: If V,
and V. are conformal to a euclidean space and the J's for both C and C are the
same functions of S, then a conformal mapping exists for which V,V,, C—C.
This is the conformal analogue of the metric congruence theorem which holds
in a euclidean space and in a space of constant curvature.

We also prove the existence theorem: In any V., a curve exists for which
the J's are preassigned continuous functions of S. This curve is uniquely deter-
mined by a set of initial conditions which is found explicitly.

The conformal curvatures of a curve Cin V, have rather simple geometric
properties if V, is conformal to an Einstein space or, more particularly, to a
euclidean space. Thus if V, is conformally euclidean then J,=0 (1Za<n—2)
if and only if C is conformally equivalent to a curve in a euclidean n-space
whose (a+1)st metric curvature vanishes. Another example: If V, is conformal
to a euclidean space then the n—1 conformal curvatures of a curve and their
derivatives with respect to the conformal length constitute a complete set of con-
formal differential invariants of the curve.

If n=2, the results of this paper apply if the conformal transformations
are restricted to mappings applied to spaces of constant curvature which are
similar to and include the inversive transformations of the plane.

While the results of this paper bear a close analogy to those which hold
in the metric theory, in some cases the proofs are markedly different. Thus,
the first of the “conformal Frenet equations” is not obtained, as in the classic
case, by differentiating the unit tangent vector. For it will be seen later that
the conformal derivative of the unit tangent always vanishes identically. As
another important point of difference, we note that only n —2 of the conformal
curvatures occur as coefficients in the conformal Frenet equations. The
(n—1)st conformal curvature, while as essential as the other curvatures, is
found in an entirely different way and does not have the same properties as
the others.

These essentially novel features which distinguish the conformal geometry
of curves from the metric geometry are also present in an analogous form in
the corresponding theory for any subspace. For example, a hypersurface has
three “conformal fundamental forms” instead of the anticipated two forms
and four sets of integrability conditions instead of the classic Gauss-Codazzi
equations. Furthermore, the conformal behavior of subspaces whose dimen-
sionality is at least 4 is typical, while the cases of dimension number 3, 2,
and 1 respectively are increasingly degenerate. There is no corresponding ana-
logue in the metric theory.

As an important special case, this theory obviously includes the “natural
geometry” of curves in euclidean n-space under the continuous group of con-
formal mappings of the cuclidean space upon itself. The transformations of
this group are the products of inversions with respect to a hypersphere, mo-
tions and transformations of similitude (Liouville’s theorem). This means
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that our results constitute the inversive theory of curves when applied to this
continuous group of transformations of a euclidean space. In particular, the
curves along which all the conformal curvatures are constants are the paths of the
inversive group.

A detailed inversive geometry of plane curves and of curves and surfaces
in R; has been developed by Thomsen, Blaschke and Takasu in their books
on conformal differential geometry(??). Their investigations constitute a the-
ory of curves and surfaces in R, and R; which is complete in its essential
parts and anticipates many of our results for this important but special case.
However, their methods depend upon the systematic use of tetracyclic and
pentaspherical coordinates and therefore differ completely from the methods
which are employed here. The inversive theory of plane curves has also been
developed by a number of other writers using still different methods.

We note that the subject of this paper is also somewhat connected with
the “natural geometry” of a curve associated with any group of transforma-
tions of the plane into itself. This theory was originated by Pick(?*) and has
subsequently been developed by Kowalewski(25) and his students.

2. Riemann spaces conformal to V,, conformal tensors. Let V, be a real
Riemann space whose coordinate manifold is of class(*) C™ and whose
real metric tensor, defined over the manifold, is positive definite(®”) and of
class C» ! with m= 1. Briefly, we say V, is a Riemann space of class(?8) Cm.

(2%) W. Blaschke and G. Thomsen, Vorlesungen iibér Differentialgeometrie, vol. 3, 1929;
T. Takasu, Differentialgeometrien in den Kugelréumen, vol. 1, 1938.

We are obliged to a referee for these references. Due to our unfamiliarity with tetracyclic
and pentaspherical coordinates, it is difficult for us to determine precisely the extent to which
duplication of results occurs. In general, these books would appear to contain most of our theo-
rems for curves in R; and for curves and surfaces in R; under the inversive group. These books
also contain other results on the detailed inversive'geometry of R;and R; which lie beyond the
scope of our present investigations. These references have been incorporated into the revision of
the introduction and we have also included references to a number of papers which have ap-
peared since this paper was first written.

(*) G. Pick, Natiirliche Geometrie ebener Transformationsgruppen, Sitzungsberichte der
Academie der Wissenschaften, Vienna, vol. 115 (1906), p. 139. )

(%) G. Kowalewski, Vorlesungen diber allgemeine natiirliche Geometrie und Liesche Trans-
formationsgruppen, 1931, chap. 3.

(%) The definitions of the class of a coordinate manifold and of a Riemann space are based
upon the discussion which appears in the paper by T. Y. Thomas, Recent trends in geometry,
American Mathematical Society Semicentennial Publications, vol. 2 (1938), pp. 98-99, 104. In
particular, if the coordinate manifold is of class C™, then the admissible coordinate systems are
related to each other by transformations of class C™.

(27) The greater part of the following discussion and of the results of the paper will hold even
if the metric tensor is indefinite provided that it is net singular. The only real novelty arises
when a vector is a null vector. We shall not consider the indefinite case.

(28) We shall assume the reality, existence and continuity of whatever functions occur in
the proofs. At the outset of the proof of an important theorem we shall simply indicate sufficient
conditions for the satisfaction of this assumption in order to avoid frequent interruptions of the
discussion for essentially non-geometric matters.
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Suppose(?) {x‘} are admissible real local coordinates in a coordinate neigh-
borhood of any point of V,. In each coordinate neighborhood, we write the
first fundamental form of V, as

(2.1) ds? = gijdxtdxl.

Since the results of this paper are local theorems which hold for a sufficiently
small neighborhood of a point we shall restrict ourselves to a portion of V,
which is a neighborhood U(P) of a point P coverable by a single coordinate
system {x*}. We shall refer to U(P) as the Riemann space V, and use similar
language in connection with other Riemann spaces which appear in the paper.

Let(®®) V, be a real Riemann space of class C™ whose first fundamental
form may be written as

(2.2) ds? = gidx'di’

where {5:'} are allowable local coordinates. Then(3') V, is conformal to V, by
means of a transformation of class C™ (briefly: V. is conformal to V,) if a one-
to-one point transformation T exists between the points P of V, and the
points P of V, which may be written (locally) as

(2.3) & = &(at, a2, - -, 2™, xt = xi(x, &%, - -, &)
so that the real functions
.'ii(xl, x2, e, xn)’ xi(xl' “':2’ e, xn)
are of class C™ and
(2.4) ds = eods

at corresponding points. It follows that o(x?) is a real function of class C»!
and that the form (2.2) is positive definite. We refer to o(x?) as the conformal
mapping function of V. on V., or briefly, as the mapping function. Whenever
we say that V, is conformal to V,, it is to be understood that the conformal
transformation is of class C™.

The transformation T may be written in the simple form

(2.5) = xt
after a suitable change of coordinates. For if we transform the coordinate

(2%) Throughout this paper the indices £, 7, j, k have therange 1, 2, - - - , n. It is to be under-
stood that a tensor equation in which an index is not summed is valid for each value of the index
within its range. A covariant or contravariant index which appears twice in an expression is to
be summed over the appropriate range.

(39) We denote a Riemann space conformal to V, by V.. Thus E. and R. signify spaces
which are conformally equivalent to an Einstein space and a euclidean space respectively. A
geometric object in V, corresponding to the geometric object Fin V., is denoted by F.

() This clause may obviously be replaced by “V, is conformal to V, by means of a trans-
formation of class C™.”
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neighborhoods of ¥, according to (2.3) considered as an admissible coordinate
transformation, points in V, and V, with the same coordinates correspond
and the conformal transformation becomes (2.5). Throughout this paper, un-
less a contrary assumption is explicitly made, we shall always assume that
coordinate systems have been chosen so that (2.5) holds. In these coordinate
systems,

(2.6) i = €"gij, BV = el

where g# and g% are the contravariant components of the metric tensors. Con-
versely, if (2.5) is a point transformation of the points of V, and V, and (2.6)
holds at corresponding points where the mapping function o(x?) is a real
function of class C™1, it follows that V, is conformal to V..

The problem of the conformal equivalence of Riemann spaces leads quite
naturally to the study of the conformal Riemann space V,. The conformal
Riemann space V, of class C™ is a space whose coordinate manifold is of
class C™ and whose fundamental geometric object, defined over the manifold,
is the set of all second order, symmetric, positive definite tensors of class C™1,

(2.7) {evgiif,

any two of which are equal except for a positive multiplicative scalar factor
of class C™1. The conformal tensor g;;/g'/» constructed from any tensor g;; be-
longing to (2.7) is independent of the particular tensor which is chosen. For
this reason, T. Y. Thomas(®?) has defined the conformal Riemann space V, by
using this tensor instead of the set (2.7) as the fundamental geometric object
of V,.

It is natural to associate the set of all conformally equivalent Riemann
spaces

(2.8) {V.}

of class C™ whose metric tensors (in some allowable coordinate system) be-
long to (2.7) with the conformal Riemann space V,. Indeed, as is easy to see,
the geometric properties of V¥, (which are independent of the factor e?°) are
conformal properties of the set of Riemann spaces (2.8). Throughout this
paper, whenever we refer to the conformally equivalent Riemann spaces V,,
V., it will be understood that these spaces are any two spaces of the set of
conformally equivalent Riemann spaces (2.8).

The above discussion shows that, formally, our conformal theory of curves
is the theory, under the identity transformation, of a curve and an enveloping
coordinate manifold on which is defined a second order, symmetric, positive
definite tensor up to a positive scalar multiplicative factor. It is shown in §15,
that our results may be used to develop a conformal theory of curves which
is based directly on the conformal tensor g;;/g'/".

(®) T. Y. Thomas, loc. cit., p. 119.
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Let T ;= be components of a tensor at a point P of V, whose values
depend upon geometrlc objects of V, and of its subspaces (33). Let V., be any
Riemann space conformal to V, and let T, 7 be the components of the
tensor at P whose values depend in the same way upon the corresponding
geometric objects of ¥, and its corresponding subspaces. Then if (2.6) holds
and
(2.9) Th o= (&)'Th."
we call T,." » a relative conformal tensor of wezght u. The law of transforma-
tion of T}II’ « between any two V, as well as between any two coordinate
systems is consistent. If u= 0, the tensor has the same components in V,
and V.. In this case, we call T, , a conformal tensor. If u=v—w, we say
that T, 1= is a conformetric tensor. As will be seen below, these latter tensors
have both metric and conformal properties.

Under the assumption that a relative conformal scalar Q exists in V,, one
may construct a conformetric tensor or a conformal tensor corresponding to
every relative conformal tensor. More generally, under the same assumption,
if T'1 7» obeys (2.9), one may construct a corresponding relative conformal
tensor Wthh satisfies an equation like (2.9) with # replaced by an arbi-
trary u'. For suppose that the transformation law(3%) of Q is Q0 =e°Q. Then
Qv Ty W}« is a relative conformal tensor which satisfies (2.9) with « re-
placed by u We note that every relative conformal tensor (including con-
formetric tensors) is the product of a conformal tensor by a relative conformal
scalar.

As a consequence of our definitions it follows that if the components of
a relative conformal tensor are zero in V,, they are zero in any V,. This fact
permits us to write conformal tensor equations which retain their meaning
under conformal transformations. The sum, difference, inner and outer prod-
uct of conformetric tensors (conformal tensors) is also a conformetric tensor
(conformal tensor).

If \i is a conformetric contravariant vector, the condition (2.9) becomes
Ni=¢—°\%. It follows that the direction of A in V, coincides with the direction
of Niin V,. Since g;A\?=g;\'\/, the length of A remains unchanged under
any conformal mapping. Thus A¢ has a conformally invariant direction and
(metric) length. Conversely, any vector for which this is true must be a con-
formetric vector. If the length of a conformetric vector is unity, then the
vector is called a unit conformetric vector. Any conformetric scalar is a con-
formal scalar or invariant. It is easy to show that any conformetric tensor

(3%) Examples of such geometric objects which will be used in this paper are: the metric
tensor gi;, the Christoffel symbols of the second kind, the unit tangent and principal normal of

acurve.
(%) There is no loss of generality in this assumption, for if 0=(e%)t-Q, the relative con-

formal scalar | Q| Yt has the desired transformation law.




1942] CONFORMAL THEORY OF CURVES 445

which is not a scalar (and only these tensors) may be represented in the usual
way(*) by means of adjoint n-beins of conformetric vectors. As follows from
(2.6), gi; and g¥ are conformetric tensors. Hence the indices of any con-
formetric tensor (but not of a conformal tensor) may be raised or lowered
using g:j, g* in the usual way and the result will be a conformetric tensor.

In this paper, we consider the conformal geometry of a curve in V,. The
curve introduces additional structure into V,, by means of which a relative
conformal scalar is found at points of the curve. In view of the existence of
this relative conformal scalar, one may find a conformal vector corresponding
to any conformetric vector, and conversely. Thus it is chiefly a matter of con-
venience whether we use conformetric vectors or conformal vectors. Our work
is based upon unit conformetric vectors. The “conformal derivative” of such
vectors is somewhat simpler than the “conformal derivative” of conformal
vectors. However, we note that the analogous conformal theory of any sub-
space whose dimensionality exceeds one is developed by the use of conformal
tensors.

3. The conformal derivative. We suppose that the class, defined in §2, of
any two Riemann spaces V, and V, belonging to (2.8), is at least 2, that is,
m=2. Then it follows from (2.6) that (%)

i 1 i i i
3.1) { } = { 'k} + b0k + 0ko,; — gikg hU.h
J

AT

are the Christoffel symbols of the second kind for V, and V, respectively. Let

where

2t = x%(3)

represent a real curve Cin V,. Let dx?/dz50 at each point of this z-interval
for at least one value of 7. We also suppose that the functions xi(z) are of
class C? where p is a fixed integer subject to the inequaliti€s

(3.2) mzpz2

Then it is easy to show that s =s(2) is an allowable change of parameter
where s is an arc length parameter determined up to an additive constant
and a choice of sign. Hence the equation of C may be written as(??)

(3) A. Duschek and W. Mayer, Lehrbuch der Differentialgeometrie, vol. 2 (1930), pp. 14-15.

(*¥) The comma denotes covariant differentiation with respect to the x’s and the form (2.1)
and the &; are the Kronecker deltas.

(3") Note that x%(z) and xi(s) are different functions of their respective variables. This re-
mark also applies to the functions #i(z) and £i(5) which are defined below.
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xt = x¥(s), o <s < b,

where xi(s) are of class C?. Then the unit tangent »* and the principal normal
ut are given by

; dxt
(33) 14 =—;i_;’
» RS
' ds? Jjk) ds ds

The curve C in V, which corresponds to C under the conformal trans-
formation (2.5) is

T = xi(z)

where %%(z) and x%(z) are the same functions of 2z and corresponding points
have the same value of z. The conditions (3.2) also apply to C. As shown
above in the case of C, the curve C may also be referred to an arc length
parameter § and written as

& = &(5), 41 <35 <b

Naturally the points for which s =5 do not correspond since metric arc length
is not a conformal parameter. The unit tangent 7‘ and the principal normal g*
of C are given by equations similar to (3.3) and (3.4). From these equations
and (2.4), (2.6), (3.1), (3.3) and (3.4), we find that

(3.5) 7= e,
(3.6) B = e[ — aa(gh — v

The tensor gi* —piv* is the projection tensor(®®) of the vector space orthogonal
to »%. If we write u; and j; for the covariant components of the principal nor-
mals, u;=giu?, f;=g:;i’ and it follows from (2.6) and (3.6) that

(37) gi=u—o,;+ LRVLT

where v; is the covariant tangent defined by v;=g;»’.

Let \i(!) be the components of a conformetric contravariant vector of
class C! defined along C where ¢ is any (not necessarily allowable) conformal
parameter along C related to z (or s) by a parameter transformation of class
C'. Then dxi/dt exists and is continuous. Since A¢ is a conformetric vector,

(3.8) = e\l

We write the absolute derivative with respect to ¢ and the form (2.1) of this
vector as DA/ Dt so that

(38) Duschek-Mayer, loc. cit., pp. 44—45.
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5.9) D\ d)\’_'_{i}  da*
‘ - kS

If we write the analogous equation for D\‘/D¢ and simplify by the use of
(3.1), (3.8) and (3.9), we obtain

(3.10) Y [D)‘i+ w2 o ]
. —_— =€’ ) - — g¥,; |.
pr M g T T B

We substitute the values for ¢, and ¢, ;g% which are obtained from (3.6) and
(3.7) in (3.10) and simplify the resulting equation by the use of {2.4), (2.6),
(3.3) and (3.8). This gives

Dxi 4z dxt )‘r. dx* [DN . dx’ A dxk :I
= - - —— =€ - = -
oy TR T R pr T T TR T
It follows that d\i/bi¢ given by
(3.11) dAt DA? Y dxt X dx*
' o DM g T Ty

is a conformetric vector, that is,

oA A

Y blc
The subscript C is used in the symbol d/dlc to indicate that the definition
of this symbol depends upon the curve C as well as the process of differ-
entiation. Since b/bdtc will always be evaluated with respect to the same curve
C in V,, we shall usually write d/d¢ for b/dtc without danger of ambiguity.

In order to arrive at a meaning for the operator b/df when applied to any
tensor, we assume that d/df satisfies the following requirements(®®):
b0 D¢

(@) ==

bt Dt

if ¢ is any scalar;

(/3) DA’ D)\¢ + 9,‘)\,’ ds

h T
where \i is any contravariant vector (not necessarily a conformetric vector)
and Qj=viu;—piv;;

(3%) This discussion is analogous to a similar one for ordinary covariant differentiation by
Mayer. Cf. Duschek-Mayer, loc. cit., vol. 2, pp. 31-33.
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b bS T
— ST =—T+S85—
™ v (§-7) v + o

where S and T are any tensors

®) Z:;(; ’) (§T>

where 7 and j aré any two indices of the tensor T, one contravariant and the
other covariant. (That is, the contraction operation for tensors Y _..; and the
b/bt operation are commutative.)

On the basis of these properties, we shall find a unique expression for
9T /bt. We first consider a covariant vector &;. Then, according to (),

® i) = 2 (v
ot 0 pg o

Because of (y) and (8), this may be ‘written as

DA b 2 ot D)\'E i D&
ot o Dt Dt

It follows chat Ni(b£;/bt) is an invariant for all A* and hence b£;/dt is a co-
variant vector (if it exists). In this last equation, we substitute the value for
dAi/dt given by (8) and simplify. This gives

ot D&
M— - =4l = 0.
(bt Dt + 2 )

Since Af is an arbitrary vector, it follows that

bt D& i ds

W g

or

(3.12) i
¢ Dt dt dt

It is clear that 5/t as applied to covariant vectors £; satisfies those conditions
(a) to (8) which have meaning in this case.

To extend this definition to a tensor of any kind T, iv» we form the in-
variant

1l.

(3.13) T..., (1))\ e N i i

where the N7 and £; are arbitrary vectors. If we apply the d/bdt operator to
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(3.13) and proceed as in the derivation of (3.12), using (a) to (8) and (3.12),
we find that

) Ty oty D .1 _1h1 411, ta ds
TR s S e ey &
btc J1te il Dt 2 71 h dt
(3.14)
° i iw » ds
- ﬂ=21 Til“‘iﬁ—lhiﬂ+l"'j'9jﬂ E :

It follows that bT, "/bt is a tensor of the same kind as T’ j» and that
the definition of bT/ bt stated in (3.14) satisfies conditions (o) to (6) Equa-
tions (3.11) and (3.12) are special cases of (3.14).

The definition of 5T /bt stated in (3.14) may be based upon symmetric
coefficients of connection I'; just as ordinary covariant differentiation is
based upon the Christoffel symbols {%}. We define the T} by ()

1

) i i i
Ty = { . } + wibe + urb; — gikm
jk
and note that (3.14) is equivalent to
b QRREL M d ‘a thig4r: - in _fa dx*
— T = T Ty —
or ul ZE "
h dx"

- Z T 7,5 —1hig+1e 1.Piak _‘; ‘

We now find the law of transformation of 577 7o/ bt when Tyl is
a relative conformal tensor of weight »; that is, when T, e obeys (2 9).
As follows from the definition of I‘,k and (2.6), (3.1), (3.6) and (3.7),

r:k = P;k + (V 5k + l’k3 - guv)

By means of this relation and the definition for hT};.'.'.'}”/ d¢ by means of
the T, we find upon applying the d/d operator to (2.9) that

i ou ) igee iy do §yee iy
—T,, ,,—-e gTil...,-+(u+w—v)7t-T,-l...,~, .

(49) Since the T;k differ from the Christoffel symbols

ik

by a tensor, it is immediate that they must transform like coefficients of connection under co-
ordinate transformations. For example, cf. L. P. Eisenhart, Non-Riemannian Geometry, Ameri-
can Mathematical Society Colloquium Publications, vol. 8, 1927, p. 48.
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If Q is a relative conformal scalar of weight —1 so that 0 =e~°Q, the last
equations may be written in invariant form by noting that they are equiva-
lent to the equations
TR ."' b
S ,': gy & b_t‘
s Sl
Hence Spi = is a relative conformal tensor of weight x. In partlcular, if
T} e is a conformetric tensor so that u=v—w, it follows that DT/ bt
is also a conformetric tensor. This fact exhibits the conformal property of the
operator b/dt and thus justifies the definition: The tensor bT" '/ bt deﬁned
by (3.14) is called the conformal derivative (with respect to the curve C) of T'l
with respect to t.

The conformal derivative at a point is thus dependent not only on the
metric of V, but also on the curve C (or rather, on the second order element
of C). This dependence of differentiation on a curve as well as the space is
analogous to the similar dependence of parallel displacement of vectors in a
general Riemann space. In this respect the conformal derivative also re-
sembles the derivative (with respect to a curve) which has been defined for
any Finsler space by Synge(*!) and Taylor(*?). Indeed, it is very likely that
the results of this paper may be generalized to apply to any Finsler space.

The geometry which is based upon the conformal derivative will appear
in a separate paper. We note here a number of fundamental properties of the
conformal derivative which are elementary consequences of the preceding re-
marks and the definition:

ERRI™ le B0 iy
y A +(u+w—v)( gQ)T,{...,-

dat

(A) The conformal derivative with respect to a conformal parameter of a con-
formetric tensor is a conformetic tensor.

(B) The conformal derivative of any tensor is a tensor.

(C) Conformal differentiation of the sum, difference, inner and outer product
of tensors obeys the same rules as ordinary differentiation.

(D) The conformal derivative of gi;, g%, &) is zero; that is,

(3.15) b _ 2% _ 2 .

(E) The conformal derivative (with respect to a curve C) of the unit 