
BOUNDED UNIVALENT FUNCTIONS

BY

RAPHAEL M. ROBINSON

1. Introduction. We shall consider the class of functions/(z) which are

regular and Univalent for | z| < 1, with |/(z) | < 1 there, and with/(0) = 0. For

any fixed z0^0 in the unit circle, we use the abbreviations

(1) o = |/(0)|,      4 = |*o I,      c = \f(z0)\,      i «|/(*)'I

We are concerned in this paper with the inequalities relating a, b, c, d. It may

be noted that these relations are not affected if we impose the condition

/'(0) >0, which we shall do.

The four quantities (1) are restricted individually only by

(2) 0 < a = 1,      0 < b < 1,      0 < c < 1,      0 < d.

If o = l, then/(z)=z, hence d = l and c = b. This trivial case will be excluded

below where convenient. If a has any other given value, then it is easily seen

that no restriction is placed on any one of the other quantities. Between b

and c the only relation is c 5=0; the equality c = b holds only if a = 1. The rela-

tions among the quantities of each of the sets (b, d), (c, d), (a, b, c), (b, c, d), and

(a, b, c, d) are considered in §5. The relations between (a, b, d) are considered in

§6, and those between (a, c, d) in §7. Thus all subsets of the four quantities

are considered. It should be pointed out that the determination of the in-

equalities satisfied by the four quantities by no means completes the solution,

since one of the main difficulties is that of eliminating one of the quantities

in order to find the inequalities satisfied by three of them.

All of the inequalities which we obtain will be sharp; that is, in each case

there is an extremal function for which the inequality becomes an equality.

But in general we shall not go beyond the mere existence of such an extremal

function.

Finally, there is an appendix (§8) on unbounded Univalent functions. Let

F{z) be regular and Univalent for \z <1, and suppose F(0) =0, F'(0) = 1. The

relations between | z0|, | F(z0) \, and F'(zo) | are discussed in detail. One result,

which may seem surprising, will be mentioned here: If |.F(zo)| ^1/4 then

\F'(z0)\ = 1 + 3-2-3'2 = 2.06

but if I F(zo) I has a prescribed value greater than 1/4, no upper bound for

I F'(zB) I can be given. The results in the appendix are obtained as limiting

cases of results for bounded Univalent functions, but without using §6 and §7.
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where the prime denotes differentiation with respect to z. Finally, there is a

continuous function «(/) with |k(<)| =1, such that/(z, t) satisfies the differ-

2. The method of Löwner. If, from our class of bounded Univalent func-

tions, a subclass is chosen by means of which any function of the given class

can be uniformly approximated in the interior of the unit circle, then the in-

equalities between any of the quantities a, b, c, d are the same for the subclass

as for the whole class, except perhaps as regards the possibility of equality

signs holding.

According to LöwnerO), we may choose the subclass as the class of func-

tions /(z) to which a function/(z, t) can be found, with the following proper-

ties. There is a number 7>0 such that/(z, t) is continuous for |z| <1 and

0 = / = I, and is a regular function of z for each fixed The boundary condi-

tions

(3) /(*, 0) = z,     f(z, I) = /(*)

are satisfied, so that/(z) may be regarded as having been obtained from the

identity by continuous variation. The rate at which this variation takes place

is governed by

(4) /'(0, /) = e-\

where the primi

continuous func

ential equation

df(z, t) 1 + k(/)/(z, /)
(5) -= — /(z, /)-•

dt 1- K(t)f(z, t)

It is also permissible, and more convenient for us, to allow n(t) to be a

piece-wise continuous function; we then understand that (5) is to hold except

at the points of discontinuity of «(/), and similarly below. This weaker condi-

tion on n(t) means that we are choosing a larger subclass from the class of

bounded Univalent functions. The advantage of this is that extremal functions

for all of our inequalities are then brought within the subclass.

Another fact which is important for us is that (5) can be solved for any

given k(<) satisfying the conditions mentioned, so that there is a one-to-one

correspondence between such functions k(1) and functions/(z) of our subclass.

From (3) and (4) we see that

(6) a = e~'.

3. The integrals I and J. From (5) we readily obtain

dt I 1 - k(0/(zo, 0 |2

0) K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises,

Mathematische Annalen, vol. 89 (1923), pp. 103-121.
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If we put

(8) i = | /(zo, t) I,

then 5 decreases from b to c while t increases from 0 to I. Any function of t

in the interval Ofstfil may be regarded as a function of 5 in the interval

cfssfkb. In particular, we put

(9) «(*)/(*>. t) = 77(5)5,

so that 77(5) is a piece-wise continuous function with \r](s) \ =1. Then (7)

takes the form

ds s

dt H{s)

- v(s)s |s

(10)

where

(11) H(s) =
1 — 5'

We have evidently

1-5 1+5
(12) —— =S H(s) fl --

1+5 1—5

We show now that 77(5) is an arbitrary piece-wise continuous function

with 177(5) I = 1. If any such 77(5) is given in the interval cfis fib, then we first

determine ^(5) from (11), and then from (10) and the fact that t = 0 for s = b,

we find that

(13) / = f B{$)dtti,

and in particular that

(14) I = f H(s)ds/s.

Now (13) determines 5 as a function of / in the interval 0^/s^/, so that (8)

and (9) determine |/(z0, /) | and k(/)/(z0, /). From (5) it follows that

d 23[k(0/(*o.*)]
(15) — amp/(z0, 0 =

dt I 1 - K(t)f(z0, t) |2

Using the value just found for k(/)/(z0, t), we can find amp/(z0, /), and.hence

/(z0, /) itself, the initial condition/(z0, 0) =z0 being imposed. Finally, knowing

K(t)f(zo, t) and/(z0, t), we can find ic(t) by division; it will be piece-wise con-

tinuous and satisfy I ic(t) I = 1. Now the n(t) and/(z0, t) determined satisfy (7)
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and (15), which are equivalent to (5) with z = z0. From this we see that the

k(/) which we have found will in fact lead back to the desired 77(5).

From the fact that 77(5) is arbitrary, we see that H(s) is an arbitrary piece-

wise continuous function satisfying (12). For if any such H(s) is given, we

can find an rj(s) satisfying (11).

It is readily seen that if /(z, t) is a continuous function which is regular

in z for each fixed t, and such that/((z, /) is continuous, then/2((z, /) and/(z(z, /)

exist and are equal. Using this fact, from (5) we find that

d       . . m{ [1 - /cW/(z0, *)]2}
(16) -log |/(So,0 I = 1-2

^ I 1 -«(0/(*o, 0|4

Expressing the right side in terms of s, and using (10), we have

-log I / (.o, t) I = 1 - r,(s)sV ~ 2    ll_v(s)sl2 J-

Integrating from / = 0 to / = / gives

fb\ 1 - 17(5)5 |2 - 2 cos {2 amp [l - 17(5)5]}
(17) log d = J-ds.

Now

cos amp [l — 77(5)5] =

5(1 - 52)

1 - 52 4- j 1 - 77(5)5 |2

2 I 1 - 77(5)5 I

so that the numerator of the integrand becomes 252 — (1 — s2)/H(s), and (17)

takes the form

1 - c2
(18) d = -e-J,

1 - 62

where

(19) / = f\l/H(s))ds/s.

The problem of finding what values are possible for a and d when b and c

are given is thus reduced to finding the relations between the integrals I

and J. The corresponding values of a and d are then found from (6) and (18).

4. Relations between I and /. Suppose 0<c<ö<l, and let I and / be

defined by (14) and (19), where H(s) is any function satisfying (12) and piece-

wise continuous in the interval cf£sf=b. In this section, we shall determine

the inequalities relating I and /. It is clear that the relation between I and /

is a symmetric one.

We start by introducing two functions which we shall need in this dis-

cussion. For c fir fib, let
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s ds      C 6 1 — r dsJ" 1 — s ds       r b 1

TT-^ I 7c    1 + S   S J T 1- + r s
(20)

/*r 1 + s as      /■11 + >■ rfj
q(r; b, c) =-+-

«/c  1 — s  s      J r  1 — r s

Evaluating the integrals gives

(21)

Pin b, c) = log + f

r     r c    "I     1 + r b
a(r; b, c) = log J +^^7

.(1 - r)2 (1 - c)2

in particular we have

(22)

r    b c    1 1 - c
*(&; 6, c) = log -:- ,    p(c; b, c) =-log
FK S L(l + o)2 (1 + c)2]     ^ 1 + c c

r   6        c   n 1 + c b
o(b; b, c) = log - »■ ') = 7^ ^ ~

It is clear from (20) that p(r; b, c) is a decreasing function of r, and g(r; 6, c)

an increasing function. Since p(r; b, c) <g(r; b, c), we have in particular

(23) p(b; b, c) < pic; b, c) < o(c; 6, c) < g(6; b, c).

It is clear first of all that individually / and J are restricted only by the

conditions

(24) pib; b,c) = / f£ gib; b, c),

(25) p(b; b,c)£J S ?(6; 6, c).

To find the largest possible value of J when 7 is given, we note that

His) +1 /His) = (1 - 5) / (1 + 5) 4- (1 +s)J i 1 - s), and hence

(26) I + J fkpib;b,c) + gib;b,c).

The equality is attained for any piece-wise continuous function His) which is

equal to (1— s)/(l+j) in some subintervals, and to (l+s)/(l— s) in others.

Since these are the values of His) which give I its smallest and largest values,

we see that any possible value of I can be obtained in this way. Hence for

any given I, the largest possible J is determined from (26).

It remains to find the smallest possible J for a given I. Let k be any posi-

tive constant, and consider

nk2 1 ds
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The integrand is smallest when H(s)=k; but this may not be compatible

with (12). It is clear that the integral will be minimized if we keep H(s) as near

to k as possible. If k is sufficiently small, then this H(s) is always equal to

(1— s)/(l+s); and if k is sufficiently large, then H(s) = (l+s)/(l — s). Hence

for a suitable value of k, I may be given any possible value. Thus the mini-

mum / for any given I is obtained for H(s) as near to some constant k as

possible.

To formulate the lower bound for J, we distinguish three cases:

Case p.   p(b; b, c) = / = p(c; b, c).

(28) Case o.   p(c; b, c) fk I fk q(c; b, c).

Case q.    q(c; b, c) = I = q(b; b, c).

We note first that p(r; b, c) is given by (14) where H(s) is as near to

(1 — r)/(l+r) as possible. Hence in Case p, we determine r so that p(r; b, c) = 1,

and then J^q(r; b, c). Similarly, in Case q, J^p(r; b, c), where q(r; b, c) =1.

In Case o, H(s) may be equal to a constant k throughout the interval, and

hence J is minimized in this way. Hence for I = k log b/c, the minimum J

is (1/&) log b/c, so that J^(log b/c)2/I. The three cases may be combined

in the form

(29) / ä; L{I; b, c)

where

(30) L{I; b, c)

q(r; b, c), where p(r; b, c) = I, in Case p,

(log b/c)2/1, in Case o,

{p(r; b, c), where q(r; b, c) = I, in Case q.

5. The simpler cases of the problem. In this section we obtain the inequal-

ities among each set of quantities chosen from (a, b, c, d), except for the trivial

cases treated in the introduction, and the cases (a, b, d) and (a, c, d), which

have separate sections devoted to them. However, partial results for those

two cases are given here.

Relations between a, b, c. These were first obtained by Pick(2); more re-

cently, Golusin(3) derived them, using the method of Löwner. From (24) we

have, for c<b,

c b r h

(31) -:-fkafk
(1-c)2 (1-6)2 (l+-c)2 (l + b)2

(2) G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich be-

schränktes Gebiet, Sitzungsberichte Akademie der Wissenschaften, Vienna, vol. 126 (1917), pp.

247-263.
(3) G. M. Golusin, Über die Verzerrungssätze der schlichten konformen Abbildungen (Russian

with German summary), Matematicheskii Sbornik (Recueil Mathematique), vol. 43 (1936),

pp. 127-135.
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Fore = 6, (31) gives a = l, which is correct. Thus for any given b and c, with

c = b, the value of a is restricted only by (31). It may be noted that (31) itself

implies that cfib, so that it is in fact the only relation between a, b, c.

The bounds in (31) are attained for the function w=f(z) defined for | z] <1

by

w az
(32) -=-, \w  < 1.

(1 - wy    (1 - z)2 1 1

This function maps \ z\ < 1 on \ w\ < 1 with a slit along the negative real axis.

The lower and upper bounds are attained for z0>0 and z0<0, respectively.

Relations between b, c, d. From (25) we have

c b 1 - 62 c b
(33) -:- = d-<!-:-

(1 - c)2 (1 - b)2       1 - c1    (1 4- cy (1 + 6)2

This inequality could also be obtained from (31) by making linear trans-

formations of |z| <1 and | w\ <1 into themselves, in such a way that 0 and Zo

are interchanged in the z-plane, and 0 and /(z0) in the w-plane. From (33)

we find that

c(l + c)   6(1 + b) c(l - c)   6(1 - 6)
(34) —-: —-= a1 =--:—- ■

1-c      1-6 1 + c      1 + 6

This is the only relation between b, c, d. The bounds are attained for the func-

tion (32), for z0 <0 and z0>0, respectively.

Relations between b and d. This case may be solved by seeing what

bounds are given for d by (34) when 6 is given but c is not. The only restric-

tion on c is that 0<c = 6. Letting c—>0, we see that there is no positive lower

bound for d. On the other hand, the right side of (34) is bounded, and in fact

has its largest value for c = 21/2—1; if this is not within the allowed interval,

then the largest possible value is at c = b. From this we find that

[1 if   0 < 6 = 21'2 - 1,

(35) d s i 1 + 6
(3 - 23'2)- if   21'2 - 1 < 6 < 1.

I 6(1-6)

This is the only relation between b and d. The equality sign holds for the

identity in the first case, and for the function (32) with a chosen so that

c = 2i/2_i jn the second. Dieudonne(4) has shown that the first part of (35)

holds for bounded functions which are not supposed Univalent.

Relations between c and d. Letting 6—>1 in (34), we see that there is no

restriction on the value of d if only c is given.

(4) J. Dieudonn6, Recherches sur quelques problemes relatifs aux polyndmes et aux fonctions

bornees d'une variable complexe, Annales de l'ficole Normale, vol. (3) 48 (1931), p. 352.



1942] BOUNDED UNIVALENT FUNCTIONS 433

Relations between a, b, d (partial results). From (31) and (34) it is possible

to find the smallest value of d for given a and b, and in some cases also the

largest d.

If a and b are given, we may determine the smallest possible value of c

from the right side of (31), and then the smallest possible d for this c and

the given b from the left side of (34). Since the two functions of c involved in

the bounds are increasing, and since the equality signs in the two cases are

attained together, we obtain in this way the best lower bound for d in terms

of a and b:

(36) d ^

where c is determined from

(37)

c{\ + c)   6(1 4- 6)

ab

(l + cy   (l + by

The equality in (36) is attained for (32) with z0<0.

Similarly, the equality signs on the left side of (31) and the right side of

(34) are attained together. But the function c(l—c)/(l+c), which occurs on

the right side of (34), is increasing only for c^21/2—1, so that we can draw

the conclusion

c(l - c)   6(1 - b)
(38) d ="

where c is determined from

(39)

1+c l+b

ab

(l - cy  (l - by

only if that value of c is not greater than 21/2—1. In this case, the equality

will be attained for (32) with z0>0. It is clear that we obtain in this way the

best upper bound for d in terms of a and b if b = 21/2— 1. We shall show in §6

that the same is true whenever 0^1/2 and in some other cases, but not in

all cases.

Relations between a, c, d (partial results). We try to find bounds for d in

terms of a and c from (31) and (34). If

4c
(40) a >-,

(1 + c)2

then the right side of (31) determines a largest value possible for 6, and then

with this b and the given c, a lower bound for d is determined from the left

side of (34). This bound is the best possible. It is given by (36) with b deter-

mined from (37), and is attained for (32) with Zo.<0. On the other hand, if
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(40) is not satisfied, then b is permitted values arbitrarily close to 1. It is

easily shown that no positive lower bound exists for d in this case. For ex-

ample, it is sufficient to consider the functions w=f(z) which map |z| <1 on

I w\ < 1 with a slit from — 1 nearly to — c and a slit on the positive real axis

long enough to give a the proper value, z0 being chosen so that/(z0) = — C.

We can draw the conclusion that an upper bound for d is given by (38)

with b determined from (39) only if ö(l—6)/(l+6) has its smallest value

when b has its smallest possible value; if this is true, then the maximum

value of d is attained for (32) with z0>0. The condition is certainly satisfied

if for the given values of a and c one has necessarily b = 2112 — 1; this is true at

least for a near 1 and c near 0. More generally, if we denote the smallest pos-

sible value of b by 6min, and suppose that b has a largest»possible value 6max,

then the condition is satisfied if 6(1 —6)/(l + ö) is not larger at 6min than at

ömax- This condition reduces to

(1 + ömin)(l + 6mai) = 2,

which is the best result obtainable by the present method. We shall show in §7

that the conclusion holds if and only if

(41) 6min ^ 1/2,      6max ̂  1,

where the second inequality is to be interpreted to mean: either a and c have

such values that bm^<l, or are limits of such values.

Remark on the hyperbolic expansion factor. We may interpret the expres-

sion d(l — b2)/(l — c2), which occurs in (33), as the expansion factor for

the mapping w =/(z), when the metric of hyperbolic geometry is introduced in

|z| <1 and \w\ <1. By a similar argument to that used above, we find that

no matter which two of the three quantities a, b, c are given, the hyperbolic expan-

sion is minimized for (32) with z0<0, and maximized for (32) with z0>0. Only

in case a and c are given, not satisfying (40), and we are seeking to minimize

the hyperbolic expansion, is it impossible to satisfy the necessary conditions,

Zo<0 and |/(zo)| =c. But in this case we know that d has no positive lower

bound, and a fortiori the same is true of the hyperbolic expansion. It may also

be noted that the conclusion that the hyperbolic expansion has its extreme

values for (32) is weaker than the same conclusion about d, and hence follows

from this when this is true. The bounds for the hyperbolic expansion when a

and 6 are given were found by Pick(6).

So far in this section, we have used from §4 only the trivial results (24)

and (25); the rest of the section is used first in considering the relation be-

tween all four quantities. It may also be noted that the results of this section

so far have depended only on (31) and (33). Since (33) can be deduced from

(31), these results can be obtained without using Lowner's method, if we as-

(6) Pick, loc. cit.
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sume (31) from the work of Pick. The rest of this section, and the next two

sections, depend essentially on Löwner's method.

Relations between a, b, c, d. On account of (18), we see that the lower

bound for d in terms of a, b, c is found from the upper bound for J, given in

(26). This leads to

1     c2 o2
(42) d ^ —

a  1 - c2 1 - b2

It may be verified that this bound is attained for any function w=f(z)

mapping |z| <1 on |w|«<l with slits along the positive and negative real

axes; the equality sign in (42) then holds for any positive or negative z0. The

lengths of the slits and the value of z0 may be so chosen as to give any desired

values to a, b, c.

Similarly, the upper bound for d is found from the lower bound for J, given

by (29). The result may be written in the form

(43) log d ^ Mil; b, c),

where

(44) Mil; b, c) = log iZ-i. - L(I; b, c).
1 — bi

6. Relations between a, b, d. We shall obtain the lower and upper bounds

for d in terms of a and b by eliminating c from (42) and from (43); this will

complete the partial solution given in §5.

The lower bound for d in terms of a and b may be obtained from (42) by

substituting the smallest possible value of c, which is obtained from (37).

This is seen to agree with our previous result, which was (36) with the same

value of c substituted.

We turn now to the problem of finding the upper bound for d in terms

of a and b. We have to maximize Mil; b, c) for all possible values of c. Now

(44) defines Mil; b, c) in terms of L(7; 6, c), which in turn is defined by (30).

In (30), different formulas hold in each of the three cases (28). The cases are

distinguished according to the interval in which I lies when b and c are given.

But now we wish to consider I and b as given, and see in what intervals c

must lie in order that each of the cases may hold.

We note first that all four functions pib; b, c), pic; b, c), qic; b, c), qib; b, c)

are decreasing functions of c. This is evident from (22) for all the functions

but qic; b, c). For fixed b, let cjS(c) —qic; b, c); then

1 + c      b 2 b       1 + c
*(c) = ~-" log -,      <t>'ic) = ~- log- •

1 — c      c (1 — c)2      c      c(l — c)

If we put iA(c) =log c + (l —c2)/2c, then the condition <ri'(c) <0 reduces to the
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form \p(c)>\og b. Now \f/'(c) = — (1 — c)2/2c2! <0, so that yf/{c) is decreasing.

Hence i//(c) >^(b) > log b, as was to be shown.

Thus each of the four functions is strictly monotone, and from (22) it is

seen that each decreases from + oo to 0 as c increases from 0 to b. Hence if a

and b are given, with a<l, there are unique numbers cp, cp, cq, cq, between 0

and b, which satisfy

(45) pib; b, cp) = p(cp; b, cp) = q(cq; b, cq) = q(b; 6, cq) = I.

From (23) it is seen that these numbers satisfy the inequalities

(46) cp < cp < cq < cq;

and (24) takes the form cpf£cficq. The three cases (28) are equivalent to the

following:
Case p.   cp S c S cp.

(47) Case o.   c„ = c = cq.

Case q.   cq 5= c iS cq.

We now calculate LC(I; b, c) in each of the three cases. In the first place,

we have

- 2         6 1 - c
pr(r; b, c) =             log —, pc(r; b, c) =- ,

(1 + r)2       r c(l + c)
(48)

2          b l + c
qr(r; b, c) =-              log —, qc(r; b, c) =- ■

(1 — r)2        r c(l — c)

From these and the definition (30), we have

l + c     /1+A2 1-c/1+A2 1

c(lc(l-c)    \l-r/ c(l + c)
where p(r; b, c) = I (Case p).

(49) LC(I; b,c)=\-log — (Case o),
cl c

1-c     /l-A.2 l+c
-(-)-where q(r; b, c) = I (Case q).

c(l+c) Vl+r/cU-c)

In particular, the values of LC(I; b, c„) and LC(I; b, cq) are obtained from the

first and last parts of (49) by putting r = b. Furthermore, we find from (49)

that

r „ i    \ 2(1 + cp) 2(1 -cq)
(50) LC(I; b, cp) = - —-—,      LC(I; b, cq) = -

cp(l — cp) cg(i + cqy

that is, both the left- and right-hand derivatives at cp and cq have these val-

ues. Thus LC(I; b, c) exists everywhere and is continuous.
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It is evident from (49) that LC(I; b, c) <0 in all cases. Hence from (29)

we see that the smallest / for given a and b is obtained for c = cq; we thus

verify again that the hyperbolic expansion is maximized in this case. This does

not however tell when d itself is largest. For this purpose, we have to maximize

M(I; b, c). From the definition (44) we find that

(51) Jf.(J; b, c) =-^— - LC(I; b, c).
1 — c2

We must investigate the sign of MC(I; b, c) in each of the cases (47).

Case p. We see at once that MC(I; b, c) >0, so that the maximum value

of M{I; b, c) does not occur in this interval.

Case o. We find from (50) that

(52) Me(I; b, cp) > 0,   MC(I; b, cq) > , = , < 0 according as cq < , = , > 1/2.

Now MC(I; b, c) is seen to be decreasing, so that it is negative, if at all, in a

subinterval abutting cq. Hence M(I; b, c) is monotone increasing in the in-

terval if c,^l/2, while if cq>l/2 it increases to a maximum and then de-

creases. In the latter case, the maximum is at a point c> 1/2. For the condi-

tion cq>l/2 is equivalent to g(l/2; b, 1/2) >J or 3 log 26>7; the condition

MC(I; 6, 1/2) >0 reduces to the same form if c = l/2 comes in Case o, and is

trivial if it comes in Case p.

Case q. The condition Me(I; b, c) >0 is seen to reduce to

(53) (1 + c)2 < (1 + r)*/2r where q(r; b, c) = /.

Since r increases with c, we see that (53) is more likely to be true the smaller c

is. Hence M(I; 6, c) first increases and then decreases, or else is monotone

increasing or decreasing. It starts to increase if cq<l/2, and increases

throughout the interval if

(54) (1 + Cqy S (t + 6)2/26.

We note also that (53) is certainly true if c = 21/2—1, since the right side is

more than 2; and it is certainly false if c^l/2, since then r = c= 1/2, so that

(l+r)2/2rg9/4^(l+c)2.

Putting together the results from the three cases, we see that either

M(I; b, c) is monotone increasing in the whole interval cpfscfscq, or else

it first increases and then decreases. Its largest value is at a point c satisfying

the following conditions: c>cp; either cq<c<\/2, cg = e = l/2, or cq>c>\/2;

c=c0 if and only if (54) is true; and if C7*cq then c > 21/2 — 1.

The conditions involved here may be expressed in terms of a and 6. In

the first place,

(55) cq < , = , > 1/2 according as a <, = ,> 1/863.

Also, (54) with cq determined as the root of (39) is equivalent to
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(56) a <
by

where (1 + c)2
(l - cy (i

Substituting the value of c, this becomes

(1 - ö)2[2ö(3 - 26 + 362) + (1 + 6)3(26)1/2J

(1 + by

2b

(57)
6(1 - 66 + 62)2

Using the form (56), we see that this condition is true whenever 6^1/2, since

then     1/2; but that is is not true for b> 1/2 and a near 1.

We now state the best upper bound for d in the various cases. The cases

are distinguished according to the point c where M{I; b, c) is largest.

Fig. 1

Case 1. cficq. This is true if c?= 1/2, or if a = 1/863. The value of c is found

from MC(I; 6, c)=0, using the formula of Case o. It is easily seen that the

bound may be written in the form

1 - c2        c2          6                      6        c2 1
(58)    log d = log-— —- log —       where log — =-log —

1 - 62 1 - c2 1 - c2

(59)

Case 2. cq<c<cg. This is true if a<l/863 and (57) is false. Here

(i + ry

1 - c2
log d fl log-— - p(r; 6, c)

1
where q(r; b, c) = log — and (1 4- c)2 =

a 2r

Case 3. c = cq. This holds if (57) is true, and in particular if 6^1/2. We

then have the result (38), which was previously obtained under more restric-

tive conditions.

The values of a and b for which the various cases hold are shown in Fig-

ure 1.
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7. Relations between a, c, d. The lower bound for d in terms of a and c is

obtained from (42) by taking b as large as possible, consistent with (31). If

(40) is satisfied, then there is a largest value possible for b; the required lower

bound for d is (42) with 6 determined from (37), which is seen to be the same

as (36) with the same value of b substituted. If (40) is false, then b may be

arbitrarily near to 1, and (42) shows that there is no positive lower bound for

d. Thus our previous results for this case are checked.

We now turn to the problem of finding the upper bound for d in terms

of a and c. To do this, we have to eliminate b from (43). This turns out to be

the most difficult problem of all. In order to prevent this section from being

unreasonably long, we shall omit a number of calculations; but some of these

are quite similar to those given in §8 for the case of unbounded functions.

Since L(I; b, c) is defined in (30) by different formulas according to which

of the cases (28) holds, we must now consider in what intervals b must lie

in order that each of these cases may apply, when I and c are given. It is clear

from (22) that all four functions

p{b;b,c), p(c;b,c), q{c;b,c), q(b;b,c)

are increasing functions of b. As b increases from c to 1, the four functions

increase from 0 to certain limiting values.

(1 + c)2 1 - c 1
p(l; 1, c) = log-,       p(c; 1, c) = —— log —,

(60)
4c 1 + c c

.     1 + c 1
q(c; 1, c) =-log —,     q(l; 1, c) = 4- oo.

1 — c c

We wish to determine values of bp, Bp, bq, bq, not greater than 1, which satisfy

(61) p(bp; bp, c) = p(c; bp, c) = q(c; lq, c) = q(bq; bq, c) = /,

so far as this is possible. We can always find bq < 1; and we can find

bp S 1   if   a £ 4c/(l + c)2,      bp =" 1   if   a = eU-«)/»*),
(62)

bq = 1   if   a = c(H*>/a-«>.

The quantities bp, hp, bq, bq, so far as they exist, are seen from (23) to satisfy

the inequalities

(63) bp > bp > lq > bq.

If any one of the quantities does not exist, we shall treat it in inequalities

as if it were more than 1. For example, bp> 1 would mean that no 5P = 1 can

be found. If bp^ 1, then b^bp is impossible, since 6<1 in any case; and b<bp

would impose no condition on b. With this interpretation, the three cases

(28) take the form
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(64)

Case p.

Case o.

Case q.

P = 6 = hp.

p = 6 ^ 53.

bt = b = 6,.

For some values of a and c, not all the cases occur.

We now calculate Lb{I; b, c) in each of the three cases. Besides (48) we

have

(65) pb(r; b, c) =
6(1 + r)

qb(r; b, c) =
1 + r

b{\ - r)

From these we find that

(66) Lb(I; b, c) =

2(1 + r)

6(1 - r)

2 6
— log —
bl c

2(1 - r)

6(1 + r)

where p{r; 6, c) = I (Case p),

(Case 6),

where q(r; 6, c) = I (Case q).

We see that at bp and 6, the derivative has the same value to the left and to

the right.
It is clear that Lb{I\ b, c) >0 in all cases, so that L(I; 6, c) is a monotone

increasing function of b. Hence by (29), the smallest value of J for given a

and c is obtained by taking b as small as possible. We thus verify that the

hyperbolic expansion is maximized in this way.

We next consider the behavior of L(I; 6, c) as 6—>1. In order for b—»1 to

be possible, we must have bp = 1. It may be shown that L(I; b, c) approaches a

finite limit if 6P>1, and that L(I; 6, c)4-2 log (1—6) approaches a finite

limit if bv=l. From this we find that

(67)
Mil-, 6, c)

M(I; b, c)

+ «> as 6

as 6

1 if bp > 1,

1 if 6„ = 1.

The first formula shows that no upper bound for d in terms of a and c can be

found if bv > 1. On the other hand, if bp = 1, then d—>0 as b—>l. In fact, if dmlu

and dmSiX denote the smallest and largest values of d for given a, b, c, it may

be shown that if a and c have fixed values such that bp= 1, then

(68) iai/iin —> 4/e

We now turn to the consideration of

26

as 6 —* 1.

(69) Mb(I; b, c) =
1

— Lb(I; b, c).
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From (66) we see that the condition Afb(I; b, c) <C0 at the points bp, Bp, Bq, bq

reduces to

(70)      bp < 1,   bp< ((1 + c)/2y\   hq < ((1 - c)/2y<\   bq < 1/2,

respectively. Since p(bp; bp, c)=J, the first condition is equivalent to

p(l; 1, c)>I, and similarly for the others. The four conditions become

(71)
a > 4c/(l + c)\      a > (2c2/(l + c))

a > (2c2/(l - e))ti+»)/«U—),      a > c/2(l - c)2.

These conditions are satisfied above the curves which are denoted by p, p, q, q,

respectively, in Figure 2. We wish to know that the curves have the relative

position shown in the figure. To verify that curve p lies below curve p, we put

4>{c) = (3 4- 5c) log 2 4- 4c log c - (3 4- 5c) log (1 4- c),

and have to show 0(c) >0 for 0<c<l. Calculating the first and second de-

rivatives, we find that 0"(c)>O and 0'(1)=O, hence 0'(c)<O for 0<c<l;

then since 0(1) =0, we find that 0(c) >0 in the interval. By means of similar

considerations, we can show that each other pair of curves intersects in ex-

actly one point, and then by numerical calculation it is easily seen that the

points of intersection lie as shown in the figure.

By a detailed study of the three cases (64), it may be shown that

Mb(I; b, c) <0, if at all, in a single subinterval of the whole interval öp — b >,bq.

It is clear then from (70) and (67) that a necessary and sufficient condition

that M(I; b, c) should be monotone decreasing is that bpf^l and 6,^1/2.

It is seen that this is also the condition that the largest value of M(I; b, c)

is for b = bq.

It may be shown further that M(I; b, c) is decreasing in some subinterval

for (c, a) above the heavy broken curve in Figure 2. This curve is tangent to q.

The equation of the curve to the left of the point of tangency is

(72) a =
K(l - cy

where K = 2.31 • • • is a constant. This part of the curve together with q and q

bound a region where M(I; b, c) is decreasing somewhere between bq and bq.

The equation of the curve to the right of the point of tangency is

(73) C2 =   [1 4- I - (21 + /2)l/2]g/-(27+/2,lft

where as usual 7 = log 1/a. This curve with q and p bounds a region where

M(I; b, c) is decreasing somewhere between lq and bp.

The three heavy curves in Figure 2 divide the unit square into 5 regions

which are numbered from 1 to 5. In these, M(I; b, c) has the following be-

haviour: 1, decreasing throughout; 2, increasing and then decreasing; 3, de-
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creasing and then increasing; 4, increasing, then decreasing, then increasing

again; 5, increasing throughout.

Fig. 2

We come finally to expressing the upper bound for din terms of a and c.

Only if öp^l is there any upper bound for d. In region 1, for 6P=1 and

bq = 1/2, the largest d is attained for the smallest possible b, as was mentioned

in (41). The result is then (38) with b determined from (39). Region 2 is di-

vided into two parts by q. In the small region to the left we have

(74) log d log
1

1
p(l - 2b2; b, c),

where b is the smaller root of q(l — 2b2; b, c) =1. To the right we have

(75) log d f= log
1

1 - b2     1 - 6:
log

where b is the smaller root of log b/c = b2I/{\—b2).

Finally, we restate the most striking result: If values of a and c are given

for which b cannot have values arbitrarily near to 1, then there is a maximum

possible value for d; and the same is true for values of a and c which are limits of

such values. But for all other values of a and c, d may have arbitrarily large values.

The surprising part is that there is a sudden jump from one case to the other,

rather than a gradual transition.

8. Appendix. As a supplement to our study of bounded Univalent func-

tions, we now consider Univalent functions which are not supposed bounded.

The results of this section are obtained from those of §5 by a suitable passage

to a limit; no use is made of §§6 and 7.

Let F(z) be a function which is regular and Univalent for |z| <1, and for
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which F(0) = 0 and F'(0) = 1. For any fixed z0^0 in the unit circle, we put

[1] 6 = |»o I,      C = \F(zo)\,      D = \F'(z0)\.

We shall study the relations betweer b, C, D. Individually, the quantities

satisfy only the inequalities

[2] 0 < 6 < 1,      0 < C,      0 < D.

Now any such F(z) can be approximated by bounded functions of the

same type, if the bound is allowed to vary. Hence any possible values of

b, C, D can be approximated for bounded functions. Conversely, on the basis

of [5], the Univalent functions form a normal family, so that any values of

b, C, D with 0 <b < 1 which can be approximated can also be assumed. Hence

the values possible for b, C, D are those attained for bounded F(z) together

with the limit points satisfying 0<6<1.

If F(z) is bounded, we can choose a >0 so that | aF(z) | < 1 for \ z\ < 1. We

then put

[3] /(z) = am,

so that/(z) is a function of the class previously considered, and/'(0) = a. Thus

a and b have the same meaning as before, and

[4] c = aC,      d = aD.

From the known relations between a, b, c, d, we obtain the relations between

a, b, C, D; by eliminating a, we find the relations between 6, C, D.

Relations between b and C. If in formula (31) we put c = aC, and then let

a—»0, we obtain the well known inequalities^)

r 1 ° b

[5] tt-ttt; = C =
(1 + by       (1 - by

The bounds are attained for the function

[6] F(z) =
(l - zy

for z0<0 and z0>0, respectively. The function [6] maps |z| <1 onto the

w-plane excluding those points for which w = —1/4.

Relations between 6, C, D. We remark first that the required inequalities

are not obtained from the relations between b, c, d by passing to a limit.

If in (34) we put c=aC and d=aD, and let a—»0, we obtain Nevanlinna's

result (7)

(6) See for example L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, chap. 1, §9.

(7) R. Nevanlinna, Über die konforme Abbildungen von Sterngebieten, Finska Vetenskaps-

Societeten Förhandlingar, vol. 63 (1921), no. 6, p. 18.
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C 1 - 6 C 1 + 6
7 —- < D < —- ■J 6(1 + 6) 6(1 - 6)

This inequality gives the best bounds for D/C in terms of b. It does not how-

ever give the best bounds for D in terms of 6 and C, since either of the

equalities in (34) is attained only for a certain positive value of a.

The sharp lower bound for D in terms of b and C is easily obtained. In

(42) we put c=aC, d = aD, and let a—>0, which gives

1 - 62
8] D >-C2.- 7j2

It may be verified that the equality is attained for a function mapping | z| < 1

on the w-plane with slits along the positive and negative real axes. For a given

b, the slits may be so chosen that C has any possible value. The equality is

attained for any positive or negative z0.

We turn now to the problem of finding the upper bound for D in terms of

b and C. We start by introducing the functions

P(r; b' C) = l0g m 1 M + TX~ l0g
C(l + r)2     1 + r r

r 1+r 6
Q(r; b, C) = log —- +-log -

C(l — r)2     1 — r r

for 0<r^6;forr = 0we put

[10] P(0; 6, C) = <2(0; 6, C) = log b/C,

which is the limiting form of [9]. The functions (21) are related to these by

the equations

p(r; 6, c) = p(r; 6, aC) = P(r; b, C) - log °

[11] (1 + ÖC)
a

q(r; 6, c) = q(r; 6, aC) = Q(r; b, C) - log —-—- •
(1 — at)1

The function P(r; 6, C) is a decreasing and Q(r; b, C) an increasing function

of r; both increase with 6, and decrease as C increases. The partial derivatives

have the values

Pr(r;b,Q = ~ 2. log-, Po(r;6,C) = TTTT^T- ^(r;i,C) - - -•
r12, (1 + r)2       r 6(1 + r) C

Qr(r; 6, C) =      2      log —, Ö0(r; 6, C) = r ,  <3c(r; 6, C) = -
(1 — r)2       r 6(1 — r) C
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The three cases (28) take the following limiting forms as a—>0:

P(6; 6, C) fk 0 = P(0; 6, C),      P(0; b, C) = 0 = 0(0; b, C),

0(0; 6, C) = 0 f£ Q(b; b, C).

These are equivalent to

[14] C fkb,      C = b,      C = b,

respectively, where C of course satisfies [5].

In Cases p and g, we determined r from p(r; b, c) — I and g(r; b, c) = 7,

respectively. These equations are the same as

[15]       P(r; 6, C) + 2 log (1 4- aC) = 0,   0(r; 6, C) + 2 log (1 - aC) = 0.

As a—»0, their roots approach those of

[16] P(r; 6, C) = 0,      Q(r; b, C) = 0.

Putting c — aC and d = aD in (43), and letting a—»0, we find that

[17] log n fl M(b, C)

where

[18] M(b, C) = log —5—- - 7(6, C),
1 — o-3

7(6, C) being defined for all possible values of 6 and C by

[19] 7(6,C)={^:
Q(r; 6, C) where r satisfies P(r; 6, C) = 0, if C fk 6,

6, C) where r satisfies Q(r; 6, C) = 0, if C = 6.

These two formulas correspond to Cases p and q in (30). For the case C = b,

either of these, and also Case o, leads to the result

[20] 7» < —X-— if C = b.~ 1 - 62

It may be verified that the equality in [20] is attained for a function F(z)

which maps |z| <1 on the w-plane slit to infinity at one or both ends of the

perpendicular bisector of the segment joining 0 and/(zo). We see from [8] and

[17] that when C has its smallest value, we must have 7> = (1— 6)/(l+6)3,

and that when C has its largest value, 7> = (l+6)/(l— 6)3; in these cases the

equalities in both [8] and [17] are attained for the function [6]. We know

that in any case, there is some function for which the equality in [17] is at-

tained; but the extremal function does not seem to be of a very simple sort

except in the three cases mentioned.

Relations between b and D. From [8] we see that D has its smallest value

when C has its smallest value, determined from [5]. This gives
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1-6
21 D >-

" (l + by

The equality is attained for the function [6] with z0<0.

We next determine the upper bound for D. In the first part of [19], as C

increases, r decreases, and hence Q(r; b, C) decreases; in the second part, as C

increases, r increases, and hence P(r; b, C) decreases. Hence in either case,

L(b, C) is decreasing, or M(b, C) is increasing. Thus the largest value of D is

obtained when C has its largest value, and hence

l + o
[22] D =

(1 - bY

The equality is attained for the function [6] with z0>0.

We may also verify that M(b, C) is increasing by calculating its partial

derivative. Making use of [12], we find that

[23]       Mc(b, C) =

1 T/1 + A2 1
f-) + 1   where P(r; b, C) = 0, if C £ b,

where Q(r; b, C) = 0, if C = 6,

so that Mc(b, C) >0 throughout.

The inequalities [21 ] and [22] ("distortion theorem") are well known, and

were used to derive [5] in the original approach to this subject(8).

Remarks about D/C and D/C2. From [8 ] we see that D/C has its smallest

value when C is smallest. From [23] we see that M(b, C) — log C is an in-

creasing function, and hence D/C has its largest value when C is largest. Thus

we are again led to [7].

On the other hand, [8] shows that D/C2 can reach its smallest value for

any C. From [23] we see that M{b, C)—2 log C has its maximum for C = b,

so that D/C2 attains its largest value only in this case. We obtain the in-

equalities

1 — 62     D 1
[24] —— = - =

b2       C2    b2(l - o2)

This result gives the bounds for the derivative of l/F(z), or for the derivative

of a function Univalent in the exterior of the unit circle and leaving oo fixed.

The problem was solved in this form by Löwner(9) (without using the

"method of Löwner").

(8) See Bieberbach, loc. cit.

(9) K. Löwner, Über Extremumsätze bei der konformen Abbildungen des Ausseren des Ein-

heitskreises, Mathematische Zeitschrift, vol. 3 (1919), pp. 65-77.
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Relations between C and D. To find the lower bound for D in terms of C,

we must eliminate 6 from [8]. Evidently the larger 6 is, the smaller D may

be. Now b is restricted only by [5]. If C^l/4, b may have values arbitrarily

near to 1, and hence there is no positive lower bound for D. But if C<l/4,

then the lower bound for D is given by [8] with b determined from 6/(1 +b)2

= C. Solving for 6 and substituting gives

[25] 2D g 1 - 4C+ (1 - 2C)(1 - 4C)1'2 for C < 1/4.

The equality is attained for the function [6] with z0<0.

We now turn to the problem of finding the upper bound for D in terms of

C. We first consider the behavior of L(b, C) as 6—»1. In order that b—A

should be possible, we must have C^l/4. If C=l, then the second part of

[19] applies. As b—*l, r decreases, and L{b, C) increases to a finite limit. If

C<1, then the first part of [19] applies for 6 near 1. As 6—>1, r increases, and

Lib, C) increases; and L(b, C) approaches a finite limit unless r—>1. Now if

r->1 as 6->l, we must have P(l; 1, Q = 0, or C= 1/4. Hence if C> 1/4, L(b, C)

increases to a finite limit as b—»1. The case C= 1/4 remains to be considered.

Here r is determined from P(r; b, 1/4) =0, which is equivalent to

t+r      U + r)2
[26] log 6 = log r H-log-■

1 — r 4r

From this we find that

[27] 1 - r ~ 2(1 - 6) as 6-> 1.

Using this in the formula Lib, 1/4) =Qir; b, 1/4), we find that

[28] Lib, 1/4) 4- 2 log (1 - 6) -> 1 as 6 -> 1.

From these results we find that

r   , M(b, C) -> + oo as 6 -> 1 if C> 1/4,
29

L   J M(6, C) -» - oo as 6 -» 1 if C = 1/4.

The first formula shows that no upper bound for D can be found if O 1/4.

The second part may be written more accurately as

[30] M(b, 1/4) - log (1 - 6) -> - 1 - log 2 as 6 -> 1.

If we denote by Z>min and Z>max the smallest and largest values of D which are

possible for given 6 and C, then for C=l/4 we have from [8] and [30]

1-6 1-6       A„a* 4
[31] Anin~-,      Dm^-—,->—        as 6—>1.

8 2e Dmin e

We now consider the derivative of M(6, C). Using [12], we find that



448 R. M. ROBINSON [November

26 2(1 - r)
where Q(r; 6, C) = 0, if 6 = C,

[32]      Mb(b, C) =
1 - 62     6(1 + r)

26        2(1 + r)

1 - 62     6(1 - r)
where P(r; 6, C) = 0, if b = C.

Hence at b = C, Mb(b, C) has the same value to the left and to the right.

A remark which will be useful below is the following. For any fixed b the

root r of P(r; 6, C) =0 decreases from 6 to 0 as C increases from its smallest

possible value to 6; and the root r of Q(r; b, C) =0 increases from 0 to 6 as C

increases from b to its largest possible value. Hence if 0 = r^6, the equation

P(r; b, C) =0 determines a value of C = 6, and Q(r; b, C) determines a C = 6,

both satisfying [5].

Now the equation

Mb(b, C) = 0

requires in the first case that r = l—262 and in the second that r = 262 —1-

Since we must have 0 = r = 6, Mb(b, C) vanishes only in the following cases:

[33]       Mb(b, C)=oj
if 1/2 = 6 = 2-1'2 and 0(1 - 262; 6, C) = 0,

if 2"1'2 fl 6 < 1    and P(262 - 1; 6, C) = 0.

These may be combined in the statement that Mb(b, C) = 0 only along the

curve

[34] 4C = b-i+llb* I 1 - 26212-1'42, 1/2 ^ 6 < 1,

which from the preceding paragraph must lie between the bounds [5]. To

study this curve, we put & = l/62 and

0(A) = 2 log AC.
Then

0(A) = (HI) log h — 2(A — 2) log I A - 2 I,

where for A = 2 we interpret the right side as its limiting value 3 log 2. Differ-

entiating, we have

0'(A) = log A - 2 log I h - 2 I - 1 +        0"(A) =     - - -J- ■
A A     A — 2 A2

We see that 0"(A) >0 for 1 < A <2, and 0"(A) <0 for 2 <A <4. Using this we

find that 0'(A) increases from 0 to 4- °° as A increases from 1 to 2, and then

decreases to —3/4 as A increases to 4. We must have 0'(A) =0 at some point

between 2 and 4, and in fact for A = 3.27 • • • ; and here 0(A) has its maximum.

Therefore, in [34], Cincreases from 2 when 6 = 1/2 to a maximum K = 2.31 ■ • ■

for 6 = 0.55 • • • , and then decreases to 1/4 as 6 increases to 1. Figure 3 shows
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[34] as a broken curve and the bounds [5] as solid curves.

The curve [34] divides the region defined by [5] into two parts. There is

no difficulty in seeing that Mb(b, C) <0 in the lower part, and Mt(b, C)>0

in the upper part. Hence M(jb, C) is a decreasing function of b if C= 1/4; if

1/4<C=2, it first decreases, and then increases to 4- 00 ; if 2<C<K, it first

Fig. 3

increases, then decreases, then increases to 4- 00 ; and if C^K, M(b, C) in-

creases throughout, and approaches + 00 as 6—»1. There is an upper bound

for D only if 1/4, and then it is attained when b has its smallest possible

value. Hence the bound is given by [22] with b determined from b/(l — b)2 = C.

Substituting this value of b, we find that

[35] 2D <: 1 4- 4C 4- (1 + 2C)(1 + 4C)1'2 for C = 1/4.

The equality is attained for the function [6] with z0>0. It is to be noted that

the upper bound for D in terms of C increases from 1 to 2.06 • • • as C in-

creases from 0 to 1/4, and then jumps to + 00.
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