
ON THE OSCILLATION OF DIFFERENTIAL TRANSFORMS. I

BY

G. SZEGÖ

1. Introduction

1.1. In a recent paper G. Polya and N. Wiener(') studied the relation

between the analytic character of a real periodic function and the number of

the sign variations of its derivatives. The purpose of the present paper is to

develop another way of attacking this problem different from that used by

the authors mentioned. It leads to a new proof of Theorem 1 of the paper of

Polya and Wiener and to refinements of their Theorems 2 and 3 which are in

a certain sense best possible results(2).

Let/(x) be a real periodic function with period 27r for which all derivatives

ßk)(x) exist. We denote by 2Nk the number of the mod 2ir distinct values of x

for which a sign variation of fik)(x) takes place. In what follows we give first

a new proof of Theorem 1 of Polya and Wiener. A further, more elaborate,

application of our method leads to the following results which correspond to

the Theorems 3 and 2, respectively, of the authors mentioned.

Theorem A. Let Nk < A/log k provided k is sufficiently large. Then f(x) is

an integral function.

Theorem B. Let p > 1 and let Nk < {k/pYlp/2 provided k is sufficiently large.

Then f(x) is an integral function of order not greater than p/(p — 1).

The following results are more informative.

Theorem A'. Let for sufficiently large k

where co(yfe)—>+ °o. Then the conclusion of Theorem A holds.

Theorem B'. Let p>l and let p be a positive number such that ppi+llp>\.

If for sufficiently large k

then the conclusion of Theorem B holds.
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(') G. Polya and N. Wiener, On the oscillation of the derivatives of a periodic function, these

Transactions, vol. 52 (1942), pp. 249-256.

(2) See the counterexamples given below, section 7.

(1.1.1)

(1.1.2)
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The following result contains Theorem A' (therefore also Theorem A):

Theorem A". Let H be a constant such that

(1.1.3) H 4- log ((1/2) log 2) > 0,

and let for sufficiently large k

114) N <    k   (l+l0gl°S k ~ H}

log k \ log & /

Then the function f{x) is analytic in the strip

(1-1.5) |3/(*>] < H + log ((1/2) log 2).

1.2. In various conversations Professor Hille suggested certain analogues

of these problems consideringtV-f(x) instead oifw){x) where?? is a given sec-

ond order differential operator satisfying suitable conditions(3). In the last

part of the present paper we illustrate the further applicability of our method

by discussing the special operator

(1.2.1) # = (1 - x*)D2 - 2xD, D = d/dx,

the "characteristic functions" of which are the classical Legendre functions.

Let/fx) be a function having derivatives of all orders in — l=x^4-l and

let Nk = N2i denote the number of the sign variations of &lf(x) in the interval

— 1 <x < +1. Then we prove(4)

Theorem C. If Nk^N, k sufficiently large and even, then f(x) must be a

polynomial of degree less than or equal to N.

Theorem D. If Nk satisfies the condition of Theorem A", k even, then f(x)

is analytic in an ellipse with foci at — 1 and 4-1 the sum of the semi-axes of which

IS

exp {H 4- log ((1/2) log 2)}.

These results correspond to Theorem 1 of Polya and Wiener and to Theo-

rem A", respectively. The analogue of Theorem B can also be dealt with.

1.3. In what follows we give the proofs of the results formulated above.

Section 2 contains a new proof of Theorem 1 of Polya and Wiener; the under-

lying idea of this proof is used throughout the present paper. Section 3 con-

tains the proof of Theorem A", section 4 that of Theorem B'. Sections 5

and 6 are devoted to the proofs of Theorems C and D involving Legendre's

operator. Finally in section 7 certain counterexamples are exhibited which

(3) See below, pp. 463-497.
(4) The proof furnishes the conclusion of Theorem C under the condition that Nk^Nholds

for an infinite number of k values. (The same holds in section 2.)
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show that the conditions of Theorems A and B on Nk cannot be replaced

by Nk = 0(k) and Nk = 0(ka), a>l/p, respectively.

2. New proof of Theorem 1 of Polya and Wiener

2.1. Let

+»
(2.1.1) f(x) = £ c-****. c-» = S„

and let 2Nk be the number of the mod 2tt distinct sign variations of fw(x).

We assume that k goes to + °o through a sequence of integers such that Nk

has a constant value N. Then we show that/(x) is a trigonometric polynomial

of degree less than or equal to N, that is, we prove c#+m = 0, m>0.

Let X\, xi, • • - , xw denote the mod 2ir distinct sign variations of/(A:)(x),

that is, the values of x for which flk)(x) changes its sign; x,=xr{k). Let a

be real and (5)

X — Xi        X — X2 X — Xiff
u(x) = sin-sin-• • • sin -(1 + cosm (x + a))

2 2 2
(2-1-2)

N+ m

=    H   u,e"x, w_„ = «,.

(In case iV = 0 we write u(x) = l+cosm (x-\-a).) This is a trigonometric poly-

nomial of the fixed degree N-\-m, the sign variations of which are the same as

those of f-h>(x). The coefficients u, = u,(k) are bounded as k—»°o; this can

easily be showed by multiplying out the expression

IN

(2.1.3) u(x) = 2-2n1[\ (e-i(^+^)/Vl/24-e<('r+Iv)/2e-^/2)(i4.2-m(g<«e<x_L.e-i<,g-iI)m)>

Also we obtain for the highest coefficient of u{x)

uN+m = (- iy2-™-m exp { - iX) *»/2 + ima]
(2-1-4)

= (— 1)^2 2JV "* exp {ix0 + two;}

where the real quantity x0 = x0(k) depends on k but it is independent of a.

2.2. Let CN+m^O. The sign of

1    p +x N+m

(2.2.1) — I    f^{x)u{x)dx =   H (w)kc,u-,
2lT J —r p__AT_m

is independent of a, positive say. We determine a in such a way that the last

term

(5) We could use as well 1 +cos m(x+a) or (1 +cos (x-\-a))m instead of 1 -p-cos™ (x+a).
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s  (i(N + m))kcN+mu^N-m

(2.2.2)
= (i(N + m))kcN+m{- l)^2-2Ar-"* exp { - ix0 - ima\

becomes real and negative. Then

N+m-l N+m-l

(2.2.3)   2(N + m)*\cN+m\ 2~™-™ <    £     | v \k \ t, \ |      | =   £ vk0{\)
v=—N—m+l f=l

follows where the bounds 0(1) are independent of k. But this involves a con-

tradiction for sufficiently large k.

3. Proof of Theorem A"

3.1. We start with some preliminary remarks.

(a) The constant H must be positive since log ((1/2) log 2) <0.

(b) Let x=a+it, a and / real, and let T denote the unique value such

that (2.1.1) converges for 11\ <T and diverges for 11 \ > T (or T is the largest

value such that/(x) is analytic in the strip |^| <T). We have

(3.1.1) lim sup I e„|1'' = e~T.

The modifications necessary for T = 0 or T= «> are obvious.

Now another form of the assertion of Theorem A" is

(3.1.2) T = H 4- log ((1/2) log 2).

(c) Theorem A' is obviously a consequence of Theorem A".'

3.2. We assume

(3.2.1) lim sup I c,I e"» = + », y > 0,

and show that

(3.2.2) y ^ H + log ((1/2) log 2).

From (3.2.1) we conclude in a well known manner(6) the existence of a

sequence of integers [M] suchthat

(3.2.3) I cm I eM-< > \ c, \ e^, ± v = 0, 1, 2, • • ■ , M - 1.

Now let e be an arbitrary but fixed positive number. We define a sequence of

integers k = k(M) by

(3.2.4) k = k(M) = [Af(log M + H - e)].

(6) Cf. G. P61ya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 1, 1925, p. 18;

p. 173, Problem 107. What is needed here is much less than the lemma used by Pölya and

Wiener, loc. cit., p. 252.
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Then an easy calculation shows that

k   /      log log k - H\
Nk<-)

log k \ log & /

\ log If \ log M ) )

/   - log log M - H    o /log log M\*\

\ log M \ log M ) )

/ € /log log If y\
(3.2.5) =M(1-+ 0( ) ) < M

\      log if       \ log M I )

provided M is sufficiently large.

3.3. Let us denote again by Xi, x2, ■ • • , x2n, N = Nk, the mod 2tt distinct

sign variations oi f-k)(x), x„ = x„(k); here k=k(M). We write, a real(7),

.   X — Xi       x — x2 x — X2n
u(x; M) = sin-sin-• • • sin -(1 + cosm (x + a))

2             2 2

+m

= H u'e"x> u~v = ü„ N + m = M.

(For N = 0 we omit the sine factors.) Since N<M, m is positive. The trigo-

nometric polynomial u(x; M) is of degree M and it has the same sign varia-

tions as/(*'(x). We prove

Lemma 1. Let the trigonometric polynomial u(x; M) be defined by (3.3.1) and

let
+m +m

(3.3.2) U(x; M) = (cos {x/2))2N{\ + cos™*) = £ = £ [/„cos**;
k=—m v=—m

then the inequalities

(3.3.3) I    I =" Uv, v = 0, 1, 2, • • • , M,

hold, with the sign " = " for v = M.

Indeed as (2.1.3) shows, the coefficients uv of u(x; M) are multilinear func-

tions of e±i^+x")li and e±ia with non-negative coefficients. Thus we do not

decrease \ u,\ by replacing the quantities e±i{T+x*)li and e±ia by 1, or by re-

placing the constants x, by — it and a by 0. This leads precisely to (3.3.2).

The assertion regarding \ um\ = Um is also clear. We have (see (2.1.4))

uM = (- 1)^2-»-™ exp {ix0 + ima),      x0 = - H xv/2,
(3.3.4)

Um = 2-2N~m   - 2~N~M.

(7) See Footnote 5.
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3.4. Now

I     n +ir +m

(3.4.1) —I     f^(x)u(x; M)dx = £ («O*^«-*

has a sign independent of a. Choosing a in a proper way (cm9*0) and using

(3.3.3) we obtain

Af—1

(3.4.2) \v\k\cy\ U,^ 2Mk\cM\ UM.
,=-m+l

Taking (3.2.3) and the inequality x = eI_1 into account we find

m-l

2UM $   X   f/„exp {(I v\ /M - l)k + (M - I v\ )y\

(3.4.3)v Af-l m-l

v=—m+l v=—m+l

From (3.2.4) we conclude that Q = Q(M)—* =° or more precisely <2(M)

=eH~e~yM as Af->». (The symbol a(M)^ö(M) means that o(Af) [b{M) ]~1

—>1 as jlf—>oo.) Introducing

(3.4.4) £ = t(M) = (Q + Q-1)^,      2V|(Ö = (0" + Q-)/2

where T\,\(Sj) is identical with the Tchebichef polynomial, by virtue of (3.3.2),

we can write (3.4.3) in the following form:

m— 1

(3.4.5) UmQ* fk   X   U,T\wi(li) = 2-*(l + £)*(1 + {-) - 2£7*ZW(Ö;
v=-m+\

hence

2E/mOm g 2-^(1 4- Q»(l + {»)

or (cf. (3.3.4))

(3.4.6) 2l-M(Q/0M = (1 + H^d + rm) < et~1M(l + r1).

Now let Af—»oo. Then

(3.4.7) 2-^(Ö/ÖM = (1 + Q-2yM -» 1

since <2~2 = 0(Af"2). Further ^-1Af->2e-if+<+T so that

(3.4.8) 2 = exp {2e-H+<+?}

follows. Since e is arbitrarily small, this involves (3.2.2).

4. Proof of Theorem B'

4.1. Let the order X of f(x) be greater than p/ (p — 1). Then using the pre-
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vious notation (2.1.1),

log log 1/1    I X
(4.1.1) lim inf 1-* =-<p

>->+» log v X — 1

holds(8). Consequently

(4.1.2) lim sup I c„ | e" = °°.
V—»+00

We obtain now instead of (3.2.3) the inequalities

(4.1.3) I cm I eM> > | c,\e^", ± v = 0, 1, 2, • • • , M - 1,

holding for a certain sequence {M} of integers.

The previous proof needs only unessential modifications.

4.2. We write

(4.2.1) k= k(M) = [pM^l + q^^j^

where q is a fixed constant satisfying the conditions

(4.2.2) 1/p < q < ppl+1l".

An easy calculation shows that for large k

/         log k \

\ M"~x        \ M"-1 I)

(            log M       (log M \\
■(I-Pp1'"—-+    —-))

/ log M       (log M \\
= M (l - W - qp-i) — + o < M.

Using the same notation and the same argument as in §3.4 we obtain

instead of (3.4.3)

m-l

(4.2.4) 2 Um =   X   U, exp {(\v\/M - l)k + M" - \ v\"}.
„__M+1

Since M'— \ v\'^(M— | v\ )pM"~1 we find as before

m-l

(4.2.5) 2UM = R~M  X   ^(^' + R"), R = eklM-'Mp-\
,=-m+\

(s) See P61ya and Wiener, loc. cit., p. 254.

(4.2.3)
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On account of (4.2.1) we have R = R{M)=M<">—>oo as M—»°°.

Now let

(4.2.6) jj = V(M) = (R + Rrl)/2 -* oo as A/ -» °o ;

then we obtain (cf. (3.4.6))

(4.2.7) 21~M(R/ri)M = e'^l + r,-1).

But pq> 1 so that (l+i?-2)-^-^l. Moreover

(4.2.8) tj-W & 2M1-'« -> 0.

This furnishes the contradictory inequality 2Si.

5. Proof of Theorem C

5.1. The proofs of Theorems C and D are based on arguments similar to

those followed in the previous part. Instead of trigonometric series, expan-

sions in Legendre series are used.

Let

(5.1.1) /(*) = !>,/>,(*),
»=0

, cv real, be the Legendre expansion of f(x) where P,(x) is the Legendre poly-

nomial in the customary notation. By using the notation (1.2.1)

. oo

(5.1.2) d'f(x) = Z (- X,)'c,.P.(*)f X, = v(y + 1),
„=o

follows. Let Nk = Nn denote the number of the sign variations of &lf(x) in

— l<x< + 1 and let Nk = Nu = Nbe fixed as I—* oo through a proper sequence

of integers. We show then that Cat+to = 0, m>0.

Let x\, xt, • • • , xn be the sign variations of &!f(x) in —1<*<+1. We

form(9)

N+m

(5.1.3) v{x) = (x - Xi)(x — Xi) ■ ■ ■ (x — xN)(\ + Sxm) = X v,P,(x)

where S is either +1 or —1. This is a polynomial of degree N-\-m with the

same sign variations as §lf{x). The coefficients vp = vr(l) are bounded as I—->co.

Furthermore v^+m = 8Ajv+m if h, denotes the highest coefficient in the Legendre

expansion of x".

Now

/+1 N+m{ölf(x)}v(x)dx l/2)~\- \ryc,v,.

(') We could use 1 + SPm{x) instead of 1 + 8*™. See Footnote 5.
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This expression has the same sign whether 5 = +lor5=—1. We obtain by a

suitable choice of 5

. N+m-l

(5.1.5)      Z("+l/2)   X,|c||»,| ^ (N + m+ 1/2)   X*+  I Cn+ m rrf
j>=0

Division through by Xjy+m leads to a contradiction as /—►<» unless CN+m = Q.

6. Proof of Theorem D

6.1. For the proof of Theorem D we follow again the previous argument.

Under the assumption (3.2.1) we obtain a sequence {M) of integers such that

(3.2.3) holds. The definition of k = 21 is in this case slightly different from

(3.2.4) , namely

(6.1.1) k = 21 = 2[(M/2)(log M + H - e)].

Then k is even and N = Nk<M. Now we define m by N-\-m = M and

v(x) =v(x\ M) by (5.1.3). We prove

Lemma 2. Let the rational polynomial v(x)=v(x; M) be defined by (5.1.3)

and let

M

(6.1.2) F(x; M) = (x+ l)N(l + *"•) = £ V,P,(x);
►-o

then the inequalities

(6.1.3) |>,| g V„ v = 0, 1, 2, • ■ • , M,

hold with the sign " = " for v = M.

It is well known(10) that Pr(x)Ps(x) expanded in terms of Legendre poly-

nomials has non-negative coefficients. Multiplying out

(6.1.4) v(x; M) = II (Pi(«) -*.){! + S(Pi(*))mf
r—l

we see that the coefficients z>„ of v(x; M) are multilinear functions of — x, and 5

with non-negative coefficients. Obviously we do not decrease \ v,\ by replacing

— x, and 5 by 1 which leads precisely to (6.1.2).

6.2. Starting from (5.1.4) we obtain (5.1.5) and

M-l

(6.2.1)        (M+ l/2)-*u S £ {v + l/2)-1(\r/\M)klVM-^Vy.
v=0

(10) See J. C. Adams, On the expression of the product of any two Legendre's coefficients by

means of a series of Legendre's coefficients, Proceedings of the Royal Society, vol. 27 (1878), pp.

63-71; Collected Scientific Papers, vol. 1, pp. 487^196. See E. T. Whittaker and G. N. Watson,

A Course of Modern Analysis, 4th edition, 1935, p. 331, Problem 11.
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Now let

1-3 • ■ • O - 1)
(6-2.2) g„=l;      g, =-—■-,       „=1, 2, 3,

2-4 • • • Lv

Then (v-\- l/2)gv\v~1 is decreasing as v increases since

(6.2.3) ^ j^Ar= + w -1) < L
v - 1/2 ^_Ax,.i/ (*+1>

Hence

(6.2.4) (v + l/2)s,x7l > (Af + 1/2)^', v = 0, 1, • • ■ , M - 1,

so that from (6.2.1)

M-l

(6.2.5) gMÄM ^  X g„( VXm) */*~ W>*F,.
»=0

But

(6.2.6) X„V2 - » =       + 1))V2 - v = (1 + (1 +

is positive and increasing with v so that

(6.2.7) X„/Xm ̂ exp {2(X*/2 - XkW*} fk exp {2(x - A/W'2}.

Hence

M-l

(6.2.8) gjtku £      g,V,Sr-»,     S = e^-^~U-y.
„-o

From (6.1.1) we conclude that 5 = S(A/)=eJI~€~")' M as M-xß.

Writing

(6.2.9) f = (5 +S-1)/2-> oo, Af^oo,

we obtain by using a classical representation of Legendre polynomials(u)

(6.2.10) P,(f) ^ , = 0, 1, 2, • ■ • ,

so that from (6.2.8) and (6.1.2)

M-l

(6.2.11) gMhM =       £ 7,P,(f) = S~M(1 +        + f-) - S-^AmPmG-).
„=o

The representation mentioned furnishes also gMhM = 2~M so that using (6.2.10)

we again conclude

(u) See, for instance, G. Szegö, Orthogonal Polynomials, American Mathematical Society

Colloquium Publications, vol. 23, 1939, p. 92, equation (4.9.4).
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2i-m ^ S-M(i _|_ fiN^ + f m)

or

(6.2.12)        2l~M (5/f)M = (1 + rOy(l + rm) = ef~lAr(l + r1)-

Now let Af—> °o. Then (cf. section 3.4)

2r*{S/ty = (l + s~2)-M -* I,

r JAf -* 2e-»+e+T

so that (3.4.8) follows. Consequently (3.1.1), (3.1.2) hold.

If the coefficients c„ of the Legendre expansion (5.1.1) satisfy (3.1.1), then

f(x) must be analytic in an ellipse with foci at — 1 and +1 the sum of the semi-

axes of which is er(12).

This establishes the proof of Theorem D.

7. Counterexamples

7.1. In this section we show that the conditions Nk < A/log k and

Nk<(k/'p)llp/2 of Theorems A and B cannot be replaced by Nk = 0{k) and

Nk = 0(ka), respectively, where a> 1/p. I owe the necessary counterexamples

to a suggestion of Professor Polya.

7.2. The first assertion can be proved by considering the non-integral

periodic function

(7.2.1) /(*) = (1 - 2h cos x + h2)~\ 0 < h < 1.

We see by mathematical induction that

(7.2.2) fW(x) = h(x)(l - 2h cos x + A2)-*-1

where tk(x) is a trigonometric polynomial of degree k. Consequently in this

case Nkfs2k.

7.3. Let p>l. The integral function

CO

(7.3.1) f(x) = X)e~"Pcosws

is(13) of order p/(p —1) and as we shall prove Nk = 0(k1/p). This furnishes, in-

deed, the desired counterexample by assuming a < 1 and choosing p according

to the conditions \/p<\/p<a; then p/(p — 1) <p/(p — 1).

Let k be even. We apply Jensen's theorem to the function

00

(7.3.2) /<*>(*) = (- 1)4'2X «'e-"" cos nx
n=l

in the circle      ^27r. Since

(u) See Szegö, loc. cit., p. 238, Theorem 9.1.1.

(") See Footnote 8.
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(7.3.3) . I /<»(*) I = X nke~'r+i"
n=l

and

00

(7.3.4) |/(t>(0)| = Z »**""*
n-l

we find for the number N(tt) of the roots of/w)(a;) in the circle |*| fkir

00 00

(7.3.5) 2Ar<*>X nke-"P = X) «*e-"''+2'r\
n=l . n*»l

Obviously Nk fk N(w).

In order to find a suitable bound for N(tt) let us consider the function

X(p) = vke~"v of the continuous variable v, 1. It is increasing for yO0 and

decreasing for v > po where

(7.3.6) «» <-*(*)- (k/p)1''.

The maximum of X(*) is exp {(k/p) log (&/P) —k/p}.

The   function   X*(*) = vke~"P'2   assumes   its   maximum   for   Po = vl(k)

= (2k/py'K
Now let w be fixed, u>(2/p)llp, log o}-up/2< - (log p + l)/p. Then for

A—> 00

(7.3.7) 1=   X   »*<r",+l,,r" = e2™i"I'|/(*)(0) |.

Further X*(v) is decreasing for v>wkllp>v£ (k) so that

II =   X   nke-"P+2Tn = \*(ukllp) X e^""'2'*2*"
(7 3 8) n>ukUP B"1

= 0(1) exp {k log w + (£/>) log * - u"k/2}.

By use of the mean value theorem we find

(7.3.9) log X(v.) = log X([*0] + 1) + CP-Vr

where OO is independent of k. But for large k

(7 3 10)   * l0g " + WP) bg * ~ ""k/2 < WP) l0g ~       ~ Chl~U"

< logX(h] + 1),

hence

(7 3 n) II = 0(1)1/^^(0)1,
I + II = O(l)es~*"'|/<*>(0)|.

Consequently
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(7.3.12) 2W<»> = 0(l)e2™kl'r

from which N(ir) = 0(kllp) follows.

7.4. In case of an odd k we have /(A>(0) =0. Then in Jensen's theorem

fm(0) has to be replaced by

00

(7.4.1) /<w-»(0) = (- i)(*+imX w*+ie-"p.
n=l

The previous argument holds good except that k has to be replaced by £4-1.

Stanford University,

Stanford University, Calif.


