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1. Introduction. In this paper, we shall study the properties of a congru-

ence of oo n_1 curves which are imbedded in a unitary space of n dimensions Kn

(a real topological space of 2n dimensions). First, we consider the general

case—when the curves are oo n_1 unitary curves K\ (real topological spaces of

two dimensions)—and determine the associated congruence afhnors. Then,

we determine the necessary and sufficient conditions in terms of congruence

vectors that the oo"-1 congruence curves should be either unitary U\ (unitary

Euclidean curves) (*) or real curves X\ (real topological spaces of one dimen-

sion). If the curves of the congruence are all real X\, then we define the con-

gruence to be real; if the curves are all unitary U~i, then we define the congru-

ence to be complex Euclidean.

In the next section, we study two systems of Pfaffians which enable us

to define two types of orthogonality: (1) oo1 hypersurfaces which are com-

pletely unitary orthogonal to the congruence curves; (2) oo1 hypersurfaces

which are semi-unitary orthogonal to the congruence curves. It is shown that:

(1) the oo1 hypersurfaces which are completely unitary orthogonal to the

congruence curves admit of an intrinsic parameterization and are oo1 unitary

Kn-i\ (2) if the oo 1 hypersurfaces which are semi-unitary orthogonal to the

congruence curves admit of a parameterization, then they constitute oo1 semi-

analytic(2) spaces Xn~i. A further analytical characterization of these two

types of surfaces is given.

The remainder of our work deals with two problems: (1) a characteriza-

tion in terms of congruence affinors of those congruences which are either

completely unitary orthogonal or semi-unitary orthogonal to oo1 hypersur-

faces in Kn; (2) special properties of these two types of congruences. Thus, in

connection with the second problem, it is shown that if the congruence is

either real, or complex Euclidean, analytic and completely unitary orthogonal

to oo1 hypersurfaces, then the conditions satisfied by the congruence vector

are similar to those satisfied by the congruence vector which is orthogonal

to oo1 hypersurfaces(3) in F„ (ra-dimensional Riemannian space). Again, if:

(1) the congruence is real and geodesic; (2) the Kn has a symmetric connec-

tion, then every two hypersurfaces which are semi-unitary orthogonal to the
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« [5, vol. 2, p. 251].
(*) [3, equation (2.10)].

(s) [5, vol. 2, p. 28, equation 5.2].
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congruence intercept equal arc segments on all X\ of the congruence. This

latter result is similar to a theorem(4) in Riemannian space.

2. Notation(6). Consider a real space of In dimensions X2n whose coordi-

nates are given by the real variables

(2.1) x\ y\ X, n = 1, 2, • • • , n.

Into this X2n, we introduce the complex coordinates

(2.2) e = *x + t>\ i = (- 1)1/2,

(2.3) f = sx - iyx.

Since the Jacobian of this transformation ( — 2i) does not vanish over Xin,

the £\ £x* constitute a set of 2w independent variables which map the X2n.

In view of the fact that £x* are complex conjugate to £\ we can determine

the points of X2n by assigning complex numbers to merely £\ Hence, we say

that the £x determine "points" which build a complex space of n dimensions

(the above real topological X2n).

Let us denote partial derivatives by

(2.4) 6V = d/d(f,      d„. = d/di?'.

If ^(£\ £x*) is an analytic function of £x, £x", then we shall say that \p is semi-

analytic; if <£(£x) is an analytic function of £x (or £x*) alone, then we shall

say that <b is analytic. In view of (2.4), we may express this last condition by

(2.5) d„-<b = 0.

One further important formal idea must be noted—that of the conjugate

function and equation. If we replace i by —* in <p, the resulting function is

denoted by <p* (where <p is a scalar). From (2.2), (2.3), we see that £x must

be replaced by £x* and vice versa. Hence </>(£x) becomes <p*(£x*)- In the case

of affinors, the conjugate affinor is obtained in the same manner. However,

we shall indicate this conjugate by starring the previously unstarred indices

and removing the star from the previously starred indices. Thus the conjugate

of v\u- is v\»„. Furthermore from our discussion, it follows that

(2.6) : = 0.

The equation (2.6) is the so-called conjugate equation to (2.5). Also to every

affinor equation, there corresponds a conjugate equation obtained by replac-

ing i by —4 and hence each affinor by its conjugate. The truth of this last

statement can be seen by decomposing each affinor into its real and imaginary

parts(6). In the following, we shall indicate the validity of the conjugate equa-

tion by the abbreviation "conj."

« [5, vol. 2, p. 31].
(5) Our notation is that of [S].

(6) Note, by composite differentiation, it follows that d^d/dx^-id/dy", d^=d/dx"

+id/dy".
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We specify that the group of this complex Xn shall be the analytic group(7)

of coordinate transformations. Now, let us introduce a connection in Xn by

means of the n3 quantities Txa which are functions of the coordinates |\ £x*.

We define the covariant differential of a contravariant vector z>x(£\ £x*) by

(2.7) 5»X = dv~ + Tlcv'd^, conj.

Likewise, we define the covariant differential of a covariant vector wx(£\ £x*)

by

(2.8) 8w\ = dw\ — T^xwadf, conj.

By expanding the ordinary differential of a vector, we obtain

(2 .9) oV = dpdj)* + d£»'du>vx, conj.,

(2.10) dwx = dpduWx + dp'd^Wx, conj..

If we define the covariant derivative of z>\ w\ by the equations

X X X    a a.

(2.11) y„v = d'uV + Tuav ,       Vhw\ = dhwx — Tu\Wa, conj.,

(2.12) v>!> = 3^*5 , v>»x = conj.,

then by use of the equations (2.9) through (2.12), the equations (2.7), (2.8)

become

(2.13) 8vx = d^vy + d£"*V„-z>\ conj.,

(2.14) 5w\ = d^VuWx + dtpVu'W*, conj.

An hermitian Xn with covariant derivative defined by (2.11), (2.12) is de-

noted by Kn.

Let us introduce an hermitian tensor with hermitian symmetry, that is,

(2.15) ox„« = [(ox^')'J' = <Vx,

the sign (') indicating the transpose matrix. If we condition the a\a> by re-

quiring that

(2.16) 8a\u> = 0 = (d,ax„« — T?\afu')d£ + (d,-a\u> — r'v.axP*)^£ >

then the space Kn is said to be a unitary Kn. For such a space from (2.16),

we can show(8)

(2.17) VrflXd* = d„ax„< — rtxapy = 0,

(2.18) vVöXji* = dy'd^p.' — r^^'ffxp* = o.

The axu' is now a fundamental tensor and can be used to raise and lower in-

(7) The analytic group of transformations is given by £x' = £x'(£"), conj.

(») [5, vol. 2, p. 234].
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dices through the V operator. If we define the contravariant fundamental

tensor a°*x by

o*\ A
(2.19) a   a„> = Au, conj.,

where A* is the unit affinor, then (2.17), (2.18) may be solved for the connec-

tion

(2.20) r°x = a'"d»ax..,

(2.21) r°'x. = a'°d„.acX..

Finally, we introduce the torsion affinor

(2.22) = (l/2)(r;x - I\„) = r'm, conj.

The sign [ ] means that the antisymmetric product of the enclosed indices

is to be formed; the sign | | enclosing indices means that those indices are

to be excluded in forming the antisymmetric product. When the torsion

affinor can be written as

(2.23) Su\' = A\^px], conj.,

the unitary space Kn is said to have a semi-symmetric connection.

3. Congruences in unitary K„. Consider a vector field wx(£\ £x') defined

over the unitary KTl. The system of differential equations in the parameter t,

(3.1) d?/ux = it, conj.,

is said to define a congruence(9) of oo n_1 curves in the unitary Kn. We shall

study the decomposition of the affinors Vau\, Va'U\. Consider affinors la\,

which we define as the projections of Vau\, Va-u\, respectively, upon the local

Un-i which is unitary orthogonal(10) to u\. Hence, it follows that

(3.2) uala\ = 0,      W'la-x = 0, conj.,

(3.3) = 0,       iWav = °. coni-

Furthermore, let wa, za, xa, ya be four arbitrary vectors in the above local

Un-i, that is,

(3.4) wau" = zau"  - xau" = yaW = 0, conj.

We can now write(11)

(3 .5) V<»wx = /„x + uaW\ + zau\ + puaux, conj.,

(•) [5, vol. 2, p. 27, equation 5.1 ].

(10) This local Un-i is determined by those vectors ux (subscript j = \, •••,» — 1) which

are solutions of wx«x = 0.

(») [5, vol. 1, p. 19, §k].
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(3.6) vV«x = la'\ + Ua'Xx + ytt>u\ + q*ua*u\, conj.,

where p, q are scalars.

If the parameter / in (3.1) is complex and the congruence curves are U\

or if the parameter t is real and hence the curves are Xi, then an analytic arc

length parameter 5 exists(12)

(3.7) 5 = s{t), conj.

Now, if we replace the parameter I by s in the » "-1 congruence curves, then

the associated congruence vector wx (we indicate the vector by the same sym-

bol as before) is a unit vector, that is,

(3.8) uxu\ = 1, conj.

Because of (3.8), certain relations exist between the affinors in (3.5), (3.6).

Before finding these relations, we formulate

Definition 1. (a) If the parameter t in (3.1) is real, then the congruence

defined by (3.1) will be said to be real. This congruence consists of » *~lX\ in K„;

(b) */ the parameter t is complex but the °° "-1 curves of the congruence are Ui,

then we shall say that the congruence is complex Euclidean.

By covariant differentiation of (3.8), we obtain

(3.9) (V««x)«x = - (V«mx)«x, conj.

As a consequence of the equation

(3.10) ux = aß'xUß', conj.,

we find that the right-hand side of (3.9) can be expressed in terms of V«W(js

that is,

(3.11) (V0wx)wx = — (V*u#")uP, conj.

By use of (3.5), (3.6), the relation (3.11) can be shown to be equivalent to

(3.12) z„ = — ya, conj.,

(3.13) p = — q, conj.

Conversely, if (3.12), (3.13) are valid, then the validity of (3.11), (3.9) fol-

lows. But (3.9) may be written in the form

(3.14) V«(«x«x) = 0, conj.

Hence, it follows that

(3.15) «xmx = c, conj.,

where c is some arbitrary constant in the unitary Kn. By use of (3.1), the

(la) [1, Theorems 3, 4].
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equation (3.15) becomes .

(3.16) <ixu-dt?d,.p' = c.

But this means that the curves of the congruence are cA (for com-

plex <)(12) or 00 n_1 Xi (Ior real     Hence, we have the theorem.

Theorem 1. The necessary and sufficient conditions that the solutions u\ of

(3.5), (3.6)—when they exist—should define either a real congruence or a com-

plex Euclidean congruence is that za = —ya, p= — q.

4. Two systems of Pfaffians. Let us consider a general congruence vector

M*(£\ In the first place, we associate with this vector a system of two

Pfaffians

(4.1) «x^x = 0, ■

(4.2) ux-dp' = 0.

Assuming that Mi, «i» do not vanish over some region D of the unitary Kn,

we can rewrite the two previous equations in the form

(4.3) #» = - Z'(««/^)^a, a = 2,--,n,

(4.4) dp = - £'(««-/«r)df}"\ ■

where 2~1' denotes summation over all repeated indices with the exception of

the index 1. If the integrability conditions of this system are satisfied, we can

solve(13) for £\ £l*

(4.5) e» = p, « = 2, ■••,»,

(4.6) = P'tt",      f\ £0,
0 0

where: (1) £l, ij1* (subindexO) are arbitrary constants; (2) £"* (a = 2, ■ • •, w)

are the independent variables; (3) £\ £** are the dependent variables. By solv-

ing for ij1, f1* (subindex 0), we obtain the two independent integrals of (4.1),

(4.2),

(4.7) e = m\p'), X=l, ••-,«,

(4.8) e' = g(e,?').
o

We now prove

Lemma 1. The two independent integrals f, g are conjugate functions.

The equations (4.5), (4.6) become identities when the variables £\ £x"

(X = l, 2, • • • , n) are replaced by the arbitrarily assigned constants £\ £x*

(") [4, p. 49].
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(subindex 0). Hence (4.7), (4.8) become identities when the same substitu-

tion is made. That is, the functions / and g reduce to conjugate quantities

ij1, £l* (subindex 0) when the £\ £x* (\= 1, 2, • • • , n) are assigned arbitrary

values. Thus,/and g are conjugate functions.

Since the quantity £l* (subindex 0) is known when the quantity f1 (sub-

index 0) has been assigned some arbitrary value, we shall say that (4.7), (4.8)

determine «>1 integrals of (4.1), (4.2). We prove

Lemma 2. The co1 integrals of (4.1), (4.2) determine as1 unitary hyper sur-

faces 2Tn_i in Kn.

Let us denote £a* (a = 2, ■ ■ ■ , n) by W, ua' (a = 1, • ■ • , n — 1), re-

spectively; these m°, ma* will serve as the hypersurface intrinsic parameters.

Thus, (4.7), (4.8) or (4.5), (4.6) can be written as

(4.9) £' = %\u\ ua*i p. ?'), conj.
0 0

If the ua' actually occur in the right-hand side of (4.9), then these equations

define «j1 semi-analytic(2) hypersurfaces X„_i in the unitary Kn. We shall

show that these u"' do not occur. By forming the total differential of (4.9),

we obtain

(4.10) dp = duadap + du"dB4l, conj.

Since the du", dua' are equal to the differentials df", d£a* (a = 2, • • • , n) of

the independent variables £a*, we find by comparing (4.10) and its con-

jugate with (4.3), (4.4) that

(4.11) da.p = 0, conj.

Hence (4.9) may be written in the form

(4.12) I1 = £'(«», ft £''). conj.
oo

The equations (4.12) determine °o 1 analytic hypersurfaces X„_i in the unitary

Kn. Such analytic hypersurfaces are always unitary (14) Kn-i- Hence our

lemma is proved.

In view of the fact that (4.1), (4.2) are unitary orthogonality relations, we

state

Definition 2. The integrals f = const. a«d/* = const. of (4.1), (4.2) will be

said to define oo1 hypersurfaces in the unitary Kn such that the hypersurfaces

are completely unitary orthogonal to the congruence vector u\.

We may restate Lemma 2 in terms of Definition 2 as follows:

(") [5, vol. 2, p. 245].
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Lemma 3. The «>1 hypersurfaces which are completely unitary orthogonal to

the congruence vector u\ are <x>1 unitary Kn-i in the unitary Kn.

Let us now consider the single Pfaffian

(4.13) u^dp + u^dp' = 0.

By assuming that u\ does not vanish over some domain D of the unitary KH,

we can construct a theory of this Pfaffian in which (4.3) is replaced by

(4.14) dp = - £W«i)#" - (W«iW, « = 2, • • ■ , »; X = 1, ■ • • , n.

The equation (4.5) becomes

(4.15) p = int*, r,«.
0

Furthermore, (4.13) has only one independent integral

(4.16) P=f(P,P').
o

The equation corresponding to (4.4) is identical with (4.14); the equation

corresponding to (4.6) is the conjugate of (4.15). Finally, the equation corre-

sponding to (4.8) is equivalent to the conjugate of (4.16). However, this last

equation is trivial since if /* = const, is an integral of (4.13), then /= F(f*).

We now define a new term.

Definition 3. The integral f= const, of (4.13) will be said to define w1

hypersurfaces Xn-i in the unitary Kn which are semi-unitary orthogonal to the

congruence u\.

These semi-unitary orthogonal hypersurfaces can be characterized by

their parameter representation. We prove

Lemma 4. The «1 semi-unitary orthogonal hypersurfaces to the congruence u\

cannot possess an analytic parameter representation of rank (n — 1). That is,

these Z„_i are not unitary Kn-\.

Let us assume the contrary, namely, that these hypersurfaces possess an

analytic parameter representation.

(4.17) p = p(ua), X = 1, • • •,«; a = 1, 1, conj.

Since the rank of (4.17) is (n —1), we can solve for the (« — l)u" in terms of

(n — 1) of the £a (say, a = 2, • • ■ , n),

(4.18) ua = u"(p*), conj.

Substituting (4.18) into the first equation of (4.17), we obtain

(4.19) p = P(p), conj.

Forming the total differential of (4.19), we find
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(4.20) dp = dpdap, a = 2, • • • , n, conj.

Remembering that if", px", P' (a = 2, • • • , n) are independent variables and

comparing with (4.14), we obtain

(4.21) u\' = 0, X = 1, • • • , n, conj.

Hence the congruence vector vanishes. Thus, the assumption (4.17) is false

for a non-vanishing congruence; our lemma is proved. Our lemma implies

that if the class of semi-unitary orthogonal hypersurfaces can be parameter-

ized, the parameterization is semi-analytic (see 4.9).

Another relation exists between the <*>1 completely unitary orthogonal

hypersurfaces and the <*>1 semi-unitary orthogonal hypersurfaces. Let us con-

sider the systems of partial differential equations associated with (4.1), (4.2)

and (4.13). The system associated with (4.1), (4.2) is

(4.22) daf - (ua/ti1)d1f =0, a = 2, • • • , n,

(4.23) da.f - (ua'/u^dvf = 0.

The system associated with (4.13) is composed of (4.22), (4.23) plus the addi-

tional equation

(4.24) ÖV/ - (u1./u1)d1f = 0.

If dif, di'f do not vanish over the domain D in which ux, Uv do not vanish,

then the non-vanishing scalars p, y exist such that (4.22), (4.23)—hence (4.1),

(4.2)—are equivalent to

(4.25) ux = pVx/,

(4.26) «x- = yVx-f.

The equation (4.13) is equivalent to (4.25), (4.26) plus the additional equa-

tion (4.24). However, the latter implies

(4.27) y = p.

Before proceeding to enumerate these new results, we note that if /=const.

is a solution of (4.22) through (4.24), then/* = const, is a solution of the same

equations (see the discussion following 4.16). Hence the word "conjugate" can

be written after equations (4.25) through (4.27).

Lemma 5. The solutions f = const, (and its conjugate) of (4.25), (4.26) where

P9^y determine oo1 completely unitary orthogonal hypersurfaces (unitary Kn~\)

to the congruence. The solutionf = const, of (4.25), (4.26) where p=y determine

co1 semi-unitary orthogonal hypersurfaces Xn-i to the congruence.

5. Congruences completely unitary orthogonal to »lKn-i in Kn. We con-

sider congruences which are completely unitary orthogonal to oo1 unitary
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Kn-i in unitary K„. The integrability conditions(16) of (4.1), (4.2) are

(5.1) uxdißUa] + uadi\uß] + ußd[aux] = 0, conj.,

(5.2) Ußda'U\ — u\da-Uß = 0, conj.

By use of (2.11), (2.22), we find

(5.3) ,     d[ßUa] = V[ßUa] + Sßa uy, conj.,

(5.4) da>u\ = Va'Ux, conj.

Thus (5.1), (5.2) become
■ ■ y

(5.5) U[\VßUa] = — U[\Sßa]Uy, conj.,

(5.6) U[ßV\a-\ux] = 0, conj.

By transvecting (5.2) or (5.6) with «\ we find

(5.7) Va-Uß = Uß(Va'U\)ux, conj.

Replacing the right-hand side by (3.6), we obtain

(5.8) Vo'M/s = ya-up + q*ua'Uß, conj.

Hence, upon comparing (5.8) with (3.6), we find that

(5.9) la-\ = 0,      xx = 0, conj.,

is a consequence of the integrability conditions (5.6). We now study the mean-

ing of the integrability conditions (5.5). Let us assume that the connection

of Kn is semi-symmetric (see 2.23). Then the equation (5.5) reduces to

(5.10) U[xlßa\ = 0, conj.,

in consequence of (3.5) and (5.5). By transvecting (5.10) with ux and using

(3.2), (3.3), this equation becomes

(5.11) lißa) = 0, conj.

Conversely, if (5.9) and (5.11) are valid and if the connection of Kn is semi-

symmetric, then the expressions (3.5), (3.6) satisfy the integrability condi-

tions (5.5), (5.6). This leads us to

Theorem 2. Consider a unitary space Kn with semi-symmetric connection

and such that the solutions ux of (3.5), (3.6) exist then if and only if: (1) laß is

symmetric; (2) la>ß, xx vanish, does the vector ux define a congruence which is

completely unitary orthogonal to «1 hypersurfaces in the unitary Kn.

(u) [4, P- 29, equation 23]. Since the ux, «x* in (4.1), (4.2) are functions of and the

complete Pfaffians in (4.1), (4.2) can be written as wx'd^' +uxd£x = 0, «\«rffx* +wxd£* = 0, where

wx, wx' =0. If one writes out the equation 23, p. 29 of [4], then for unstarred variables (or in-

indices) the equation (5.1) results; if one of the starred variables (or indices) is used then equa-

tion (5.2) results.
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Let us now restrict ourselves to real congruences (see Definition 1 (a)).

By introducing the Frenet formulas(16) for the » curves X\ of the congru-

ence, we can determine the meaning of the vector wa in (3.5). From the Frenet

formulas, it follows that

(5.12) uaVaU\ + ua'Va'U\ = k u\ + k u\, conj.,
00 01 1

where k (subindex 00, 01) are curvatures and u\ (subindex 1) is the first nor-

mal of each Xi in the unitary Kn. By use of (3.5), (3.6), (3.13), we find

(5.13) u"Vau\ + W'Va-Ux = wx + xx + (p — p*)u\, conj.

By comparison of (5.12), (5.13), we obtain

(5.14) wx + x\ = ku\, conj.,
01 1

(5.15) p — p* = k, conj.
oo

If we require that the congruence shall be completely unitary orthogonal to

oo1 hypersurfaces in the unitary K„, then it follows from Theorem 2 that the

vector x\ vanishes. Hence, we obtain the result

Theorem 3. If the congruence is real and completely unitary orthogonal to oo1

hypersurfaces in the unitary Kn, then (1) the vector w\ lies along the first normal

to any Xi of the congruence; (2) the magnitude of w\ is equal to the (0, 1) curva-

ture of Xi; (3) the imaginary part of the scalar p is one-half the (0, 0) curvature

ofXt. . •

Again, let us consider the case where the congruence is completely unitary,

orthogonal to oo 1 hypersurfaces in the unitary Kn and where the congruence

is either real or complex Euclidean. By means of Theorems 1 and 2, we may

write (3.5), (3.6) in the form

(5.16) vau\ = la\ + uawx + hau\, conj.,

(5.17) Va'U\ = — ha'Ux, conj.,

where

(5.18) ha = za + pua, conj.

From (5.17), we see that if Va'U\ vanishes, then ha vanishes. Hence from

(5.18) , we find that the vector za and the scalar p vanish. By (5.15), this last

result means that the curvature k (subindex 00) of a real congruence vanishes.

Furthermore, the equations (5.16) and (5.11) furnish the result

(5.19) Va«x = L\ + uawx, conj.

(18) [2, equation 3.23].
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The equation (5.19) is the condition (3) satisfied by a congruence of curves Vi

which are orthogonal to °° 1 hypersurfaces in a Riemannian space of n dimen-

sions Vn. Hence, we have the result

Theorem 4. If the vector u\determines a congruence which is: (1) completely

unitary orthogonal to co1 hypersurfaces in the unitary Kn; (2) the vector u\ is

analytic; (3) the congruence is either real or complex Euclidean, then the condi-

tions satisfied by the congruence vector u\ in the unitary Kn are identical with

those satisfied by the congruence vector u\ which is orthogonal to oo 1 hypersurfaces

in V„. If the condition (3) is replaced by the stronger requirement that the congru-

ence is real, then a further conclusion follows. Namely, the curvature k (subin-

dex 00) vanishes.

6. Congruences semi-unitary orthogonal to oo1 Xn_x in Kn. If the congru-

ence is semi-unitary orthogonal to oo 1 hypersurfaces in the unitary Kn, then

the integrability conditions of (4.13) must be satisfied. These are given by

(6.1) U\dtfUa] + uad[\uß] + usd[aU\] = 0, conj.,

(6.2) u\d[ß-ua\ + uad[\Uß'] 4- Uß-d[aU\] = 0, conj.

By use of (5.3), (5.4), the equations (6.1), (6.2) become

(6.3) Uv,VßUa] = — U[xSßa]Uy, conj.,

(6.4) U[xVß-ua] = — (l/3)uß'Saxyuy, conj.

Let us assume that the connection of K„ is semi-symmetric (see 2.23). Then,

the right-hand side of (6.3) vanishes and the right-hand side of (6.4) becomes

( — (l/3)uß'Ulapx]). Upon substituting (3.5) into (6.3), we obtain

(6.5) uixlßa] = 0, conj.

Transvecting with mx and using (3.2), (3.3), we conclude that

(6.6) /[„„] = 0, conj.

Conversely, if (6.6) is valid, then (3.5) satisfies (6.3). We next study the con-

sequences of (6.4). By transvecting (6.4) with ua, u?, we obtain

(6.7) UxWVw'Ua) + V[xUß-] + Uß*ua\7[aux] = — Uß>uaulapx], conj.,

(6.8) Wxw"*Vlß'Ua] + uauß,VixUß-) + V{aux\ = — u[apx), conj.

Due to the symmetry of (6.4), no additional relations are obtained by further

transvection with ux. With the aid of (3.5), (3.6), (6.6), the two previous equa-

tions become

(6.9) uxua(ulß-xa] + yiß'Ua]) + l[Xß'] + «[xX/n + yixUß-]

+ Uß'Ua(u[awx\ + z[aux]) = — UßWu[apx], conj.,

uxuß'(u[ß>xa] + yiß>ua]) + UaUs'{u[xXß') -f ytxM<n)
(6.10)

+ (*[*«*] 4- Z[a«x]) = — u[apx], conj.
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Simplifying with the aid of (3.4), we find

(6.11) 21      — uß'(xx + zx — yx — wx) = — uß-[px — ux(pau")], conj.,

(6.12) — ua(xx -\- zx — yx — ivx — px) + ux{xa + za — ya — wa — pa) = 0, conj.

Transvecting (6.11) with uß" and simplifying with (3.2), (3.3), we obtain

(6.13) xx + zx — yx — wx = px — ux{paua), conj.

Substituting (6.13) into (6.11), we find

(6.14) lm-] = 0, conj.

By substituting (6.13) into (6.12), we find that the latter equation is identi-

cally satisfied. Thus (6.13), (6.14) are the only equations obtained by trans-

vecting (6.4) with u\ Conversely, by expanding (6.4) and using (3.5), (3.6),

we find that in virtue of (6.6), (6.14), (6.13), the equation (6.4) is identically

satisfied. This leads us to a theorem which is similar to Theorem 2,

Theorem 5. Consider a unitary space Kn with semi-symmetric connection

and such that the solutions ux of (3.5), (3.6) exist, then if and only if: (1) laß, la>ß

are symmetric; (2) xx+Zx~yx—wx = px — ux{pau"), does the vector ux define a

congruence which is semi-unitary orthogonal to <x>1 hy persurf aces in the uni-

tary K„.

By use of Lemma 5, we can obtain some further properties of the semi-

unitary congruences. From (4.25), (4.26), (4.27) it follows that for congru-

ences which are semi-unitary orthogonal to oo1 hypersurfaces in the uni-

tary Kn

(6.15) ux = pVx/, conj.,

(6.16) ux' = pVx'f, conj.

By covariant differentiation of (6.15), (6.16), we find

(6.17) VaUx = pVoVx/ + (Vx/)(V0p), conj.,

(6.18) VaMx* = pVaVx-f + (vV/)(Vap), conj.

From the relations (2.11), (2.22), we see that

(6.19) vaVxf = VxVaf + 2Sx«yVf, conj.,

(6.20) VaVx-/ = Vx'Vcf, conj.

Substituting the last two equations into (6.17), (6.18), the latter become

(6.21) V„«x = pVxV«/ + 2PSx: Vyf + (Vx/) (V„p), conj.,

(6.22) Vaux> = pVx«V„/4- (Vxtf)(V„p) conj.,

Simplifying (6.21), (6.22) by use of the equations (6.15) through (6.18), we
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obtain

(6.23) V«wx = V\Ua + 2S\ayuy + 2p-1M[xVa]p, conj.,

(6.24) VaU\' = Vx'«a 4- 2p-1w[x'Aa]p, conj.

By use of (3.5), (3.6), (6.6), (6.14), the above two equations become

(6.25) «[0wx] + 2[(tMx] = S\ayuy + p-1Mp.Va]p, conj.,

(6.26) m[aa;x*] + yiau\'] = p_1«[x'Va]p, conj.

Let us assume that the connection of Kn is semi-symmetric. Transvecting the

previous two equations with W, we obtain

(6.27) wx — sx = — p\ + u\{paua) — Vx In p + ux(u"Va In p), conj.,

(6.28) xx* — y\« = — Vx« /« p + u\>{uaVa In p), conj.

We are now in a position to prove

Theorem 6. Jf: (1) the connection of the unitary Kn is semi-symmetric;

(2) the congruence is semi-unitary orthogonal to «>1 hypersurfaces in Kn; (3) the

congruence is real or complex Euclidean; (4) w\ = z\, xx=yx, then every two hy-

persurfaces Xn-i intercept equal arc segments on all curves of the congruence.

From condition (4) of our theorem, that is,

(6.29) wx = zx,      xx = fiu conj.,

it follows by use of (6.13) that

(6.30) px = (paua)ux, conj.

Substituting (6.29), (6.30) into (6.27), (6.28), we find

(6.31) ux = 0Vxp, conj.,

(6.32) mx* = 0Vx«p, conj.,

where 6 is some function of £\ £x*. Thus p is an integral of the system (4.22)

through (4.24). Since that system has only one independent integral, namely,

/(£\ £x*), it follows that

(6.33) p = F(f), conj.,

where F(f) is some arbitrary function of/. From (6.33), (6.15), (6.16), we find

(6.34) F(J)df = uxdp + ux-dp\

for arbitrary d^, d|x*. Now let us consider the vector (d£\ d£x*) as in the

direction of mx. By multiplying and dividing the right-hand side of (6.34) by

ds (the element of arc length along a curve of the congruence), we obtain

(6.35) F{f)df = Ids.
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Integrating (6.35) between/=c0,/=Ci, we find

(6.36) 2(5 - so) = fClF(f)df.

The fact that the right-hand side of (6.36) is independent of any particular

curve of the congruence proves our theorem.

We can obtain the geometric meaning of the essential condition (4) in

Theorem 6 by limiting ourselves to real congruences. We prove

Lemma 6. Consider a real congruence which is semi-unitary orthogonal to °°1

hypersurfaces in a unitary K„ with semi-symmetric connection, then if and only

if: (1) the (01) curvature of each Xi vanishes; (2) p\ = (paua)u\, are the equations

(6.29) valid.

First, we show the sufficiency of our conditions. From the first condition,

we have

(6.37) * = 0, conj.

Hence from (5.14), it follows that

(6.38) w\ + x\ = 0, conj.

Since the congruence is real, the equation (3.12), is valid, that is,

(6.39) zx = — yx, conj.

By use of the second condition and (6.13), we obtain

(6.40) x\ + zx — y\ — w\ = 0, conj.

By substituting (6.38), (6.39) into (6.40), we obtain the equations (6.29).

Conversely, from (6.29) and the fact that the congruence is real, it follows

that the conditions (1), (2) of our theorem are satisfied. Thus, from (6.29)

and (6.13), we obtain

(6.41) px = (paua)itx, conj.

Furthermore, by use of (6.39), (6.29) and (5.14), we find that k (subindex 01)

vanishes.

We now translate Theorem 6 into terms connected with a real congruence

of geodesic curves. Our result is

Theorem 7. If the curves X\ of a real congruence in a unitary space Kn with

semi-symmetric connection satisfy the conditions: (1) the congruence is semi-

unitary orthogonal to co1 hypersurfaces in Kn; (2) the «»-' X\ are geodesic;

and either (3) the curvature k (subindex 01) vanishes; or (4) p\ = (pau")u\, then

every two hypersurfaces intercept equal arc segments on all Xx of the congruences.
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It has been shown(17) that an Xi in a unitary Kn with semi-symmetry

connection is geodesic if and only if

The condition (6.43) is of no use to us. From (6.42), we note that if condition

(3) of our theorem is valid, then the condition (4) is necessarily satisfied, and

conversely. From Lemma 6, it follows that (6.29) is valid. Hence, Lemma 6

leads to the desired conclusion.

If in particular, the space K„ has a symmetric connection, then

(6.44) px = 0, conj.

Thus the conditions (3), (4) of Theorem 7 are satisfied. Theorem 7 becomes

analogous to a theorem in Riemannian space(4).
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(6.42) p\ = {paW)u\ — k «x, conj.,
Ol 1

(6.43) k = 0, conj.
00

(") [2, Theorem 4].


