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1. Introduction. Finite difference equations with arbitrary real spans have

been investigated by various mathematicians^). In this paper we shall con-

sider infinite difference equations with arbitrary real spans whose coefficients

are either constants or linear functions of the independent variable.

We shall state at the outset three theorems which give some indication

of the scope of our work. Theorems 1, 2 and 3 are special cases of Theorems la,

2a and 3a which will be proved in the body of the paper. We state these spe-

cial cases explicitly because they are simpler and can be expressed in the usual

terminology of difference equations. The three theorems are not independent

since 1 and 2 together imply 3, and 2 is a special case of 3. Nevertheless, it

seems worthwhile to quote 1 and 2 separately because of their greater sim-

plicity and because they form the natural introduction to Theorem 3. They

deal, respectively, with the case of constant coefficients, the case of all coeffi-

cients constant but one (which is linear), and the case of all linear coefficients.

Theorem 1. Let

be an infinite difference equation in which the X„ are arbitrary real numbers and

the an are complex numbers such that

converges absolutely to a non-vanishing function A (w) in some strip a < Re w

<ß. Furthermore let g(z) be analytic in some strip a<Ira z<b. If for some

e > 0 inequalities

Presented to the Society, October 31, 1942; received by the editors June 24, 1942.

(') A treatment of a very general nature has recently been given by T. Kitagawa, On the

theory of linear translatable functional equations and Cauchy's series, Jap. J. Math. vol. 13 (1937)

pp. 233-332. Kitagawa gives other references to the literature. The methods used in the treat-

ment of the first theorem of the present paper are more closely related to those of S. Bochner,

Allgemeine lineare Differenzengleichungen mit asymptotisch konstanten Koeffizienten, Math. Zeit,

vol. 33 (1931) pp. 426-450, and W. T. Martin, Linear difference equations with arbitrary real

spans, Acta Math. vol. 69 (1937) pp. 57-98. The other theorems use somewhat different

methods.

(1.1) £ a„f(z - X„) = g(z)

(1.2)

1
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(A ,v       \g(*+ iy)\tf>'x < Ka:ß>.a:v  for   x < 0\
(1.3J        , I >a < y < b

I g(x + ty)\e"< Ka',ß>,a>.b'  for   x > 0)

hold for every a', ß', a', b' in

(1.4) a < a' < a + e,   ß - e < ß' < ß,   a < a' < b' < b,

then it follows that (1.1) has one and only one solution f(z) of the same character,

that is, analytic in a < Im z <b and satisfying

I rX* + h) I <?'x < for x < m
(1-5)        , . I , >a < y < b

I /(* + iy) I e°'* < Ka.,r,..,v  for   x > Oj

for every a', ß', a', b' in (1.4). Moreover f{z) is given explicitly by the formula

oo

f(z) = Y. Ong(z - X„'), a < Im z < b,

where
1

A(w)
= £ «.'«*'"", a <Rew < ß (2).

Theorem 2. Let

(1-6) 3/00 = i M* -    + g(s)
n-l

6e ö difference equation in which the X„ are arbitrary real numbers and the bn are

complex numbers such that

(1.7)
,Xnu)

converges absolutely to a function B(w) in some strip a<Re w<ß of the aux-

iliary w-plane. Let y0 be the imaginary part of the constant term of (1.7) (zero

if it has none). Then if g(z) is analytic and satisfies (1.3) where the strip

a<Im z<b does not contain the line Im z = y0, it follows that (1.6) has a unique

solution f(z) of the same character, that is, analytic in a<Im z<b and satisfy-

ing (1.5).

Theorem 3. Let

«0

(1.8) £ (anz + bn)f(z - X.) = g(z)

(J) Throughout this paper two complex planes will enter into consideration, a z-plane

(z =x+iy) in which the independent variable in our functional equation ranges, and an auxiliary

lo-plane (w = u+iv) in which we consider an associated function which governs the growth of

the solutions in the z-plane.
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be a difference equation involving arbitrary real spans and complex linear coeffi-

cients such that

00 00

(1.9) I«,e»"      and      £ (b„ + a„X„)ex»™

converge absolutely to functions A(w) and B(w) in the strip a<Re w<ß, the

function A (w) being non-vanishing in the strip. Then

t 1     * y+Ti ß(w-) 1
To = — Im < lim-       I -dw >

I r— Ti Jy      A(w) )

will exist and be independent of y (a <y <ß); and if g(z) is analytic and satisfies

(1.3) where the strip <x<Im z<b does not contain the line Im z = yo, it follows

that (1.8) has a unique solution f(z) of the same character, that is, analytic in

and satisfying (1.5).

The difference equations which we have just stated can all be expressed

in terms of Stieltjes integrals. The difference equations are therefore special

cases of certain Stieltjes integral equations, which are dealt with in Theo-

rems la, 2a and 3a. These theorems are proved by means of the theory of

Fourier-Stieltjes transforms. Theorem la which depends on Pitt's lemma(3)

is in a certain sense not a true Stieltjes integral theorem since the Stieltjes

integral involved is restricted to have no singular part, and the equation is

thus really only an infinite integro-difference equation. The same is true of

Theorem 3a insofar as it depends upon Theorem la. No such restriction is

required in Theorem 2a, and it is therefore strictly a Stieltjes integral equa-

tion theorem.

If we form a right-continuous step function <z(X) with a(0) =0 and with

jumps of an at points X„,

Z a.,    x ̂  o,
<KX„<X

-   Efc,      X < 0,
X<Xn<0

then the condition that the series (1.2) be absolutely convergent in a<Re w

<ß can be expressed in an alternative but equivalent form.

Lemma 1.1. A necessary and sufficient condition that the series (1.1) be ab-

solutely convergent in a<Re w<ß is that

(3) H. R. Pitt, Mercerian theorems, Proc. Cambridge Philos. Soc. vol. 34 (1938) pp. 510-520.

See Lemma, p. 513. See also I. Gelfand, Uber absolut konvergente trigonometrische Reihen und

Integrale, Ree. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 51-66. Equation (3.4) of Theorem la

has been solved by Pitt on the real line in the above paper and in General Mercerian theorems

(II), Proc. London Math. Soc. vol. 47 (1942) pp. 248-267.
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e«'x I da(\) I + J   e"'x | rfa(X) | < oo
-00 * t

for every a', ß' in a<a'<ß' <ß.

Also the sum-function A(w) of (1.2) is given by A (w) =f*xe*wda(\),

a<Kew<ß.

The growth condition (1.3) can also be expressed in an alternative and

equivalent form, as we shall show.

Lemma 1.2. Let g(z) be analytic in a strip a<y<b, — oo <x< oo, and let

a, ß, e be given real numbers with e>0. Then a necessary and sufficient condition

that (1.3) shall hold for every a', ß', a', b' in (1.4) is that

(1.12) sup   ff e?x I g(x + iy) \ dx + f ea'x \ g(x + iy) \ dx~\ < =o
0'<»<S' L«' -oo «i j

hold for every a', ß', a', b' in (1.4).

Lemma 1.2 is an immediate consequence of the following property of

analytic functions, which is based upon the Phragmen-Lindelöf principle:

Let h(z) be analytic in the half-strip

(1.13) c = lmz = d, O^Rez<oo,

and let

(1.14) f   I h(x + iy) \dx=M, c ̂  y fk d.
J o

Then for every strip (c1, d') interior to (c, d) we have

(1.15) \ h(x + iy)\ < Mc.,*, c'<y<d',0=x.

Proof. Let z be any point in (1.13) and define

(1.16) H(z) = f h(t)dt.
J ic

The function H(z) so defined is analytic in (1.13) and is independent of the

path as long as the path lies in (1.13). On taking the path to be the sum of

two straight-line segments (ic, i Im z) and (i Im z, z) we find

H(z)
/► d /* x

I h(h) I dy + I I h(u + iy) | du = Mi + M.
c Jo

Thus H(z) is bounded in (1.13). Moreover by (1.14) we see that H(z) ap-

proaches a limit as z approaches infinity along any one horizontal half-line

in c^Im zfkd. Thus by a well known form of the Phragmen-Lindelöf theo-

rem H(z) approaches one limit value uniformly in the strip (1.13).
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Next if c<c' <d' <d and 5 is a sufficiently small positive number, then

for c' <y <d' and S <x,

as x—the convergence being uniform in c'<y<d'. Thus (1.15) holds.

2. Norms and their properties. Before giving the necessary lemmas and

definitions for our work on integral equations we will make a few remarks

which indicate the motivation for the remainder of the section. In order to

include the previously stated theorems on difference equations under our

theorems on integral equations, as well as to have more generality in the

integral equations themselves, we must deal with functions p(X) of bounded

variation on every finite interval but not necessarily on the whole infinite

interval. Thus the expression f_x\dp(\)\ need not necessarily be finite for the

functions p(K) which we consider. We shall, however, impose a certain con-

dition on the behaviour of p(X) which will enable us to form Radon-Stieltjes

integrals(4) of the form /_aoA(X)cip(X) for certain classes of functions A(X). In

fact we shall define a norm N\(p) for right-continuous functions p(K) of

bounded variation on every finite interval and we shall work with functions

p(\) of finite norm, Ni(p) < «. If p(\) and g(X) are two such functions, each

of finite norm, then the convolution J_mq(\—n)dp(ii) need not necessarily

exist, but nevertheless a certain modified convolution can be shown to exist,

namely pXq=J^[q(\-p)-q(-ß)dp(ii)^f_\[p(\-ß)-p(-ß)]dq{fx). And
this modified convolution serves the usual purposes required for the ordinary

convolution. For example, if P(w) and Q(w) are the Fourier-Stieltjes trans-

form of p{\) and g(X), respectively, P(w)=f\Xwdp(\), Q(w) = f"jXwdq(\)

then the product R(w) = P(w)Q(w) is the Fourier-Stieltjes transform of the

modified convolution r(X) =p{\) Xc?(X).

We will also define a (weak) norm N(J) for analytic functions /(z) in a

strip o<Im z<b, this norm being related to our Ai-norm, and we shall show

in particular that the ordinary convolution f_xf(z — h)dp(\) exists and yields

a function analytic in a<Im z<b and of finite A-norm at most N(f)Ni(p),

whenever N(J) and Ni(p) are finite. The fact that the Abnorm is a weak norm

will be useful in our functional equations since it will enable us to treat

(4) The integrals which occur in this paper are understood to be Lebesgue-Stieltjes (Radon)

integrals. See, for example, Saks, Theory of the integral, 2d revised edition, Warsaw-Lemberg,

1937, pp. 19 and 67. We note that the familiar principles of monotone and dominated conver-

gence in the Lebesgue theory as well as the symmetric Fubini theorem are also valid in this

theory; see pp. 28, 29, and 77. In this paper we shall not admit + °° as members of our number

system; that is, existence implies finiteness.

1   r 21 H(z + öe*) l r2T
d<t> —> (const.) — I   e-^dt = 0,

2tt J o tV*
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analytic functions of finite exponential growth in a strip, the rate of growth

being permitted to increase as the rate of growth of the function p(\) of

bounded variation decreases.

We now proceed with the necessary definitions and lemmas. Let two posi-

tive continuous functions E(x) and Ei(x) satisfying

(2.1) E(x +y) fk E(x)E1(y),   E,{x + y) = E1(x)E1(y),

for all x and y, be given. These functions will be designated throughout the

paper by this same notation. In practice, E(x) and E\{x) will usually be

(eax,     x > 0, x> 0,

E(x) = \ Ex(x) - \
if;      x < 0, \e",     x < 0,

with <x<ß. The reader can readily verify that these functions satisfy (2.1).

In terms of definite preassigned functions E{x) and E\(x), we define the fol-

lowing two norms:

Definition 1. Let p(K) be a right-continuous function of bounded variation

on every finite interval. Then we define the norm

/CO

£i(x)|Wl-
-00

Definition 2. Let f{z) =f(x-\-iy) be defined in a strip a<y<b. Then we

define the norms

(2.3a) N{f; y) = f E(x) | /(* + iy) \ dx
J OO

and

(2.3b) N(f) =  sup Nif; y).
a<V<»

In practice the iV-norm will be used for functions which are analytic in a

strip. Nevertheless we use this general definition which applies to any func-

tion of a complex variable, since on occasions we will use the finiteness of the

norm to aid in proving the analyticity.

We shall use the term "of finite norm" with reference to both functions

of a complex variable and functions of bounded variation, with the under-

standing that the appropriate norm will be used in each case. While there is

a possible overlapping of these types of functions, in practice no confusion

will arise from the use of the term "of finite norm."

We shall use the following properties of the norm, where the existence

(finiteness) of the right side implies the existence of the left.
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Lemma 2.1.

(2.4) Ni(fi + p2) fk Niipi) + Ni(p2),

(2.5) N(ft + f2; y) = Nifv, y) + Nif*; y),

(2. 5a) Nifi + f2) 1k N(f,) + Nif2),

(2.6) N^f /(■- \)dpi\)^ = Niip)Nif),

(2-7) N(-?—; y) <; \   Nif; y).
\  — c      /        Im iz — c)\

The inequalities (2.4), (2.5), (2.5a), (2.7) follow immediately from the

definitions; so we proceed to the proof of (2.6). Obviously it is sufficient to

prove

(2.8) N [ J fi ■ - \)dpi\); y] = N1ip)Nif; y)

and we may without loss of generality assume that y = 0. Then we have

I-     /»00 -1 f% CO I      It X

N\_J x)^(x);  °j   =  J        E(-^\j        /(X~X)^(X) dX

/00 S% 00

Eix)dx I    I fix - X) I I dpi\) I
-00 J -00

/-» X r» 00

= j    I <//>(X) I I   £(*) I /(x - X) I dx
* -00 -00

/CO .»CO

I dp(K) I j   EiOdEix - X) I /(* - X) I dx
-00 —00

/OO v» COÄi(X) I #00 I I   £(*) I /(*) I dx
-CO -00

= N,ip)Nif; 0).

(It is clear from this argument that f_\\fix — X)| • |<f/>(\)J and hence

J_Jix—r\)dp(\) must exist for almost all x when Niip) and N(J\ 0) exist.)

Lemma 2.2. Let /(z) 6e analytic in a<lm z<b, and let 8>0. Then for

any point z = x+iy in the strip a + 25<Im z<b — 28 we have

(2-9) |/(*)| Z —Nif)-   sup [EiS)]-1.
TTÖ |l-fl<ä

This follows from the fact that/(z) is a harmonic function of x and y. Thus
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f(z) = -        T r /(« + iv)dudv, w = u + iv,
TO2 J J |Z_„,I<j

I I f(u + iv) I dudv
y-S    J z-S

I I f(u + iv) I [E(u)]-xE{u)dudv
w-5   J x-iy-S

I    I /(« + w) I E(u)dudv

/i J/+S N(f)dv<;

= 25   sup [£(ÖH-^(/)
|x—«l<a

Lemma 2.3. If f(z) is analytic in the strip a<lm z<b and if N(J) and

Ni(p) are both finite, then J_J(z —\)dp(\) is analytic in the strip a<lm z<b.

To prove this, we shall show that

J» oo /* M
f(z - \)dp(\) = lim   I   f(z - \)dp(\)

0 M—*oo   %) o

uniformly in z in the rectangle R0: a+ 25 <Im z<b — 28, A-\-d <Re z <B — 8,

where A and B are arbitrary. Now by (2.9), (2.6), (2.2) we have in R0:

/•Mi 2     r cM2 ~|f{z-\)dp{\)  ^-N\        /( -X)#(X) -   sup [£({)]-»
A/, 1t0       LVa/i J    I ar—f | < ä

* — X(f) \ f "*iOO I #(X) I "I •   sup  [£«) h»,
7tö L^Af! J x<£<b

since we can consider the finite integral as an infinite integral with p(k) re-

placed by a function which is constant outside the finite interval. Thus

limAri,M2-.oo fM'f(z—^)dp(K) =0 uniformly in R0, and the uniform convergence

in (2.10) is established. Since the finite integral is obviously analytic, the same

is true of the infinite and also of the two-way infinite integral.

Lemma 2.4. Let \fn(z)} be a sequence of analytic functions in the strip

a <Im z<b such that

(2.11) £>(/„) < ».
n-l

Then the series
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/(*) = E/.OO

converges absolutely and uniformly in every closed finite region contained in the

strip o<Im z<b and represents an analytic function f(z) of finite norm in the

strip. Moreover

(2.13) #(/) = !>(/>.).
n=l

and if Ni(p) < °o, then

(2.14) f T E /.(« - X)l dp(\) = E f ~Mz - \)dp(\)
J -oo L n-l J n=l " -oo

where the right member converges uniformly in every closed finite subregion of the

strip.

The absolute and uniform convergence of (2.12) in closed finite subregions

of the strip follows immediately from (2.9) and (2.11). Thus/(z) is analytic

in the strip and we have

/OO I 00

E(x) I /(* 4- iy) I dx = I   E(x)  E /-(* + iy) dx
-oo * -oo I n=l

/oo oo 00        y* oo

E I /»(* + iy) \dx = E I   E{x) I /»(* + *y) | dx
-oo n—1 n-1 J -00

= £,N(f.;y).
n-l

Moreover if ä(z) = f~J(z-X)dp(\) and ä„(z) =f2jn(z-X)dp(X), and a + 25
<Imz<ö-25, then

(2.15)

[by (2.9)]

[by (2.6)]

A/—1 I        I    /too «

h(z) - E *-(«) =   I    E /•(* - X)rfp(X)
n=l I        I w -oo n=M

= -x(f    ZM-\)dp(\))   sup [£({)]-
TO       W-oo  n=Jl/ / l*-{|<«

sup [£($)]-!

#l(*)|   E^(/jl     Sup [E^h1
1TÖ Ln-Af J |*-t|<*

[by (2.13)]

[by (2.11)]

This yields (2.14).

0 as M —» oo.
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Lemma 2.5. Let p(X) be a right-continuous function of bounded variation on

every finite interval and of finite norm. For any values of X and y> we have

i p(\ - M) - p(- n)\ iS \     sup -zrTvl^i(p)

= {   sup   ——\e1(h)N1(P)

(2.16)

where [an, «2] denotes the closed interval with endpoints a\ and on (ai =a2, cx, Kon).

Proof.

1 - m) - pi- m) i = I r "dp{s)\ & I r —5— E^dpis)

^ {       sup -i-ltf^).
(. ^Gl-f.x-*.] £i(y) ;

The second inequality in (2.16) follows from (2.1). Thus

1/E& -m) = £i(m)/£i(").

Lemma 2.6. If p(K) and g(X) are of bounded variation on every finite interval

and of finite norm then the modified convolution

/GO

[p(\ - m) - P(- ß)]dq(ß)
-00

exists and is of bounded variation on every finite interval and is of finite norm,

(2.18)        N^j   [p{ - m) - p{~ tiWtiJ = N,{p)N,{q)-

Proof. By (2.16)

J   i p(\ - M) - p(- n)\ i dq(n)\

{   sup   -L-Xn^p) f E10i)\dq(ji)\

= {   sup ——1 N1(p)N1(q).

Thus the integral in (2.17) exists (is finite). If p and q are both increasing

functions then the modified convolution is increasing. It readily follows that

(2.17) is of bounded variation in the general case. For (2.18) we have
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Ni{f   [p(\ - a) - p(- ß)]dq(u)}

/OO f% COEi(\) dx I   (p(\ ~n)- p(- ß)]dq(n)
-00 I * -00

^ f Ei(\)dd j Var [p(\ - Ii) - p(-n)]\ dqhi) ||

/CO 00

| ̂ (m) I I   £i(X) I <*x[/>(X -ß)-p(-n)]\
-00 » -00

/OO f% 00l^ool I e,(m + ») I #M I
-00 » -00

g f   I dq(n) | f £x(m)£iW I #W |
" -00 -00

= N^Niig);

which proves (2.18) (6).

In some places it will be useful to have our functions normalized in the

following way. We call p(\) normalized if (i) p(K) is right-continuous and

(ii)£(0)=0.

Corollary to lemma 2.6. // p is normalized then the convolution pXq is

normalized. If p and q are normalized then the convolution is symmetric:

pXq = qXp.

Lemma 2.7. Let \pnQO} be a sequence of normalized functions, each of

bounded variation on every finite interval, such that

(2.19) E^iW < M-

Then on every finite interval the series

(2.20) *(X) = E #»(X)
l

converges uniformly to a function of bounded variation, and is a function of

finite norm. Moreover
CO

(2.21) Nx{p) £ Z NiiP*)-

(5) To see that the interchange of order of integration just made is justifiable compare

An unsymmetric Fubini theorem by R. H. Cameron and W. T. Martin, Bull. Amer. Math. Soc.

vol. 47 (1941) pp. 121-125. Throughout the paper we shall frequently make use of the result to

permit an interchange of order of integration of two integrals of this form.
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Furthermore, if Ni(q) < », then

(2.22)N CO X» CO

= e| u«(x-«) -&.(-**)]<%(*»),
n=l ^ -00

where in every finite interval the right member converges uniformly to a function

of bounded variation.

The uniform convergence of (2.20) follows from Lemma 2.5. That the

sum is of bounded variation can be seen by separating into increasing parts.

Thus if

Pn(S)  = — I #«(/*) I  + Pn(\)
2 J o

then

Ni(pt) g Ni(Pn)
and

p(\) = /(x) - mx) - e #»(x) - e Mx),
71=1 »1 = 1

so that p(k) is of bounded variation on every finite interval.

Next, (2.21) follows for increasing parts:

f" El(\)d\p±(\) - e^(x)1

max   £,(X)1 f   oT/OO - e />*Ool
l -Af SXgAJ JJ-M    l 1 j

= i"   max   £i(x)l{[/(M) - e/„(M)1
l -AfjSxgAf j KL 1 j

-       m) - ZpU- #)]}

—> 0 as /T —> co, for fixed If.

This yields

/Af oo     p M oo

E,{\)dp-{\) = e I £»(x)#;(x) g e wo.
-AT »1=1«'—Af n-J

Letting approach infinity we obtain (2.21) for increasing parts. For the

general case,
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Ni(p) = N,(p+ - p~) = N,(p+) + Nr(p-)

00 OO 00

=  Z Nl(Pn) + Z NM = 2Z Nl(Pn),
1 1 1

and

Ni(i,pn) = Ni(zpn + z pn) = iVx( z pn) + nJ z pn)
\ n=l       / \ n=l n=A+l      / \    1 / \ k+1 /

K oo co

^ Z # i(*0 + 2 Z -» Z ffiipn) as is: — oo.
l i+i i

This yields (2.21) in general.

For (2.22) we use Lemma 2.5 and condition (2.19) and obtain

/CO        00 *

ZI^(X-m) - pn(- ß)\\dq(,x)\
-co   n— 1

= \   sup ——} f00 £,(„) \ Z N^pS] I dqb) I

= / sup —-\\ Z NxbSlNiiq).

This enables us to apply the principle of dominated convergence to obtain

(2.22). That the right member of (2.22) converges uniformly in every finite

interval to a function of bounded variation follows immediately from Lemma

2.6 and the earlier part of the present lemma already proved.

3. The difference equation with constant coefficients. We shall now treat

equation (1.1). We obtain a slightly more general result than Theorem 1 in

terms of an integral equation.

Theorem la. Let p(k) be a right-continuous complex-valued function of

bounded variation on every finite interval, whose singular part is zero; let p be of

finite norm,

/0 /» oo
e°x I dp(\) I + i   eax I dp(\) I < oo,

-oo J 0

and let p be such that the {analytic) function

/CO

e^dp{\)
-OO

is non-vanishing in the strip a<Re w<ß. Let g(z) be a function analytic in

the strip a <Im z<b and of finite N-norm,

(3.3) N(g) =  sup [" f   eßx \ g(x + iy) | dx + f eax \ g(x + iy) | dx \ < oo.

a<y<b L J -oo «f 0 J
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Then the equation

(3.4) f }{z - \)dp{\) = g(z)
J -CO

has one and only one solution f(z) which is analytic in the strip o<Im z<b

and which is of finite norm N{f) < °c.

For the proof let us notice that since P(w) is analytic and non-vanishing

in the strip a<Re w<ß and since (3.1) holds it follows from a result of

Pitt (loc. cit.) that 1/P(w) is expressible in the form

1 r*
(3.5) -= I   e^dp*(\), a<Rew<ß,

P{w)      J-m

where p*(X) is a function of bounded variation on every finite interval with

finite norm. Also(6) since

1 =
P(w)

/OO /% 00gW/)(X) I e"wdp*(fj.)
- -oo J — oo

(3.6)

P(w)

/OO /% CC^*(m) I - m)
-oo J —00

/OO 00

d>*(M) I  «"•<*„[*(" - M) - P(- /»)]
-00 —00

/OO /» 00rtj    [#(*- m) - P(- m)]#*(m), a<Rew<0,
-00 ^ -OO

it follows that / [p(v — p) — p{— fi) ]dp*(n) is a function with a unit jump at

the origin and constant elsewhere. Next we form the function

(3.7) f(z) = f g(z-n)dp*(ß)
J -00

which by Lemmas 2.3 and 2.1 is analytic in the strip a<Im z<b, and of

finite norm. Moreover

/co /-» oc     /% CO

/(« - X)o>(X) =1     I   g(a - X - u)dp*(p)dp(\)
-00 ^ —00 —CO

/oo r% cc

f(a - Od, I   [/>(* - m) - P(~ ß)]dp*(ß)
-00 "» -00

= «(«).

Thus/(z) satisfies the equation (3.4).

(6) See Footnote 4.
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For uniqueness let us assume that / is any solution of (3.4) of finite norm.

Then

K*) = f *(« - n)dp*b) -f     f f(z - m - \)dp(\)]*p*(n) = 7(2);

that is, f=f.
This concludes the proof of Theorem la, and also shows that the solution

f(z) is given explicitly by (3.7).

Theorem 1 is an immediate consequence of Theorem la in view of Lemmas

1.1 and 1.2.

4. The difference equation with one linear coefficient. We now deal with

equation (1.5), and as in the previous case, we obtain a slightly more general

result expressed in terms of an integral equation(7).

Theorem 2a. Let p(K) be a right-continuous function of bounded variation

on every finite interval and such that

/0 /» oc
e°x I dp(\) I 4- I       I dp(\) I < oo.

Let y0 = Im[^>(0+0)— p(0 — 0)] and let a<Im z<b be any strip whose closure

does not contain the line Im z = y0. Let g(z) be a function analytic in the strip

a < I m z < b and of finite norm:

r-   n 0 n oo

(4.2) N(g) =   sup      I   e"x| g(x + iy) \ dx + \   eax | g(x + iy) \ dx < oo.
a<v<b L    —oo J 0

FAew <Ae equation

(4.3) 2/(Z) = f f(z - \)dp(\) + g(z)
J —oo

has one and only one solution f(z) which is analytic in the strip a<lm z<b

and which is of finite norm, N(f) < <x>.

We base the proof upon the following lemma.

Lemma 4.1. Let p(\) be a function of bounded variation on every finite in-

terval and of finite norm, Ni(p) < «>. Let Zi = xi+iyi be any complex number,

and let a <Im z<b be any strip whose distance from the line Im z = yi is greater

than Ni(p). Let g(z) be a function analytic in the strip a<lm z<b for which

N(g) < 00. Then the equation

(') This result and its proof were suggested by applying certain duality considerations to a

corresponding result on differential equations. See R. H. Cameron, Quadratures involving trigo-

nometric sums, Journal of Mathematics and Physics vol. 19 (1940) pp. 161-166. This result is

however certainly not a direct dual since g(z) need not have any Fourier transform.
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(4.4) (z - - f /(*- X)^(X) + g(z)
—00

Aas owe owa" o«Zy owe solution /(z) o/ finite norm and analytic in the strip

a<lmz<b. In addition

N(g: y)
(4.5) N[f;y)£->-i \r . : . a<y<0.

I y - yi I - Ni(p)
We shall prove Lemma 4.1 by the method of successive approximations.

Let

/o(z) = g(z)/(z - «0

and

'4.6) /»(*) = —— f /_,(* - X)d>(X), « = 1, 2, • • • ,
Z — Zl •/ -00

each/„(z) existing in view of Lemma 2.1. We shall show that

(4.7) /(*) = £/.(«)

also exists and satisfies the conclusions of Lemma 4.1. First, by Lemma 2.1,

N(f0; y) = -,-r N(g; y)
\y - yi\

and

JV(/„; y) = -.-r #(/_,; y)N1(p) g ,      ^    , iV(g; y),
I y - Tij I y — yi\n+1

a < g < b, n = 1, 2, • • • .

Thus

u « atyj.    v ^ ^     [W)]»    _ ,     , N(g; y)(4.8) L%j)==Li-r—- iViCg; y) = -j-—— ■
«=o n-o I y - yi |n+1 I y - yi\ - Nx(p)

By Lemmas 2.4, 2.2, and equation (4.8) we see that the function defined by

(4.7) is analytic and of finite norm in the strip a<Im z<b and that (4.5)

holds.

To see that the/defined by (4.7) satisfies equation (4.4) we note by (4.6)

that

(4.9) /(z) = /,(*) + £/„(*) = — \g(z) + £ f - X)d#(X)~|.
n=l Z — Zl L n-l^-oo J

By Lemma 2.4, we can interchange the order of summation and integration

and thus
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(4.10) f(z) = — \g(z) + f f(z- X)a>(X)"|,
z — zi L «/-«, J

that is,/(z) satisfies equation (4.4).

For uniqueness let us assume that/*(z) is a solution of (4.4), analytic in

a<Imz<6 and of finite norm. Then

f*(z) - }{z) = — [~U*(* - x) - A« - x)]#(x)

and

N(f* -/; y) £ -j-r iV(/* - /; ?)#,(#), ,    a < y < b,
\y - yt\

or

N(f* - /; y) ( 1 - -j-?—r) == 0, a < y < b.
\      \ y — yi I /

Since the second factor is positive,/* —f=0.

This concludes the proof of Lemma 4.1.

We now proceed to the proof of Theorem 2a itself. Let us therefore return

to the notation of that theorem and assume that the hypotheses of the theo-

rem are satisfied. We begin by introducing a transformation which transforms

equation (4.3) into one to which the preceding lemma applies. This trans-

formation will be based upon the following function:

(4.11) R(w) = exp^J    — dp(\)+J     —dp(\)j,       a < Re w < ß,

the r) being chosen positive and so small that

(4.12) Ni(pi) < min { | y0 - a |, | y, - * | } ,

where

(4.13) pl(\) =

P(v) ~ P(0 + 0), X = v,

p(X) -p(0 + 0), 0 g X ^ 7J,

p(\) - p(Q - 0), - v ^ X < 0,

p{- v) - p(o - 0), X =2 -

This is possible since by hypothesis y0 lies outside the closed interval a^y^b

so the right member of (4.12) is positive, and the variation of pi(\) can be

made arbitrarily small due to the continuity of £i(X) at the origin. Then if

I   o,    X = 0,

*»-{-!. X<0,
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and(8) z0 = *o+tyo = />(0+0)-£(0-0), we have

Uco    gXto \
— d[p(\) - p1(\) - z0j(\)]j.

We next show that there exist functions r(X) and r*(X) such that

/CO

eXwaV(X)
-00

and

(4.16) —- - f e^dr*(\),
R(w)    J _

and

(4.17) /(X) = f  [r(X - 0 - r(- fl]<*r*(0.
•/ -CO

For let g0(X) =./Qv) and

(4.18) fli(X) = I-

and

(4.19) g„(X) = f   [g,(X - m) - ?i(- fO]<*g*-iG*), « = 2, 3,
J -00

Since go and gi are normalized it follows by the corollary to Lemma 2.6 that

all the g„ are normalized.

Now
/co r—    /% co "In

ex™dg„(X) = ^ J   e*"iSi(X)J , « = 0, 1, 2,
-00 L J -00 J

Next define

(4.20) Kx)«E—?»00
n=0 »!

and

(4.21) r*(X) = Z ^^g„(X).

(8) Note that this is consistent with the definition of yo given in the statement of Theo-

rem 2a.
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By inspection go(X) is of finite norm, and the same is true of gi(X), when we

note that the function with respect to which we integrate is constant in a

neighborhood of the origin. By equation (2.18) it follows that each qn is of

finite norm with Ni(qn) = [A^g.)]", and by Lemma 2.7 that r(X) and r*(X)

defined in (4.20) and (4.21) exist and are of finite norm. Then

R(w) = exp j J"   ^-d[p(\) - ^(X) - 2oi(X)]|

= exp jj* eXwdqt(\)}

oo  in/*00 ~in   03  1 /*00

= Z -        e^dgi(\)   = Z - e^dqn(\).

We shall show that the integration and summation can be interchanged, thus

giving

/oo     r 00   l       "l     /»oo

ex™d\ Z — ?»(X)   = j e^dr(\).
-oo L n-0   «! J        J -oo

The interchange is justified by the following argument:

. M

dq„(k)

Z — \e"Mqn(M) - e-<°Mq„(- M) - w f a„(X)ex^x]
n=o n! L •/ -at J

/Af /• M
r(\)eXwd\ = I eXwdr(\).

-M J -Af

00        1 aM

z — ^
„=o n\J -M

-Af

By the Weierstrass lf-test and the convergence of

Z -. ivi(«.)
n=l «!

it follows that the above series in the first member converges uniformly for

all real M and thus as M—*«> the limit of the sum is the sum of the limits.

Thus (4.15) holds; and it is obvious that (4.16) can be proved in the same

way. Moreover, (4.15) and (4.16) imply (4.17). Returning now to (4.14), we

differentiate and obtain

(4.22) dR{w)/dw = R(w)[P(w) - P,(w) - z0]

where

/o0 *% 00e*wdp{\),       Pj(w) = J e^dp^X).
-00 " -co
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Rewriting (4.22) by replacing each side by the function of which it is a

Fourier-Stieltjes transform, and noting that

dR(ui)

dw

we obtain

/oo X
eXwdx I ndr(n)

-oo J 0

(4.23)     Cvdrir) = f  [r(X — n) — r{ — ß)]d[p(ß) - M - Z9f<ji)].
J 0 -co

Now consider the functional equation

/CO

/,(* - X)rf#x(X) + gi(z)
-00

where

(4.25) gx{z) = f g(z - X)o>*(X).
-00

It is clear by (4.12) that the functional equation (4.24) satisfies the hypothesis

of Lemma 4.1, and thus has one and only one analytic solution /i(z) of finite

norm in a < Im z<b. We can therefore consider that/i(z) is completely defined

by (4.24), and in terms of it we define

/OO

/i(z - t)dr(t), a < Im z < b.
-00

We shall show that this /(z) is the unique analytic solution of finite norm of

the original equation (4.3). By Lemmas 2.3 and 2.1,/(z) so defined is analytic

and of finite norm. Also by (4.24) we have

f  (z - t - z0)/i(z - t)dr(t)
—00

s* CO oO /* oo

= I   dr(t) I   Mz - X - *)<tyi(X) + I   gl(z - 0<*r(0.
— OO " — 00 —00

Transposing, simplifying, and using (4.25) and (4.17), we find

n oo «00 oo

2 I   /i(z - /)<*r(fl = I   /i(z - /)«r(0 + z0 I   /i(« - t)dr{t)
J — 00 —CO — CO

/CO /V 00Mz - t)it I    [f(l - X) - r(- X)]#i(X) + «(*).
-OO " -00

By (4.26) and (4.23), this yields
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Ms - t)d, \    [r(t - X) - r(- X)]rf[#(\) - S«/(X)] + z0/(z) + g(a)
-00 —00

/CO

/(« - X)a>(X) + g(z).
-00

Thus/(z), defined in (4.26), satisfies the original equation (4.3).

Similarly if any /(z) satisfies (4.3), /(z) assumed analytic and of finite

norm in a<Im z<b, it is seen that the function

= f f(s - \)dr*(K)
J -00

satisfies equation (4.24). Thus the uniqueness of the solution of (4.24) implies

the uniqueness of the solution of (4.3).

This concludes the proof of Theorem 2a.

Theorem 2 follows from Theorem 2a and Lemmas 1.1 and 1.2.

5. The difference equation with linear coefficients.

Theorem 3a. Let p(K) and g(X) be complex-valued functions of bounded

variation on every finite interval such that

(5.1) N^p) < =0, Ni(q) < oo, singular part of p = 0.

Moreover let the analytic function

e^dp(\)
-00

be non-vanishing in the strip a<Re w<ß. Define^)

(5.3) y0 = Im [~lim -        f -^-^-tfail.
Lr— TiJy     J1xe^dp{\) J

Let a<Im z<b be any strip whose closure does not contain the line Im z = ya.

Let g(z) be a function analytic in the strip o<Im z<b and of finite norm,

(5.4) N(g) < oo.

Then the equation

(5.5) f (z - XJ/O - X)#(X) - f f(s - \)dq(\) = g{z)
J -00 J -00

has one and only one analytic solution f(z) of finite norm in the strip a < Im z <b.

(9) This limit exists and is independent of y for a<y<ß.
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For the proof we again use Pitt's theorem (loc. cit.) which yields the result

that 1/P(w) is expressible in the form (3.5) with Ni(p*) < oo.

We next convolve equation (5.5) with p*{p) and obtain

/CO      f% COI   (z - X - M)/(a - X - ß)dp(\)dp*(ß)
-00 *^ —00

/OO        <•»   00 /» 00I   /(* - X - ß)dq(\)dp*(ß) =|    g(* - m)^*(m),
-CO       —00 ^ —CO

or

(5.6) z/(«) - f f(z-\)dq(k) - 1(2)
-00

where

(5.7) cT(X) = f   [o(X - m) - ?(- fO ]#*(/*),   g(z)= f «(« -
«/ -00 J -CO

We note by Lemmas 2.3, 2.6, and 2.1 that g{z) is analytic in a<Im z<b and

that

(5.8) AM?) < «>,      #(£) < oo.

Moreover(10)

(5.9) yo = Im [q(0 + 0) - g(0 - 0)].

Now we apply Theorem 2a to (5.6). We note that the hypotheses of that theo-

rem are satisfied with p and g replaced by q, g. Thus there is a unique analytic

solution /(z) of (5.6) of finite norm. Hence if (5.5) has an analytic solution of

finite norm it is unique. But the solution of (5.6) obviously satisfies (5.5) as

we see by convolving equation (5.6) with p. This yields the theorem.

As in the earlier cases it is easily seen that Theorem 3 follows from Theo-

rem 3a.

(10) That (5.9) agrees with (5.3) is easily seen.
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