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Introduction. Several new problems in the theory of approximation to an

analytic function were suggested and discussed by Walsh in a recent paper(l).

It is the purpose of the present paper to make additional contributions to

the solution of these problems and to indicate the extent to which the results

carry over to the theory of harmonic functions.

1. Representation of a special harmonic function. Let 7? be a finite sum

of disjoint regions in the complex plane and let S be a closed set interior to 7?.

When suitable restrictions are placed upon the boundaries Co and Ci of 5

and 7?, respectively, there exists a function <p(z) equal to zero on Co and unity

on C\, continuous in the extended complex plane, harmonic except upon Co

and &.

It is convenient for the present to assume that 7? and 5 satisfy the follow-

ing set of conditions:

Al. The boundary of each component region T of R consists of a finite num-

ber of disjoint analytic Jordan curves.

A2. For each component T, the boundary of TS consists of a finite number

of analytic Jordan curves such that those constituting the boundary of each com-

ponent region of T—TS are disjoint.

A3. Each component T contains at least one point of S.

A4. No point of T—TS is separated from S by the boundary of T.

Under these conditions, the function <j>(z) exists, is necessarily equal to zero

on 5 and unity exterior to 7?.

Let \f/(z) be a function conjugate to <b(z) in R — S. The limit of \p(z), as z,

remaining within a component region of R — S, approaches a curve of Co or C\,

exists in the small and forms on the boundary of this component region a

continuous periodic function of the arc length. Of course, if a component

curve of Co or Ci is common to the boundaries of two such component regions

of R — S, the limits of the function \p(z) from the two sides of this curve are,

in general, not equal.

Theorem 1. Suppose R is a finite sum of mutually disjoint regions and S a

closed set interior to R such that R and S satisfy conditions (A). Then, for z not

on Co + Ci, we have
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(1) <¡>(z) = *(«) - —  f        log | z - r | dV-(f),

wAerc f traces Co + G in the positive sense with respect to R — S.

In the integration over G + G, each component region of 22 — 5 is consid-

ered in turn and \(/(z) is taken as defined by approach to Co + Ci from within

this component. Thus in the integration in (1) some of the curves of G + G

may be traversed twice and in opposite directions.

Theorem 1 is a direct consequence of Green's third identity for z finite.

Equation (1) is valid for z = <x> in the sense that lim,^x(i/2ir)fc^c,iog\z—^\

#(f)=0.
The normal derivative (d<p/dn) of <j>(z) on Co (normal directed outward

from 22 — 5) is negative; on Ci it is positive. From the well known property

of harmonic functions that fct+c1(d<b/dn)ds = 0, it follows that

\   dip =  \    (d<j>/dn)ds = -   f  (dd>/dn)ds = -   |   # = t > 0.
J Ci J Ci J Co J C0

Fix the range of ^ on G as 0 ^^ <t, on Co as t ^\f/<2t. (For each component

of Co + Ci will appear one or two subintervals according as this component

appears once or twice in the integration in (1).)

Theorem 2. Let R be a finite sum of disjoint regions and S a closed

set interior to R such that R and S satisfy conditions (A). Let the points

ank(k = i, 2, • • ■ , n) and ßnk(k = l, 2, ■ ■ ■ , w + 1) for w = l, 2, • • • ie uni-

formly distributed(2) with respect to \j/ on G and Co, respectively. Then for any

point z?¿ oo not on G + G we have

lim

(2)

j  (Z  -  fl.l)(g-ft.l)   •   •   •   (z-ßnn+i)   |1/n

I   (z — a„i)(z — ani) ■ ■ ■ (z — a„„)   |

expl -— (0(oo) -4>(z)) \,

the convergence being uniform on any closed bounded set disjoint from Co + G.

In the event that a curve C is traversed twice in the integration in equa-

tion (1), there are two methods of effecting the distribution of points. If 7i

and 72 are the two component regions involved, and if \f/i and 1/^ are the cor-

responding limit functions of \p on C, then there may be a double distribution

of points ank (or ßnk) on C or there may be a single distribution on C made

with respect to i/'i—^2.

(2) J. L. Walsh, Interpolation and approximation by rational functions in the complex domain,

Amer. Math. Soc. Colloquium Publications, vol. 20, New York, 1935, pp. 164-165.
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Equation (2) follows from equation (1) and the relationship

— f       log | 0 - f | #(f)
2ir J c0+Ci

which is a consequence of the definition of uniform distribution.

Under special circumstances, it may occur that in some subregion of 72 — S

the function <p(z) is given by

m

53 log | » - f* | =A(<p(z) - B),
k-l

where A and B are constants, and the points f* are not interior to R — S.

Here it is not necessary to use the points «„& and ßnk to approximate the

function <b(z).

The boundary conditions (A) can be considerably relaxed. The conclu-

sions of Theorems 1 and 2 are valid if the boundary curves are merely Jordan

curves and if the disjointness provision in A2 and A3 is omitted. We shall

designate the revised conditions by (A')-

2. Interpolation and approximation by rational functions. Let C0, Ci, 4>(z),

y¡t(z), and t bear the same relation to 72 and 5 as in §1. Denote generically

by C„ 0O<l, the locus <j>(z)=p. Let 72», OOál, be the point set where

O^0(z) O and let 72„ be the closure of R, (Ro = S). Let the points ank and ßnk

be uniformly distributed with respect to \J/(z) on Ci and Co, respectively. For a

given function/(z) analytic on S, let rn(z) be the unique rational function of

degree n(3) having poles at the n points a^k and interpolating to f(z) in the

i-f-1 points ßnk.

Theorem 3. Let R be a finite sum of disjoint regions and S a closed set in-

terior to R such that R and S satisfy conditions (A'). If the function f(z) is

analytic throughout Rp, 0<p<l, then the sequence \rn(z)} converges uniformly

to f(z) on any closed subset of 72p, and for any a satisfying Q^a<p we have

(3) lim sup [max | f(z) - rñ(z) \, z in 72„]1/n ¿ f-*»(r-»>/r.
n—*«

if p^p<l, we have

(4) lim sup [max | rn(z) \, z in 72(1]1/n ^ g-*rir-*»lTt
n—.oo

Iff(z) is analytic throughout 72p but coincides on S with no function analytic

throughout R9lfor any pi>p, then the equality holds in (3) and (4).

r "   log | z - ank\
= — hm   ¿^ -

2ir n—*«  k=i n

T "+1   log  | 3 - ßnk\
- — lim  £ -

ZTTn—>«    ¿«i ft

(*) J. L. Walsh, op. cit., pp. 184 ff.
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Suppose o- is given, 0^<r<p. Choose p', a<p' <p, such that 22p — R„- con-

tains neither critical points of <p(z) nor the point at infinity. The function/(z)

is analytic for z in 22„< and(4)

(z-ßnl)   ■   ■   ■  (z-ßnn+i)(t-anl)   •   •   •  (t~ Ctnn)f(t)dt
f(z)—rn(z)=- I      -

(t — ßnn+i)(z — anl) ■ ■ • (z — ann)(t — z)

Choose a', o<a' <p', such that o-'^c^oo). Then the convergence in (2) is

uniform on the point set G- + G-. The locus CP' 1S rectifiable and \z—1\, for

z on G» and / on C„>, has a positive lower bound. The integrand in (5) is an

analytic function of z throughout 22„< (if property defined at z= » in the event

that R,- is not bounded). Therefore it follows, by the principle of maximum,

that _
lim sup [max | f(z) - rn(z) \, z in 22^]"" ^ tr"W—'M*.

n—*«

The left-hand member is not affected if p'—>p. Also, a' can be replaced by a,

and the proof of inequality (3) is complete. For (4), we make use of the rela-

tionship^)

J_ Z*    f        (s-ffm) • • • (z-ßnn+i)(t-am) ■ ■ ■ (t-ann)lf(t)dt

T 2iriJc0.\_       (t-ßnl) ■ ■ ■ (t-ßnn+i)(z-anl) ■ ■ ■ (z-ann)S(t-z) '

Suppose now that/(z) is analytic throughout 22„ but not throughout 22Pl

for any pi>p. The assumption that the inequality hold in either (3) or (4)

will lead immediately to a contradiction^).

Either the requirement in Theorem 3 that no point of 22 —5 be separated

from G by 5 or some other related assumption is necessary. This is seen from

a consideration of the following situation: G is the unit circle |z| =1 and 22

is its interior; 5= Co is the point set \z\ =l/2;/(z) is the function 1/z.

A special case of Theorem 3 is that in which the points ank and ßnk are

independent of n. Here the sequence of rational functions {rn(z)} is replaced

by the ordinary series of interpolation (7).

The dual of Theorem 3 is of some interest. Instead of the sum of regions 22,

we can consider the sum 22* of regions comprising the exterior points of 5

and having G* = G as its boundary: thus 22* is the point set upon which

(b(z) is positive. For the closed point set 5* choose the set where <j>(z) is unity:

thus Co* = G is the boundary of 5*. That conditions (A') are satisfied for 22*

and 5* follows immediately from the corresponding assumptions upon 22

and 5. The dual function <p*(z) is 1 -(p(z). Equation (1) becomes

(4) J. L. Walsh, ibid.
(*) J. L. Walsh, ibid.
C) Cf. J. L. Walsh, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 293-304, esp. p. 298,

Theorem 3.

(7) J. L. Walsh, op. cit., pp. 188-189.
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**(*) = **(«) - — f,   . log I « - f | Hr*(t).
2x J c0+ci

For the analogue of (2), take oCt = ßn-ik (fe = l, 2, • • • , n) and ß%t=ctn+ik

(¿ = 1,2, • • • , w-f-1). In order to approximate a function F(z) analytic on S*,

choose rational functions r*(z) of degree n having poles at the points a*t and

interpolating to T^z) in the points ß^. If F(z) is analytic throughout 72/ but

not throughout 72,* if pi>p, and if 0^a<p, we have

lim sup [max | F(z) - rl(z) \, z in 72*]1/n = «r2*<"-»>/';
n—►«

if P ̂ M < 1 > we have

lim sup [max | r*n(z) \, z in 72*]1/n = *-«»<*-*>/*.
n—♦«

3. Best approximation by functions of given norm. Suppose now that 72

is a single region. Let f(z) be a function analytic on the closed set .S but

let there exist no function analytic throughout 72 which coincides with f(z)

on S. For a given positive quantity M, there exists, among the functions

analytic and of modulus not greater than If in 72, a function /w(z) which has

the property that mM = [max|/(z) —fiu(z) \, z on S] is least(8).

Let us assume here that the region 72 and the point set S satisfy the con-

ditions :

Bl. The boundaries of R and S consist of a finite number of continua, each

continuum not a single point.

B2. No point of R — S is separated by S from the boundary of 72.

Then we have the following theorem :

Theorem 4. Let the region R and the closed set S interior to R satisfy con-

ditions (B). If the function f(z) is analytic throughout R„, but not throughout RPl

for any pi>p, then as M is allowed to increase without bound the functions

\fM(z) \ converge uniformly tof(z) on every closed subset of R„. Indeed, for any a,

0^cr<p, we have

(7) lim sup [max | f(z) - fM(z) \, z in R,}lil°*M = «<•-»>/<»-*>.

Moreover, if p^p.^1, we have

(8) lim sup [l.u.b. | fM(z) |, z in R„]li*>*M = «C*-*>«i-p>.

This theorem has been proved(9) for the case in which 72 —5 is connected.

Here we lighten the restrictions upon 72 and S and make use of a new method

of proof.

(8) J. L. Walsh, Proc. Nat. Acad. Sei. U.S.A. vol. 24 (1938) p. 477.
(9) J. L. Walsh, ibid.
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We shall assume that 72 is finite and bounded by a finite number of dis-

joint analytic Jordan curves: this assumption entails no loss in generality

since the theorem is invariant under a one-one conformai map. It is now

possible to extend the function <p(z) harmonically across C\. Choose v,

0<n<p, so small that there are no critical points of 0(z) on the point sets

where Í ^<p(z) ^l+rj and 0<<p(z)^r]. Let 72' be that region bounded by

C{ = G+, and containing 72. Let S' be the set 5 together with all points z

where O<0(z) ^rj. If Theorem 3 is applied to 72' and S', we obtain

lim sup [max | f(z) — rn(z) \, z on Co ]1/n g *-«»(*-»>/»

and

lim sup [max | rn(z) \, z on Ci]1/n ^ tjr*r<.*-1>'r,
re—► »

where the poles of rn(z) are on C{ and the points of interpolation on Co'.

The quantity T is independent of 77. For arbitrary «>0, there exist con-

stants M' and M" such that for all « we have

(9) I f(z) - rn(z) I =: Jf'«-*"*<••-*-«>/r( z on Co,

and

(10) I  rn(z) I   ^   3/"e-25rn(p-l-«)/ri 2 on Cl-

When M is given not less than the right-hand member of (10), the func-

tion rn(z) is itself analytic and of modulus not greater than M in 72. Thus it

follows that

I /(z) - M*) I ^ M'e-2"ni'-"-')lr, z on C0

and, consequently, that

(11) lim sup [max | f(z) - fM(z) |, z on 5']1/lo«M ^ e*/(»-».

On the other hand, the definition of /m(z) yields the inequality

(12) lim sup [l.u.b. I fM(z) |, z in T?]1'10^ ^ e.
M—*°o

The remainder of the proof of Theorem 4 consists of a simple application

of the following three lemmas. These lemmas are extensions of a recent theo-

rem by Walsh(10) to which reference has been made previously.

Lemma 1. Under the conditions of Theorem 4 on 72, 5, and f(z), suppose

'lfy(z)} M a continuous family of functions analytic and bounded in R such that

(13) lim sup [max | f(z) - fy(z) |, 2 on S]1'-' = e» < 1
y—»so

(10) J. L. Walsh, Trans. Amer. Math. Soc. vol. 47 (1940) p. 298.
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and

(14) lim sup [l.u.b. fy(z), z in 22]"? ^ ea, e" > 1.
y—»oo

If ap +/3 — ßp = 0 and if {yn} is any monotone sequence of values of y approach-

ing infinity, then

(15) lim sup [max | f(z) - fy„(z) |, z in R,]11^ ^ <.<*-<>)<«-<»>
n—.go

whenever 0 ^<r <p; t/ p i=p =T, we Aaz>e

(16) lim sup [l.u.b. | /Tn(z) |, z in 22„]1't.> ^ eo.-«)<«-/»>.
n—»oo

Lemma 2.  Under the conditions of Theorem 4 on 22, 5, and f(z), suppose

{/7n(z)} is any sequence of functions analytic and bounded in R such that

(17) lim sup [max | f(z) - /7n(z) |, z on S]1'*« ^ e" < 1
B—»oo

and

(18) lim sup [l.u.b. | fyn(z) \, z in 22]1/t„ ^ e<», e« > 1,
b—»oo

where the sequence {y„} is monotone increasing and satisfies

(19) 0 < lim inf (7n+i — yn) 2s lim sup (yn+1 — yn) < ».
b—* oo n—» oo

T'Aéra we have

(20) «p + ß - ßp = 0.

Lemma 3. Wï/A ¿Ae hypotheses and notation of Lemma 2, if ap+ß—ßp = 0,

we have, whenever 0 ^<r <p,

(21) lim sup [max | f(z) - /7„(z) |, z in R.]1'^ = eC'-oM«-«,
n—»oo

and, whenever p^p^l,

(22) lim sup [l.u.b. | /7n(z) |, z in 22„]1/t» = e^-') <«-/.>.
B-+»

The proof of Lemma 1 is by contradiction. Assume for some a and some

€>0 that

(23) lim sup [max | f(z) - fyn(z) \, z in 22,,]1'?» = e<*-p><"-0-«>.
n—»oo

The sequence {7„} can be altered so as to give a new sequence {y" \ for

which (23) is still true but for which
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lim y"/n = 1.
B—»oo

Indeed, choose a subsequence {yú } of {y„} such that

[max | f(z) - /7;(z) |, z in R.]1'^ ^ e^X"-"-«*

and such that 7„'+i-7n' fel. Take y¿' =7«' if k^yi <k + l; take yi' =k if

there is no yú satisfying k^yú <k + l. We now have

lim sup [max | f(z) — /->/'(z) |, z in R„]1/n =■ e(<r-p)i*-ß-.)t
B—»oo

and we obtain a contradiction to the theorem by Walsh referred to above.

A similar proof is used to obtain (16).

To prove Lemma 2 we note that (17), (18), and (19) imply the existence,

for each e (0<e< — ß), of constants A, B, and M such that for all ra suffi-

ciently large we have

(24) | f(z) - fyn(z) I á 27e<W">»., z on 5,

(25) | /7„(z) | á !?«<«+*>*., z in 22,

and

(26) 0 < ^ < 7„+1 - 7„ < B < ».

Thus

I /%„•»(*) - /*„(*) | = 37eW->».[l + {w.)i], z on 5,

and

I /*„+»(*) - /V.to I ^ I«(a+,h« [1 + e<«+«)fl], z in 22.

From the Two-Constant Theorem(u) we can conclude for z on C„ 0O<l,

and for all ra sufficiently large, that

(27) |/t„+1(z) -/r„00 | ^ Me-'n^'+^'+^ll + etf+.M]i—[i + ec«+.)*]».

Thus the sequence {/7 (z)} converges uniformly in R, provided av+ß—ßv<Q:

that is, provided v< —ß/(a—ß). Since this sequence converges to f(z) on 5,

it follows that p = -ß/(a-ß).

The inequality (27) suffices to prove that the left-hand member of (21)

or (22) is not greater than the corresponding right-hand member. For, if z

is in R„ 0^ff<p,

/to = A.to + [A.«« - A.«] + L/W«) - A.«to] + • ■ • .
while, for z in 22„, p^p^l,

/W«) = hÁz) + DW«) - /^(2)] + ■ ■ • + E/nr+.to - fi**~M>
(") R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936, p. 42.
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That actual equality must hold in (21) and (22) is seen from Lemma 2. 
There are many further consequences of Lemmas 1. 2. and 3. Some of 

these are included in the corollaries which follow. 

COROLLARY 1. For any continuous family of functions {gM(Z)} such that 
gM(Z) is analytic and of modulus not greater than Min R. we have 

lim sup [max I fez) - gM(Z) I. Z in R.]l/logM ~ e(fT-p)/(l-p) 
M-... 

for all CT. 0 ~CT <po 

COROLLARY 2. Suppose {M .. } is a monotone sequence of positive quantities 
such that 
(28) 1 < lim inf M ,,+1/ M.. ~ lim sup M n+t! M .. < 00. 

Then for 0 ~ CT < P. we have 
(29) lim sup [max I fez) - fM.(z) I. Z in R.,]l/logM = e(fT-p)f(l-p) • .. -.. 
while for p~",~l. we have 
(30) lim sup [l.u.b. I fM,,(z) I. Z in R,.]l/loc M = e(,.-p)f(l-p) . .. -.. 

COROLLARY 3. If {M .. } is a monotone sequence of positive quantities satisfy-
ing (28) and if {gM .. (Z)} is any sequence offunctions such that gM .. (Z) ,is analytic 
and of modulus not greater than Min R. then for 0 ~CT <p we have 

lim sup [max Ii(z) - gM,,(Z) I. Z in R.]l/loc M" ~ e(tT-R)f(l-p) . .. -.. 
The equality in (29) and (30) is valid for many sequences of functions 

other than an extremal sequence {JM .. (Z)}. An example is the sequence of 
functions {r .. (z)} with poles on C{ introduced in the proof of Theorem 4 but 
with C{ approaching C1 as n increases indefinitely. Compare Theorem 3. 

Essentially. the right-hand member of (7) is not dependent upon S but 
rather upon R., itself. If S is replaced by S* = Ra. 0 <a <CT. the harmonic func-
tion q,*(z) for R-S* is (q,(z)-a)/(l-a) and 

A similar property for (8) and for the corollaries is immediately suggested. 
A limiting case of Theorem 4 is that in whichf(z) is analytic throughout R. 

For each p less than unity. inequalities (11) and (12) are valid. Thus by 
Lemma 1 we may conclude for each p(O <p < 1) that 

(31) lim sup [max I fez) - jM(Z) I. z in R.,]l/logM ~ e(tr-p)f(l-p). 
M- .. 
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provided 0^o-<p; moreover, if p^p.^1,

(32) lim sup [l.u.b. | fM(z) |, z in 72„]1/'°*^ ^ e0^*)/d-#).
AT-»«

The following corollaries now result:

Corollary 4. If R and S satisfy the restrictions of Theorem 4 and if the

function f(z) is analytic throughout R but not bounded there, then

lim   [max | f(z) - fM(z) |, z in R.]"**" = 0,
Jf—oo

for 0=:<7<1. 7/0^p<l, then

lim sup [l.u.b. | fM(z) |, z in R»]1»0*1" = 1,
üf-»oo

while

(33) lim sup [l.u.b. | fM(z) \, z in 72]1/>°«Jvf = e.

Corollary 5. Under the hypotheses of Corollary 4 upon 72, 5, and f(z), if

{Mn) is a monotone sequence of positive quantities satisfying (28), then

lim [max | f(z) - /w„(z) |, z in 72i]1/1o8M» = 0,
n—*«

/or 0 ̂ <7 < 1. If 0^p. < 1, then

lim sup [max | fMn(z) |. 2 in 72„]1/logAf" = 1,
n—»oo

while

(34) lim sup [l.u.b. | fMn(z) \, z in 72]1/1°*^» = e.
n—»oo

4. Approximation by functions of minimum norm. Under the conditions

of Theorem 4 upon 72, S, and/(z), there exists for each positive m a function

fm(z) analytic and bounded in 72 such that |/(z) —fm(z)\ S«on5 and such

that the quantity

Mm = [l.u.b. |/m(z)|,zin72]

is a minimum. The existence of fm(z) is a direct consequence of Theorem 4

and well known properties of normal families of analytic functions.

Theorem 5. Let 72, 5, andf(z) satisfy the conditions of Theorem 4. Then the

family of functions \fm(z)} converges to f(z) uniformly on each closed subset of

72p as m—»0, and we have

lim sup [max | f(z) — fm(z) \, z in 72(rj-1/l0sm = e""'"'
m-»0

whenever 0 ^<r <p. Moreover, if p ^p ^ 1,
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lim sup [l.u.b. | fm(z) \, z in 22j-1/logm = e^-'"'.
m->0

This theorem also has appeared elsewhere(12) for the case in which 22 — 5

is connected. It may be proved by a method analogous to that used for Theo-

rem 4, or it may be demonstrated for the most part as a consequence of

Theorem 4.

The analogues of Corollaries 1 to 3 of §3 are clear and need no further

consideration. The analogue of Corollary 4 is the following:

Corollary. Under the conditions of Theorem 5 upon R and S, if f(z) is

analytic throughout 22, then

lim sup [max | f(z) — fm(z) \, z on 5]-1/lo6m = trl.
IB->0

If 0<ct<1, then

lim sup [max | f(z) - fm(z)\, z in R,]'in°gm ^ e"'1,
m—>0

while for all p, Q^p^l, we have

lim sup [l.u.b. | fm(z) |, z in 2^(1]-1'1°'!", = 1.
m—»0

The corresponding result for sequences {/mn(z)} of extremal functions is

immediately suggested.

5. Extension to regions of infinite connectivity. The theorems of §§3 and 4

can be extended, under certain circumstances, to regions of infinite connec-

tivity. Indeed, the conclusions of Theorems 4 and 5 are still valid if 22 and 5

satisfy the following conditions:

Cl. TAe boundaries of R and S consist of a denumerable number of continua,

each continuum not a single point.

C2. Any point of 22 — 5, which can be included in a Jordan curve of arbi-

trarily small diameter composed exclusively of points of 22 — 5, also belongs to

22-5.

C3. No point of R — S is separated by S from the boundary of R.

These conditions are sufficient to insure the existence of the harmonic func-

tion equal to zero on the boundary of 5 and unity on the boundary of 22(13).

The extended forms of Theorems 4 and 5 for these new conditions (C)

on R and 5 result from a consideration of limiting cases of the results of §§3

and 4; the proofs are routine affairs and need not be discussed in detail.

6. Further relaxation of boundary restrictions. Theorems 1,2, and 3 can

be extended to cover situations in which much less restrictive conditions are

imposed upon the boundary of 22 — 5 than those contained in the set (A')-

(12) J. L. Walsh, Proc. Nat. Acad. Sei. U.S.A. vol. 24 (1938) pp. 477-486.
(13) H. Lebesgue, Rend. Circ. Mat. Palermo vol. 24 (1907) pp. 371-402, especially §16.
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Suppose, instead, that R and 5 satisfy the following:

B'l. The boundaries of R and S consist of a finite number of mutually dis-

joint bounded continua, each continuum not a single point.

B'2. Each component region of R contains at least one point of S.

B'3. No point of R — S is separated by S from the boundary of 22.

Denote by Rk (k = 1, 2, • • -, m) the component regions of 22 — 5. Each re-

gion Rk can be mapped one-one and conformally onto a region 22*? whose

boundary Go + CÑ consists of disjoint analytic Jordan curves: Go and Ct'i

correspond to Go and Gi of the boundary of 22*, and 22«,' has the same con-

nectivity as 22fc. If z = Fk(z') is the mapping function of 22* onto Rk, and if f '

is a point on the boundary Go + G'i> then for normal approach to this

boundary

lim Fk(z'),        z'mRi,

exists for all f on Go+CÚ except possibly for a set of (Lebesgue) measure

zero.

The function <b(z), equal to zero on 5 and to unity exterior to R, harmonic

(although not necessarily monogenic) in 22 — 5, exists here also. Let 7„,

0=cr<l/2, be the set of all points z in 22 —5 for which a <<p(z) <l—a. Choose

<r0 > Oso small that T„0 contains all the critical points of <b(z) in 22 —5 and also

the point at infinity in case some 22* is not bounded. For 0 <a =<r0, the increase

t of \p(z) on G-o-, as the latter is traced in the positive sense with respect to TV,

is independent of a; the constant t is also equal to the decrease of the con-

jugate function \p(z) along G as the latter is traced in the positive sense (with

respect to Ta). Fix the range of \p(z) on G-, (0<<r^o-0) as O^t^(z) <r, on Co-

as t^(z)<2t.

The variable z, expressed as a function z = Z(<b, \¡/) of <p and \j/, is a single-

valued function in (22 —5) — T, when the range of \¡/ is thus defined. Moreover,

the limits

lim Z(4>, j), lim Z(<¡>, £),       ^ fixed,
ç)-»l 0->O

exist for almost all ip in 0^i/'<r resp. t^ij/<2t. Denote the limit functions,

where defined, by Z\(\p) and Zo(tp), respectively.

Theorem 6. Let R be a finite sum of disjoint regions and 5 a closed set in-

terior to R such that R and S satisfy conditions (B'). Then for all finite z not on

the boundary G + G of R — S we have

(35)     <p(z) = «K»)-f   log | Zi(iA) -z\di-f   log | Z0(f) -z\ty.
2w J o 2?r J 2r

Suppose first that the point z is in 22 — 5. Choose <ti, 0<o"i=:<7o, such that

TVj contains z. Define <ba(z) = (4>(z)— «r)/(l — 2<r) for 0<<r<<ri. By Theorem 1,
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If. .
<t>*(z) = <t>Áx) - — I     log | Z(<r, \p) - z\dip

2*Jc.

-~f      log \Z(l-o-,tf -z|#.

Equation (35) results if a is allowed to approach zero. A similar proof suffices

for z interior to 5 or exterior to 72.

Theorem 7. Under the conditions of Theorem 6, there exist sets of points

{öni, a„2, • • • , ann], « = 1, 2, • • • , and {ßni, ßn2, • • • , /3„n+1}, w = l, 2, • • • ,

on G resp. G such that for z?± «> not on G + G we ¿¡croe

(36)     lim
(z- ßni) ■ ■ ■ (z-ßnn+i)

expf- — (0(oo) -*(*))].
>'"        r   2r

(z — <*nl) • • • (z — ann)

/Ae convergence being uniform on any closed bounded set disjoint from G + G-

To prove the theorem, let us extend the definition of the functions Zi(\p)

and Z0(\p). Heretofore, Zi(ip) has been defined only when lim¿_i Z(<p, if/) exists.

For the remaining values of \p in the interval 0^\p<r define

arg Zi(i/0 = lim sup arg Z(<p, ̂ ), - w < arg Z(<f>, \p) á *,
4>-*l

and

I Zi(\p) I = lim sup I Z(<b, $) I.
«-.1

In a similar fashion extend the definition of Za(ip).

Choose a denumerable set {zm\ of points (zro^ 00, not on G + G) every-

where dense in the complex plane. Corresponding to each zm, form the sum

(37) — ("log \ZM) - zm\ # +— flog |Zo«0 - «-I #•

By a theorem of Hahn(14), sets of numbers $?, •/$, • • • , $?, and i>§?, i/®,

• • • , i/^re+i, can be found ((i-l^/n^ft^ir/n and t + (»-1)t/(w + 1)

á^ár+»>/(» + !)) such that for all w

T » ,   . 1       /• T

lim -— X) log I Zityù ) - zm | = —- |    log | Zi(i/0 - sm | #
n-»oo   2xW   l=,i 2tt J 0

T      "+1 .  . \     i" r

lim —-2Z Iog I ■Z'oC^o" ) — *•» I — — I     log I Zo($) — zm I dtp.
n->«o   27TW   i=l 2x •/ 2r

(") H. Hahn, Sitzungsberichte der mathematisch-naturwissenschaftliche klasse, K.

Akademie der Wissenschaften, Vienna, vol. 123 II a 1 (1914) pp. 713-743. Cf. B. Jessen,

Ann. of Math. vol. 35 (1934) pp. 248-251.



66 E. N. NILSON AND J. L. WALSH [January

The functions

(38) -1- ¿ log I Zi(tu) - z | + -Î- Z log | Z„(^:') - z |,
2irra ,=i 2irra ¿=i

ra = 1, 2, •• • ,

are harmonic for finite z not on G + G. In any closed bounded set 7 dis-

joint from G + G, these functions are uniformly bounded and therefore equi-

continuous. Convergence on the everywhere dense set \zm\ implies uniformity

of convergence on T to a function harmonic for all finite z not on G+G.

The function

(39) — f   log |Zo(*) - z| # + — f   log |ZiW -z\d*
2ir «/ 2r 2ir J o

is harmonic in z for the values of z under consideration and coincides on the

everywhere dense set \zm\ with the limiting function of the sequence (38).

Thus these two harmonic functions must coincide. All that remains to be

done for the proof of (36) is to choose ank=Zi(\p(-"k) and ßnk=Z0(4'ot)- More-

over, we have at once the extension of Theorem 3 :

Theorem 8. Let R be a finite sum of disjoint regions and S a closed set in-

terior to R such that R and S satisfy conditions (B'). Let f(z) be a function

analytic throughout Rp, 0<p<l, but not throughout 22Pl for any pi>p. Let

r„(z) be the rational function of degree n with poles at the ra points ank

(k = 1, 2, • • • , ra) defined above which interpolates to f(z) in the ra + 1 points ßnk

(A = l, 2, • • • , ra + 1). Then for any a, 0^cr<p, we have

lim sup [max | f(z) — rn(z) |, z in R„]Un = er*'<*-*)/«';
B—*o3

also, if p¿/t<l, we have

lim sup [max | rn(z) |, z in R»]lln = **•<*-*>/*;

7. Application to harmonic functions. Many of the results in the preceding

paragraphs carry over to the theory of approximation to harmonic functions.

The three lemmas of §3 are valid for harmonic functions if R and 5 satisfy

the following conditions:

D1. The boundary of R consists of a finite number of disjoint continua, each

not a single point.

D2. 7"Ae sei of interior points of S forms a finite sum of regions, each of

finite connectivity.

D3. 7"Ae set S is the closure of the set of its interior points.

D4. No point of R — S is separated by S from the boundary of 22.
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The methods used are essentially those introduced in an earlier paper by

Walsh(16).

Theorems 4 and 5 with their corollaries carry over to the present situa-

tion. In general, the problem of approximation to a harmonic function u(x, y)

is referred back to the corresponding problem of approximation to the ana-

lytic function/(z) of which u(x, y) is the real part. For the most part, the diffi-

culty arising from the possibility of multiple-valuedness of the conjugate

function v(x, y) of u(x, y) can be avoided. Obtaining the analogue of equation

(11) is the only point offering serious difficulty. Here it can be shown that

there exists a finite set of points (a,-, bi), i = l, 2, • • ■ , n, exterior to 72 and

corresponding constants r< such that

A u               y-bj
v(x, y) — 2-i ~ arc tan-

¡.i 2t x — ai

is single-valued in 72. Theorem 4 can be applied to the function

L(x, y) - ¿ ^ log [(* - a,-)2 +(y- bi)2Y'2\
K i-i 2x ;

■f t      ^       V^  u •      y ~ M+ t<v(x, y) — 2-1 — arc tan-í •
I ,_i 2ir x - ai)
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Harvard University,

Cambridge, Mass.

(") J. L. Walsh, Ann. of Math. vol. 38 (1937) pp. 321-354.
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