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In applying the theory of linear operators in Hubert spaces or spaces $p

to the solution of differential equation problems, it is impossible to retain the.

meaning of differentiation in the ordinary sense; the concept of differential

operator must be extended. Two such extensions offer themselves, a "weak"

and a "strong" one. Existence theorems, when derived by variational meth-

ods, result most directly in terms of the weak extensions. It is the strong

extension, however, which offers the natural approach to establishing prop-

erties of the solution; in particular those that lead to differentiability in the

ordinary sense. The fact that both extensions are identical is therefore deci-

sive.

The objective of this paper is to prove the identity of weak and strong

extension for general linear differential operators. The main tool for the proof

is a certain class of smoothing operators approximating unity, the "molli-

fiers." These mollifiers yield the identity of both extensions immediately for

differential operators with constant coefficients; it is remarkable that they

are a strong enough tool to yield this identity likewise for operators with

non-constant coefficients.

While the present paper is not concerned with the application to existence

problems^), other miscellaneous applications and generalizations of the iden-

tity will be discussed.

In the main part of the paper (§§1-3) the identity of weak and strong

extensions is proved with reference to the function space 2P. Generalization

to function spaces enjoying a certain translation property is possible (§5).

Under certain restrictions weak and strong extensions can be expressed in

terms of adjointness (§4). The miscellaneous applications (§6) refer in par-

ticular, to underdetermined systems and to Haar's lemma.

1. Extended differential operators. Let x = (xu ■ ■ ■ , xm) be a point in an

w-dimensional Euclidean space. Let R be an open region in that space. Let

u= {uc}, a— 1, • • • , s, be a system of functions defined in R; u = u(x) will

in general simply be called a function. Let Am n=l, ■ ■ • , m, B be matrices

transforming systems « of j functions into systems A„u, Bu of t functions.

Presented to the Society, February 26, 1944; received by the editors April 9, 1943.

(') For elliptic differential equations the identity was used in an earlier paper [l]; for

hyperbolic differential equations it can be used to solve Cauchy's initial problem [2]. Numbers

in brackets refer to the bibliography at the end of the paper.
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The matrices A^ and B as functions of x are to be continuous in R; in addi-

tion, A„ is to possess continuous derivatives with respect to x\, • • • , xm.

By 6 and 33we denote the classes of functions u(x) which are respectively

continuous or continuously differentiable in R. The operator

2)„ = d/dxß

then transforms a function u in 35 into the function D^u in S. The differential

operator to be considered in this paper is

E = A^D» + B,

summation with respect to p from /x= 1 to p = m being implied. The operator

E transforms a function u in 3) into a function in S,

» = Eu = A^.Dy.u + F«.

The "formal-adjoint" to E is the operator

E* = - D,A* + B* = - A*D„ + B* - D,A*'

(the dot indicating that the operator D^ does not apply beyond it). A* and B*

are the transposed matrices of A and B. By u we denote functions to which

there is a bounded closed subdomain R of R outside of which u = 0 ; by 6 or 35

we denote the spaces of functions ù in 6 or Î), respectively. For u in (5, ù in S

we define the bilinear form

(m, m)ä =   I ùudx, dx = <f*i • • • ¿xm,

ùu = ûcuc being the inner product of the vectors w and u. For u in 3D, w in 2)

we have the identity

(1.1) (E*û,u)R= (û,Eu)R.

Let p be any number £ ^ 1. Then we define the modulus

u/j>

l»l-[ZH'J
for functions u = {#,j, a= 1, • • • , s, and further the norm

\W\\r=  j I «N*

We also admit p= » and then set

| « I = max, | w„ |, a = 1, • • • , m,

\\u\\R = max, | u(x) \, i£Ä.

The space g can be extended to spaces ? = SP, complete with respect to the
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norm || || R, by either adjoining Lebesgue-integrable functions or by adjoining

ideal elements (cf. Hausdorff, Mengenlehre, 2nd ed., 21.3, p. 106). (The space

8«, is here simply the space of continuous functions vanishing at the boundary

of R.) Of course, we write w = 0 if ||«||Ä = 0 for u in 8. By 8* we denote the

"adjoint" space 8* = 8P> with l/p* + \/p = l. For u in 8, u* in 8* the bilinear

form

(«*, u)R =  I   u*udx

can be defined and, as is well known,

\(u*,u)R\ sMUMI*.

We further note the well known

Lemma 1.1. If u in 8 is such that (û, u)R = 0for all û in j), then « = 0.

In §2 we shall obtain an incidental proof of it.

We now proceed to extend the operator £ to a subspace © of 8, defined

as follows:

The space & consists of all functions u in 8 to which there is a function v

in 8 such that

(1.2) (E*û, u)R = (Û, v)R

holds for all û in j).

It is clear that ® contains $). Further u = 0 implies v = 0 by virtue of

Lemma 1.1. Hence, the function v is uniquely assigned to u in ® and, conse-

quently, v is linear in u. Further, for u in j), we have v = Eu. Therefore, when

we set

v = Eu for u in ©,

the operation E, defined for u in ©, is an extension of the operator E defined

for u in j); we term it the "weak" extension(2). For m in © we then have (1.1)

with every ù in j).

To describe the "strong" extension we define:

The space 5 consists of all functions u in 8 to which there is a function v in

8 and, to every proper(3) subregion R' of R, a sequence ut, e—»0, of functions

in j) such that

(1.3) II«, - «H*-*0,        ||£«. — »11«.—»0, ¿-»0.

(*) The operator E in @ could also be described as the adjoint of the formal adjoint E*

in i> (cf. §4).

(J) A "proper subregior R' of R" is meant to be an open reeion contained in a bounded

closed subdomain of Ä.
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Since relation (1.1) holds for w = w„ relation (1.2) follows for all ù with

R(ZR'; since R' was arbitrary, (1.2) holds for all ù in 3). Hence u is in &

and v = Eu. Thus % is a subspace of ©. On the other hand, % contains 3)-

The operator E defined in % is therefore an extension of E in 35, the "strong"

extension (4).

The goal of the present paper is the

Main Theorem. g = ®.

Before proving the main theorem we should like to mention that general-

izations of differential operators have been considered several times in the

literature. M. Bôcher [3] has replaced the potential equation Au=f by

f(du/dn)ds = JJfdxdy (in obvious notation). G. C. Evans [4] has generalized

differential operators in a similar manner, in particular, the operator gradi-

ent = {Di, • • • , Dm} [5]. These generalizations and our weak extension are

related. The class of functions, which equal one inside and zero outside, of

rectangular cells plays the same rôle in Evans' generalization as the class of

functions ù in 35 in ours; instead of the left member in (1.2), an appropriate

integral over the boundary of the cells occurs in Evans' definition and the

resulting relation is to hold for almost all such cells. The identity of Evans'

definition and the strong extension of the gradient was proved by C. B.

Morrey [6] and J. W. Calkin [7] ; the main tool for this proof was the opera-

tion of averaging over rectangular cells, of which our mollifiers are an ana-

logue.

A generalization of second order differential equations which is essentially

identical with the weak extension in our sense was employed by N. Wiener

[8] and by R. Courant [9]. The generalization introduced by D. C. Lewis

[lO] for nonlinear second order differential equations is similar to the strong

extension. The weak and strong extensions for gradient and divergence were

introduced and identified by the author [l] and applied to elliptic differential

operators. Similar definitions for various geometrical operators were used by

H. Weyl [11].

The extensions as proposed in the present paper offer several advantages.

They are formulated solely in terms of the norm of the function spaces in

which the extension is desired. No reference to the properties of the functions

in relation to Lebesgue's theory is necessary. Also, it is not necessary to

ascribe any meaning to the individual terms D^u in the extension of A^D^u,

It is true that the scope of our extension procedure is limited. For example,

our procedure cannot be employed directly to extend differential operators

into the space of bounded measurable functions u(x) with the norm ||w|| =true

(4) This strong extension has a certain weakness, in that relation (1.3) is required only for

subdomains R'. If this relation were to hold for R instead of R' («, being in £)), the extension

could be described as the closure of E in D; this closure coincides with the strong extension

under certain conditions, cf. Theorem 4.2.



136 K. O. FRIEDRICHS [January

maximum |w(#)| ; for, the manifold of continuous functions is not dense in

this space (cf., however, §5, p. 28). However, in Hubert spaces or spaces 8P,

our method leads in a most direct way to the essential general properties of

differential operators.

2. Integral operators. The proof of the main theorem evidently requires

the construction, for every u in ®, of a sequence w« in ¿) such that relation (1.3)

holds. This construction will be performed with the aid of certain integral

operators.

It is convenient to formulate a few general properties of integral opera-

tors, which will be applied in two different cases.

By k we denote matrices which transform functions u into functions ku.

Let R' be a proper subregion of R. Then we consider matrices k = k(x', x)

which are continuous functions of the pair (x1', x) of points x' in R, x in R.

We shall require property

PI. k(x', x)=0 if xis outside of the cell C((x'): \x¿ — x,\ <e;p = l, • • • , m;

for x' in R'.

The number e is to be so small that all these cells are within a certain closed

subdomain R0; we sometimes emphasize property PI by setting k = kt.

We take k(x', x) as the kernel of an integral operator K, which transforms

every function m in S into the function

Ku(x') =   I   k(x', x)u(x)dx;

Ku is in Ê' (that is, in the space S with reference to the subregion R').

Clearly, there is a constant C such that |Xw(:x;')| = C||w1|r. Consequently,

the operator K can be extended to functions in 8; the function Ku for u in

8 is also in Ê'.

If k(x', x) possesses continuous derivatives Dllk(x', x) with respect to #„',

then Ku(x') is in £)' for u in 8.

The adjoint K* of K is defined as the integral operator with the kernel

k*(x', x); here k* is the transposed of the matrix k. The operator K* trans-

forms functions u in L' into functions

K*u(x) =   f   k*(x', x)u(x')dx',
J R'

which are in g. The operators K and K* are related through the identity

(2.1) (K*w, u)R = (w, Ku)R, for « in 8, w in 8'.

Let kra, a=\, ■ ■ ■ , s, r = 1, • • • , /, be the terms of the matrix k. We set

|*|= max < XI *'/> 11 ]C I KA\ ■
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Then we have the inequality

(2.2) | ku\ ^ | k\ | u\.

It may be justified(6) to indicate its proof, which follows immediately from

Holders' inequality,

I ¿«lp = EIul's z["zi ¿r,|i/p,| *»M«»lT
riff t    I—     a J

^ zizi *«|T ' zi *™ii«.i* = ei ¿K* zi ̂ n«,ip
t    I—     <r J c r <r

g I ¿|p/p*l k\ Zl«»lp = I ¿H«h
o*

We further introduce the "norm"

\\K D = max<        | k(x, x) \ dx; \ k(x', x) \ dx>
z,z>   \Jr J r )

of the operator K. Then we have

(2.3) ||2f«|| g||/f||||«||.

This inequality is derived in the same manner as (2.2), first for functions u

in S; it then carries over to u in 2.

We now consider a sequence of operators Kt, e—»0, enjoying property PI

and further

PI I. The norms ||2sT€|| have a common bound K¡¡,

(2.4) \\Kt\\ á K0.

The matrices k were so far assumed to transform systems of s functions

into systems of t functions. All that has been stated, of course, also holds if k

is a square matrix, that is, transforms systems of s (or t) functions into sys-

tems of 5 (or /) functions. In case k is a square matrix we further require

property

PHI. There is a number k such that

(2.5) 2sTel = kî

holds for x' in R', 1 being the unit matrix, that is,

I ke,T„(x', x)dx = kôt„ x' in R'.
R

(6) (2.2) is not stated explicitly in Hardy, Littlewood, Pólya, Inequalities, but it is closely

related to inequality 275, p. 198, which, however, is mentioned only as a very special case of a

much more general inequality.
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When we do not assume k to be a square matrix we require property

PIIIo. Identity

(2.5)o K.Í = 0

holds for x' in R'.

From Property PI 11 we derive the relation

(2.6) \\K(u - ku\\r-+0 as«-»0;

from property PIIIo we derive

(2.6)o ll^««IU' -»0 ase->0.

To do this we set vt = Ktu — KU if k, is a square matrix and PIII holds, and

vt = Ktu if PIIIo holds. In both cases we find

Ve(x')   =    I     kt(x' x)[u(x)   — U(x')]d£.
J R

First we assume that u(x) is in g and let w« be the maximum of

\u(x)—u(x')\ for x' in R', x in the cell \xlí—x¿\ ^€, ju=l, • • • , m. Then,

by virtue of (2.2) and PI, PII, we have

| ».(*') I = \\K.\\u. g Kg«,.

Due to the uniform continuity of u(x) we have we—»0 as e—»0. Consequently,

vt(x')—»0 as e—>0 uniformly in R'. Relations (2.6), (2.6)0 thus follow for u in (£.

If u is any function in 8 we approximate it by functions u in (£ such that

||m — ii||R is arbitrarily small. From

\\K.u - ««II, = H^.C« - w)||Ä, + | K\ II« - AH, + \\K.U - kw||r,

= (K0 + \k\)\\u - ti|U + \\Ktu - «011,

we see that (2.6) holds for any u in 8, if PIII holds. The same is, of course,

true for (2.6)0 if PIIIo holds.
We now construct the mollifiers as a special sequence of operators

K, = Jt. Letj(£) be a function of the variable number £ possessing derivatives

of all orders and satisfying the relations

¿(8 35-0,      ¿(8-0 for U| g£ 1,

J ¿(8¿€ = 1.
Then we set, for « > 0,

jt(x' - x) = e-mj(<rl(x' -*))•• ■ j(t~l(x'm - xm))-l.

(Here 1 is the unit matrix of order either 5 or t.) Clearly j, enjoys property PI
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and can be taken as kernel of an integral operator Jt. That Jt enjoys also PII

with 2Co=l and PHI with k=í follows immediately from the definition of

./'(£)• Consequently, we have from (2.4), (2.3), and (2.6) the relations (cf. [12,]

for w = l)

(2.7) ||/.|| ^ 1,

(2.8) y/.«!!«, á ||«IU,
(2.9) \\j,u - w||/k-»0 as«—>0.

We mention incidentally that relation (2.9) yields a proof of Lemma 1.1.

We need only consider the matrix jt(x' — x) for fixed x' as a system of func-

tions in 3). The assumption of Lemma 1.1 then leads to Jtu(x') = 0. Conse-

quently (2.9) yields ||«||r' = 0. Since R' was arbitrary we have ||m||r = 0.

The main application of the mollifiers, however, is that they furnish in

ut = J,u,

for u in ®, an approximating sequence as required for the strong extension.

3. Proof of the main theorem. The proof of the main theorem rests on

the following basic identity,

(3.1) /£F - £7« = \D¿A¿ - J„) - (B' - B)]jt-,

which holds when applied in functions in ®, that is, in the space in which the

weak extension of E is defined. The right member is the integral operator with

the kernel

\DM¿ - Äß) - (B' - B)]jt(x' - x),

where

A; = A„(x'),    J„ = A„(x),    B' = B(x'),    B = B(x),    D» = d/dx„.

To derive identity (3.1) we first note that EJ, is an integral operator with

the kernel

(AiDl + B')jt(x' - x);

using the relation

D'jf(x' - x) = - Djt(x' - x)

we find

(3.2) EJt= ( - 25^4M' + 23')/. •.

We proceed to show that for urn &

(3.3) JtE= (- ^J, + B)Jt•

holds. To this end we begin with the relation
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(3.4) (w, /.£m)R' = (Jt w, Eu)R

which is valid by virtue of (2.1) for w in ?', u in 8'. We now make use of the

fact that relation (1.1) holds for u in ®, ú in 35. Since J*w is evidently in j),

for w in 35, we obtain

(3.5) (/. w, Eu)R = (E /. w, u)R.

The operator E*J* is an integral operator with the kernel — (D^A*

— B*)jt(x'—x); it is the adjoint of the operator —(DltA^ — B)Jt' with the

kernel — (D^A^ — B)jt(x' — x), which is of the type Kt considered in §2. Apply-

ing identity (2.1) to this operator we obtain from (3.4), (3.5)

(w, JtEu)R = — (w, (D,Ät - B)Jt-u)R*.

Since w is arbitrary, relation (3.3) follows, cf. Lemma 1.1. Subtraction of

(3.2) and (3.3) yields relation (3.1).

Let us first suppose that the matrices Aß and B are constant. Then the

right member in relation (3.1) vanishes and we have

(3.6) /.£ = EJ,

for u in ®. Relation (2.9) applied to Eu, u in ©, now gives

(3.7) \\EJtu - Eu\\R.-*0 as«->0,

which together with ||/«w —ti||Ä<—»0 shows that u is in % and thus proves the

main theorem.

If the matrices A^ and B are not all constant we have, instead of (3.6),

(3.8) ||/«Fm - EJtu\\R. ->0 ase->0

for u in ®. To prove this we first estimate

\\(B' - B)Jt-u\\v =£ AU/.«!!* g /5.||«|U,

where ß. is the l.u.b. of

| B(x') - B(x) |

for x' in R', x in the cell \x¿ — x,,\ ¿e, ju = l, • • ■ , m. Clearly ßf—»0 as e—»0,

since B(x) was assumed to be continuous. Thus

(3.9) ||(F'-F)/..M||R,^0.

Secondly we prove

(3.10) HÄ.C4; - Alt)Jru\\R.-^0 ase->0.

This relation will follow from the fact that the integral operator

HÍ=DI¡(AI! - J„)/«' enjoys the properties PI, PII, PIII0. Property PI is
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obvious. Property PIII0 follows from the fact that the kernel h, of H, hap-

pens to be of the form

ht(x', x) = D„.<bß(x)

where

<£„(*) = U„' - A~r)j.(x' - x),

considered a function of x, is in j> when x' is in R'. For such functions <£„

in 35 obviously

/DM<pß(x)dx = 0.
R

To deduce property PI I for Ht we split

h, = d„(a; - a~,)j<' = - dJI^j, + (a; - 2„)zvv.

Using (2.7) we find

||B|J,-/.|| = y

where y is the maximum of | D^A^x) | for x in the domain R outside of which

jt(x' — x) = 0 when x' is in R.

Further we have

||(4; -aùdjsI ^EP,/<I!.
c

where n is the maximum of

X)| ^„^^(a;) |; /i = 1, • • • , tn,
9

for x in R. One easily verifies that

e||ZU|| = fl\M)\di = t

is independent of e. Hence we obtain

UÄ.U; -Z¿j,-\\ Zy + mt)

which is independent of e. Thus property PI I is established for H,. Relation

(3.10) is then a consequence of (2.6)0 applied to Kt = Hf.

Addition of (3.9) and (3.10) yields (3.8) for « in ® by virtue of identity

(3.1). We now see that for u in ® the sequence ut — Jtu satisfies

ll-Ew, — Eu\[R> = \\EJcu — JtEu\\R + ||/«£« — Eu\\R. —♦ 0

as €—»0, in view of (3.8) and (2.9) applied to Eu. Since also ||«t —«||Ä—»0, it is

shown that u is in g- Thus the main theorem is proved.
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4. Adjoint operators. We recall some familiar notions: The operator H

defined in a space ißC8 is closed if

||«. - «H* -» 0,        || tf«. - v\\R -> 0, e -» 0,

for w, in iß, u, v in 8 implies « in iß, Hu=v. Clearly the operator E in ® = %

is closed, while E in 3) is not.

The operator H in $ is the closure of iß' Ciß if to every « in iß there is a

sequence ««in iß' such that

II«.-«lU-^o,     ||#«, - £r«||Ä-»o, e-»o.

Let %x consist of all « in g to which there is a sequence w« in 35 such that

(4.1) K«, - w||R-»0,        ||£«, - JEw||R-»0, e-»0.

Then E in %K is the closure of E in 35; in general ^„F^tÇ. One observes that

the difference of the definition of g and g« lies in the fact that relation (4.1)

refers to the total region J? and not only to subregion R'. The condition for a

function in % to belong to g» can be considered a boundary condition (cf.

[l,p. 534 and 9, p. 481]).
The operator H* in iß*C8* is the adjoint to H in iß if

(«*, Hu)R = (v*, u)R

for «*, v* in 8*, and all « in iß, implies u* in iß* and H*u* = v*. An adjoint

operator is always closed. Clearly, the operator E in ® = gC8 is the adjoint

to E* in 35 and hence to E* in g«*, as is seen from the definition of @. The

question arises whether E in gMC8 is the adjoint to E* in g*. Let us denote

by @w the space of all « in g for which

(4.2) (£*«*, u)R = («*, u)R

holds with all «* in g*. Then E in ©„C8 is the adjoint of E* in §*. Our aim

is to investigate whether or not ©w = $*, is true.

In case 8 = 82 is a Hubert space, ©oo = 5m follows from ®* = 5* by virtue

of the projection theorem, as von Neumann [13] had discovered. For the spe-

cial operator gradient, which transforms u into grad «= {D\u, • • • , Dmu},

it could be proved to be true for spaces 8 = 8j, using a result of Morrey [14a].

For our general differential operators this reciprocity obtains at least if the

coefficients A, B, and the region R satisfy restrictive conditions. We formulate

very strong restrictive conditions.

We term a region contractible if to every e > 0 there is a one-to-one mapping

x'=T,(x) of R onto a proper subregion of R, satisfying the following condi-

tions:

1. The cells C,(T,(x)) are in a bounded closed subdomain of R when x

is in R.

2. T,(x) possesses continuous second derivatives.



1944] EXTENSIONS OF DIFFERENTIAL OPERATORS 143

3. e_1| Tf(x)—x\ is bounded, uniformly in x and e.

4. With the notation

S,(x) = {Se,ß,(x)} = D„Tt,,(x),

€~l\St(x) —1|  is bounded, uniformly in x and e.

5. |D„.S«,m,| is uniformly bounded and approaches zero in every bounded

closed subdomain of R.

We then state

Theorem 4.1. The operator E in %„ is the adjoint to E* in %*, that is,

©» = 3» under the following conditions:'

(I) the region R is contractible.

(II) B(x), Ap(x) and the derivatives D+A^x) are bounded in R.

For the proof we change the definition of the mollifiers slightly by taking

;.(* - F.(x))

for their kernels. Then Jtu is in 35 in view of condition 1. By virtue of condi-

tion 4 we have that ||/.l|| is bounded and ||/,1 — l\\R> —» 0 as € —» 0 for every

bounded closed subdomain R'. These properties, instead of /«l = 1, are suffi-

cient to insure

(4.3) ||/.m — m||,r—> 0, e —> 0 for u in ?.

The function J*w, for w in 35, need not be in 3), but it is in 35, and by

virtue of assumption (1.1) J*w is in %*. Consequently, (3.5) remains valid

for u in ®M in view of (4.2). Therefore also (3.3), that is,

(4.4) /.£ = - L\A,Jt- + BJ„

remains valid for u in ©M. This relation is equivalent with

(4.5) J,E = - DrAn-J. + A^StillvDßJt' + BJ(.

From

(4.6) £/. = ,4,2V« + BJ,

we obtain, instead of (3.2), the relation

(4.7) £/. = Aj}^S7l,'J. - D„A„S7.ljt- + BJ-

From (4.5) and (4.6) together with properties 2, 3, 4 it follows that

HE/. — JcE\\ is bounded. From (4.4) and (4.7) together with properties 5 and

4 then follows

\\EJtu-J,Eu\\R-*0 as«-»0

for u in ©«,. Hence ||22/<m — 23m||k—>0. Thus Theorem 4.1 is proved.
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We mention incidentally

Theorem 4.2. Assume the conditions (I), (II) of Theorem 4.1 to be valid.

Then to every u in g there is a sequence «, in 35 such that

II«. — «|U -» 0,       ||£«, - £w||R —» 0.

That is, the restriction to subregions R' in relation (1.3), defining the strong

extension, can be omitted.

To prove the statement one need only set «< = /,*«, J, being the operator

as introduced in this section. Otherwise the proof is similar to that of Theo-

rem 4.1 (by the way, property 5 is not even used). We refrain from carrying

it through.

5. Generalized norms. It may be of interest to note that the main theo-

rem holds with reference to a more general type of norms. The norms we have

in mind are characterized by the following properties :

I. To every subregion S of R, the norm ||«||s is defined such that

(5.1) MkáMU. if St c s».

II. Let ua(x) =u(x — a), a being an w-dimensional vector; denote by S-\-a

the region of all x for which x — a is in S. Assume that S and S-j-a are in R.

Then

(5.2) ||«„||s+a = ||«||s,

that is, the norm is invariant under translation.

III. Let q(x)= {qr<r(x)} be a continuous matrix, let, as before, |2(*)| be

the maximum of

X) I 9p'(x) I. XI ?rp(*) |. <r = 1, ■ ■ ■ , s;t = 1, ■ ■ ■ , t,
p p

and set

(q)s = l.u.b.  | g(x)\, xinS.
X

Then

(5.3) ||*«||s = <?>sll«lls-

Of course we require the standard properties of a norm, as, for example,

the triangular inequality

||ai«i + a2«2||  = | ai | ||«i|| + | ct2 | ||«2||.

We then introduce a space 8 which with respect to the norm ||«|| is com-

plete and contains 6 densely. The latter condition entails property

IV. For every proper subregion R' of R,
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|| «o — «|| # —» 0 asa—» 0.

It is clear that the norm

nip
| w|| s = Ns(u) =      J   Iw^d*

belonging to the spaces 8 = 8P enjoys the enumerated properties. Relation

(5.3) in particular follows immediately from (2.3). The norm N" may be gen-

eralized as follows. With

| «' - *| - [(arf - *i)2 + ••• + (*»'- *■)•]*"

and a number a<m, we set

\\u\\ = Ns"(u) = l.u.b. |   f | u(x) |'| x' - x\-"dx\  ",

for x' in S (that is, the l.u.b. refers to x' in S). Properties I and II are obvious

from this definition, property III again follows from (2.3).

A different generalization, the "Morrey norm"(6) can be defined as fol-

lows: Let SX',r be the common part of S and the circle | a; — jc'| <e, x' being a

point in S. Then, with ß^m, we set

||«||s = MPs\u) = l.u.b.   Lu.b. \r-» f     | u(x) \"dx\   ",
X' r        L Jsx,,r J

forx'inS, r>0.

Property III will be valid if the space 8 is defined as the closure of (£.

There is, however, another possibility of defining a space 5DÎ, which is com-

plete with respect to Mr*, namely, as the space of all u in 8P for which

MvR(u) is finite. This space 3)1 does not enjoy property IV (for ß>0), as

can be seen by obvious counter-examples. For ß = m, in particular, we have

MRm(u) = (u)R. In this case, therefore, 8 is the space of continuous func-

tions vanishing at the boundary of R, while SDí is equivalent to the class of

essentially bounded measurable functions, which is known not to contain S

densely. For such spaces SO?, therefore, our main theorem does not hold, un-

less the definition of the strong extension is modified by substituting NR for

Mjf in (1.3).
Finally we mention that the Holder norm

l.u.b. | X\ — *2|_a| u(x\) — u(x2) \,   x\, X2   in    S,

is not covered by the theory of the present section.

We first consider integral operators of a special kind.

(6) Morrey [14] had used the condition that M*¿(u) be finite (for p = 2, m = 2, /3<1) and

discovered that it is the clue to a treatment of nonquadratic minimum problems.
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Let R' be a proper subregion of R. Choose e so small that the cell C«(x'),

\xf —xr\ ^e, r = l, • • • , m, is in R when x' is in R!.

Let ht(y) be a continuous function which vanishes outside of the cell C«,

|y».| ̂ e. M=L •••»«. Set

(5-4) ||#e|| =   f    | *.(y) I ¿y.
Jc«

Then we consider the integral operation Ht which transforms the func-

tions « in 8 into functions

Hlu(xr) =   I   ht(x — x')u(x)dx

defined for x' in R. Clearly H, is applicable to any « in 8, and Hfu is in £'.

Moreover, we have

(5.5) \\Etu\\R = ||ff,|| ||«||.

To prove this inequality we first observe that Htu can be written in the

form

(5.6) Htu(x') =   f   hi(y)uy(x')dx',
J c«

uv(x') = u(x' —y) being defined for x' in R' since e was so chosen that R' — y

lies within R. Expression (5.6) for u in ¿ can be uniformly approximated by

a sum

aua(x') + /3«6(a:') + • ■ • ,

the vectors a, b, ■ • • being in C«. The triangular inequality applied to this

sum yields

II««- + /*«* + ••• ||Ä. è | a | II«.!!,,, + |/S| ||«4|U + • • •

= MII«ll*<+a + |0|||«IU<->+---
SU-I + UI + ---JMU

An obvious limit process then leads to the desired inequality (5.5) for « in É.

Clearly it can be extended to u in 8.

The analogue of relation (2.6) for operators H, is

(5.7) ||£r«« - ku\\r, -»0 as«-»0,

if

=   I     ht(y)dy
J c«
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is independent of e and \\Ht\\ ^H0 is bounded. To prove this relation we ob-

serve

Htu(x') - ku(x') =   f  h,(y)[uy(x') - u(x')]dy,

whence, as for the proof of (5.5),

||22.« - ku\\r. = ||22«|| ||«„ - u\\R ^ 22o||«» — «||ä.

R and e being such that all R'-\-y are in 22 and all R+y are in R when y is

in C Property IV then yields (5.7).
Relations (5.5) and (5.7) are sufficient to establish the properties of the

mollifiers in the sense of §2.

It is necessary to generalize inequality (5.5). Let h,(y) be as before and

let g,(x', x) be a matrix which is' continuous for x' in R', x in R. Then we

consider the operator K, which transforms tí (at) into

K,u(x') =   II   ht(x — x)ge(x', x)u(x)dx.

We set

«g.» = l.u.b.  | gc(x', x)\, x in C.(x'), x' in R'.

With(7)

(5.8) ||ir.|| =|| 27.11 «g.»

we then have, corresponding to (2.3),

(5-9) ||JC.«!!*. = ||2C.|| ||«||Ä.

To prove inequality (5.S) we write K. in the form

Ktu(x') =  f  h(y)gt,,(x')uy(x')dy
/c.

with

g.,À*') = g.W, *' + y).
By virtue of property III we have for y in C«

IU..V«»!!* s (g* .»>/?l I «»I I R- ̂ «g«»ll«»l|j?-
When now for u in (j, Ktu(x') is approximated by

age.Áx')Ua(x')   + ßge,b(x')ub(x')   +   •  •  •   ,

(r) The norm (5.8) is somewhat weaker than the norm ||.Ke|| employed in §2; it is, however,

sufficient for our purposes.
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we have

\\ctg,,aUa + ßg,.bUb +   •   ■   •   \\r.   á  |  « |  ||g«,a«a||R< + | ß \  \\ g.,bUb\\ /?  +   '  '  '

^ ««.»{I«!!!«.!!*.+ |/j|||«6||h. + --- }

s ««.»{| «| +|*¡ +•■• }||«|U.
Thus, by a limit process as before, we obtain (5.9) first for u in É, then for

« in 8.
Inequality (5.9) is sufficient to derive relations (2.6)0 for the special opera-

tors K, now considered. Clearly the same holds for the sum of such operators.

The operator

D„(A¿ - 3p)/<*  = - D~Äß'Jf + (Ai - Äß)DJt-

is such a sum. Indeed, ((D^A»)) and ||/«|| are bounded; also e~l((Aß —A»))

and ej|D„J,'|| are bounded. Therefore, the argument of §3 remains valid.

As a result the main theorem holds for norms of the general type considered

in this section.

6. Miscellaneous applications. In this section we give divers applications

of the main theorem.

Theorem 6.1. Let Bin\ Aßn) be a sequence of matrices which together with

the derivatives ofA(n) converge to limit matrices B, A^, uniformly in every proper

subregion R' of R. Let g(n> = o=(£(n)) be the space S with reference to the operator

£(n) =A(£)Dlt-\-BM. Let u and v be functions in 8, and let «(n) be a sequence in

55(n) such that ||m(b)— «Hk-—»0, ||£(n)«(n) — i>||r—»0/or every proper R'. Then u

is in % and Eu = v.

This theorem states that the strong definition could be weakened by per-

mitting £w to be approximated by £Cn)«;n) without widening the domain of

applicability of £.

To prove it we need only observe that' for every u* in 3)

(£<»>*«*, «<"% = («*, £<">«<*•%;

hence

(£*«*, «<»>)« - («*, v)R,

when ||«(n)— «Hä-—»0, ||£(B)« — v\\r—»0 is applied to a subregion R'~)R- Since

u* was arbitrary, « is in ®, Eu = v and the main theorem yields the statement.

An application of a different character is the following. Let E=AßD»-\-B

be a differential operator with A „ possessing second, B first continuous deriva-

tives. Let 0 = PliDß + Q be an operator such that

OE = 0

"formally," that is, P„4,,+iM„ = 0, P„D„A,' +P„B + QA, = 0, PrD,B' +QB
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= 0, in obvious notation. Then, clearly, for every u in 352, that is, possessing

continuous second derivatives, QEu = 0. We now state

Theorem 6.2. For u in 5(F), Eu is in %(0) and OEu = 0.

Indeed, we have for u* in 3), u in 352,

0 = («*, OEu)R = (0*u*, Eu)R.

By virtue of the strong definition of %(E), relation (0*u, Eu)R = 0 remains

valid for u in 3(F) (since /.« is in 352); by virtue of the weak definition of

®(0), it follows that Eu is in ®(0) and OEu = 0, but ®(0) = 8(0). As a cor-

ollary to Theorem 4.2 we state

Theorem 6.3. Let w be in %(0*), then 0*w is in §(£*) and E*O*w = 0.

Relation (0*u*, Ew) = 0 is valid for u* in 35, u in 5(F), hence for u in 35,

and for u* in g (0*). Therefore 0*u is in ® (£*), E*0*w = 0, but ® (F*) = g (F*).

If the operator 0*= — P*D „+(Q* — D „A* •) were such that .4,? had con-

tinuous second, Q*—DtA*' continuous first derivatives, Theorem 4.3 would

follow from Theorem 4.2. It is to be noted that Theorem 4.3 holds without

such differentiability conditions.

The significance of Theorem 6.3 is the following. Let

E*v = 0

be an underdetermined system (s<t), then

Eu = z

is an overdetermined system. There are necessary conditions on z in 8 that

Eu = z can have solutions u in %(E). Let O3 = 0 be such a condition with

OE = 0 formally, then

v = 0*w,        w in g(0*)

represents a solution of E*v = 0.

More generally it could be shown that if Oi • • • O*£ = 0 formally, as-

suming appropriate differentiability conditions on the matrices involved, then

v = Ok ■ ■ ■ Oiw, w in g,

is a solution of E*v = 0(s).

As another application of the main theorem, or rather, of the arguments

(s) This simple procedure for obtaining "integral-free" solutions of underdetermined sys-

tems has apparently not been formulated in the literature. (Cf. for example P. Zervos, Le prob-

lème deMonge, Mémorial des Sciences Mathématiques, LUI (1932)). It may be mentioned that

it can be used for a justification of Lagrange's multiplier method, when the side conditions are

linear differential equations.
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that led to the main theorem, we prove a statement which is essentially

equivalent to "Haar's lemma." It refers to a pair of functions u= {«1, u%} of

two variables {x\, X2}, and concerns the operators divergence, which trans-

forms u into

div u = 2?i«i + D2U2,

and rotation, which transforms a function v into the system

rot n = {D2V, — Div}.

These operators are connected through the formal relation div rot v = 0.

The theorem then reads as follows.

Theorem 6.4. Let R be a two-dimensional simply-connected region. Let

u= {wi, «2} be a function in ®(div) such that div w = 0. Then a function v in

5 (rot) exists such that

(6.1) u = rot v.

Proof. If m belongs to 35 then it is well known that a function » in 35 with

u = rot v exists. The function î; is unique within an additive constant. We fix

this constant by requiring

(6.2) f vdx = 0,
^ Co

Co being a circle, properly contained in R, chosen at pleasure. Then through

v= Vu a linear operator is defined for all « in 35 with div tí = 0; for such u, the

relation rot Vu = 0 holds identically. We proceed to show that this operator V

can be extended to all u in ® (div) with div u = 0. Let u be such a function,

R' a proper subregion. Then we consider the sequence ut = J,u, defined for

any subregion R". By virtue of identity (3.1) (for £ = div), we have

div tí. = /< div m = 0. Hence the operator V is applicable to ut. We have

||tt. — w||r"—>0 as e—»0, or ||w, —Kä||j?"—>0 as e, 5—>0. We now make use of the

Lemma. To every proper subregion R' there is a proper subregion R"CZR'

and a constant C such that for u in 35 with div u = 0

(6.3) ||F«||s. « C||«|U».

We postpone the proof of this lemma. We observe that (6.3) implies

|| Vu,— Vu¡\\R'—>0; hence there is a function v in 8 such that || Vu,—v\\R>-+0.

JSince rot Vu, = ut and ||w« — «||R'-^0 it is clear that v is in % (rot) and rot v = u.

Inequality (6.3) is, in view of (6.2), equivalent with

(6.4) ||f-»o||ji.aC||roti>|U».

where
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»0=1    vdx/   I    dx.
J Co J Co

Inequality (6.4) is a generalized form of Poincare's inequality; to prove it one

need only combine the reasoning presented in Courant-Hilbert, vol. 2, chap.

7, §8 for p = 2 and rather general domains, with the reasoning of Morrey

[14b] for p~^\ and rectangular cells. One observes that every proper sub-

region of a simply connected region can be covered by a proper subregion R"

of the type %l considered in Courant-Hilbert at the indicated place.
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