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A function }(x) is completely monotonie (cm.) in 0<a;< oo if it belongs to

C°°and

(1) (- l)k}w(x) = 0 (¿ = 0, *>0).

Jf }(x) can be extended to be continuous at x = 0 it is said to be cm. in

0=X<00.

Various conditions are known under which a function is cm. [4]0). Bern-

stein proved that if

k

(2) (- l)kAkh}(x) = ECk.n(- l)"}(x + «/*) = 0       (¿ = 0, * > 0, A > 0)
0

then}(x) is cm. in 0<x< oo. It is known, though apparently not stated ex-

plicitly in the literature, that if we assume the continuity of }(x), then we

need require (2) only for some infinite sequence of integers k. (This may be

obtained, for example, by use of the results of [l].) A fundamental theorem

of Bernstein and Widder states that a function is cm. in 0<a:< «> if and

only if it admits the representation

(3) }(x) =   I    e-xtdF(t), x > 0, £(/) increasing.
J 0

A new difference criterion which includes the above is suggested by the

following considerations. If hk = o(l/k2) then (3) is inverted by [3, Theorem

4.2],

£(/) - £(0) =/(») + lim dk f   xk~1AhJ(x)dx,
*->«     J kit

where

(4) dh = (- hk)'k/(k- T)\.

This suggests the following theorem, which is the principal result of this paper.

Theorem. Let}(x) be continuous far # = 0 and have a limit at infinity. Sup-

pose it satisfies the inequalities
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(5) (- l)kàlj(x) = 0 (* >0)

for an infinite sequence of integers A, where

hk>0,       hk = o(l/k2) (*-»«).

Then f(x) is cm. in 0 ̂  x < ».

This says essentially that in the difference criteria it is sufficient that the

inequalities hold for one (suitable) value of A for each A, rather than all A>0.

Before proceeding to the proof we make some observations about the theo-

rem.

(i) The conditions are trivially necessary.

(ii) The continuity of f(x) is not a redundant condition. For let <p(x) be a

discontinuous solution of the functional equation <p(x+y) =<p(x)+<p(y) [2, p.

96]. Both ±<p(#) are convex and hence unbounded in every interval [2,

pp. 91-92]. Then (5) is satisfied for arbitrarily small {A*} by the function

/(*) = e*(*>.
1. Lemmas. The following identity is known [4, p. 303].

Lemma 1. For k>0, x^O, m>0,

dk  . 1 /kx\k
-  |g-**/uM*-lj   =  -1 - J   g-kxlum

duk u\uj

For fixed x, these functions are increasing in 0|«|ï/2.

Lemma 2. If g(x) and r(x) are any functions of x then

k

Ak[g(x)r(x)] = t^Ck,nAlg(x+ A - « A)AÎ~"r(*).
o

This is the analogue of Leibniz' rule for the differentiation of a product

and can be established by induction.

Lemma 3 (Generalized Rolle's theorem). Iff(x)(E.Ck then

Aim = »'Ad
where X lies between x and x+kh.

Lemma 4. Suppose k--\\, x>0, A>0 are fixed, and f(u) is continuous for

« = AA,/(oo) = 0. Then

/Jfc    p —tu —kx/u   k—l-.    .   . I k    r —fcx/u   fc—I-,
A_*[e     e        u     \f(u)du =   I    A_A[e        u     ]f(u)du,

kh J kh

where we difference with respect to u.
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Proof. The existence of the integral on the left is guaranteed by the pres-

ence of the factor e~'u. The integral on the right converges since, by virtue

of Lemmas 3 and 1, its integrand is dominated for large u by (u — &&)_fe_1 \}(u) |.

If we subtract the right-hand side the problem is then to show that

(6) Hit) =   f   A-h[g(u)r(u)]}(u)du = o(i) (e->0+),
J kh

where

giu) = e-kxluuk-1, r(u) = 1 — e~'u.

Using Lemma 2 with h replaced by — h and separating out the term for

which ra = & we obtain

77(e) = E C*,n I    A-*g(« — k — n h)-A-h r(u)J(u)du
n-0 J kh

(7) Ç °°  k
+ I    A~hg(u)-r(u)J(u)du

J kh

= Kit) + Lit).

By Lemmas 3 and 1 the integral }£Aï.hg(u) }(u)du exists. Hence

Ut) =  f   (1 - e~'u)ALhg(u)}(u)du = o(l) (i -» 0 +).

We turn now to the expression Kit). First by Lemma 3

k—n   ,   . , _. k—n   (k—n) , _ . . „   . k—n  —tU , , .  ,
A-hriu) = i-k)     r       (U) = (ht)     e     , u - (k - n)h g U = u,

so that for 0<e<l
,_. i       k—n   ,    .   i k—n —tu

(8) | A_a r(u) | g £i€     e     ,

where Ki does not depend on u or e. Also

(9) A"»g(«- T^lih) = (- h)"gin)(U),      u- kh^U = «- (¿ - n)h.

But

£<">(„)   =   ¿   C,,j—   [iT*»'«]!«*-1]«»-«.
,_0 d«J

lfx>0
3'   r

-  [g-fcx/u]   = O(u~0 («->  oo),

Ó«'
so that

g<»>(M) = E ^(m-'m*-1-^') = oo«*-"-1), 0 SO » á * - 1.
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If x = 0 this result is obvious. Then by (9)

Jfc-n-l
(10) | A-hg(u - k- nh)\ ^ K2u (0 g re ̂  A - 1),

where K2 does not depend on u. Then by (7), (8), (10)

fc—1 /» 00

K(e) | g 2ST12Í2E C*,„ |    í*-"*-«"«*-»-1 | /(re
n-0 J Ich

)\du (0 < e < 1).

Since /(°°) = 0 a simple Abelian argument proves that each term of the sum

approaches zero with e. Hence K(0 + ) =0, so 72(0+) =0; this establishes (6).

Lemma  5. Let A = l,  A>0,  x2;0  6e fixed, f(u)  continuous,  0^m<oo,

/( oo ) = 0. If Aj/(re) doe5 «o/ change sign in 0 ^ « < «>, ¿Aere

/' °°   -kx/u    fc-1     *
e        u    Ahf(u)du

o

(11) = ick,n(-l)"-n r e~kx'(u-nh)(u - nh)k-lf(u)du

n—0 J nh

/k    r  —kx/u    k—1-,       .
A_4«        «     \f(u)du,

kh

where we difference with respect to u.

Clearly the integral

—eu  —kx/u   Jfc—1    k

e    e        u    Ahf(u)du

exists for all e > 0. We have

k p oo

2(«) = ZC(,,(- 1)*-" I    e-"*e-k*i»uk-xf(u + nh)du
o «J 0

= ¿Ci,(- l)*-"( f   +  f   ) exp [- t(w - nA) - kx/(u - nh)]
0 \J nh J Ich  '

•(«- nh)k~lf(u)du,

obtained by a change of variable. Then

(12) 1(e) = A(e) + B(e),

where

k p kh

M*) =  EC*.n(- 1)*-" J     exp [- e(« - re A) - kx/(u - nh)]

■(u-nh)k-lf(u)du,

B(e) =  I    A_Je    «        m     ]f(u)du.
J kh
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By dominated convergence

k nkh

(13) A(0 +) = EC*.»(- l)"-n I     er»*n»-*)fu - »*)*-»/(«)<*«,.
0 " nh

and by Lemma 4

¿_»[« to   ^-/Mfe
kh

From (12), (13), (14) it follows that 7(0 + ) exists and equals the expres-

sion on the right-hand side of (11). Since Aj/(w) does not change sign in

0 = tt<a>, a Tauberian theorem enables us to conclude that 7(0 + ) is also

equal to the left-hand side of (11) [4, p. 192].

For the remainder of the paper it is assumed that k belongs to some se-

quence 5 of non-negative integers; k—>» means that k becomes infinite

through the elements of S.

Lemma 6. Let }(x) satisfy all the hypotheses o} our theorem and suppose also

that}( oo ) = 0. Then far any fixed x>0 the quantities

= dh f
J 0

-**/«      k-1      k
e        u    AhJ(u)du

approach }(x) as k—*°°. The d* are defined as in (4).

Proof. By Lemma 5 we have Ik = Ak-\-Bk where

Jfe /* khk

Ak = d*E Ck,n(- 1)*- I      *-*»/<«-»*»>(« - nhkY-J^du,
0 J nhk

/lc       ■-   —kx/u    k—l-i .
A_»t[e        u     \}(u)du.

khk

We show first that Ak vanishes with 1/k. Let M be the maximum of

|/(x)| in (0, « ). Then
* /• khk

\Ak\úM\dk\  E Ck.n j      «-*»<—**)(« _ nhkY-'du
0 J nhk

= mUJ   EC*,„ f *e-^i-u^duE Ck.n   f
-I 0

E Ck.n   f
J 0

k n khk

= M\dk\e-"ht'ZlCt,n I      «*-
0 •'0

• khk

£M\dt\   E Ck.n I       e-k*i"uk-1du

= Me-xlhk2kkk/k\.
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Choose Ao so that khk<x/2 for A>A0. Then for A>A0

\Ak\i%\ Me~2k2kkk/k\.

By the test-ratio test this last is the general term of a convergent series, so

that -4i = o(l), A—>oo.

We must prove then that

lim Bk = f(x).

By Lemmas 3 and 1, and equation (4),

1 /   ç « ç xl2s. r- l   /¿a-y     ^   -,

(k— l)l\J x/2       Jkhk/Lu\uJ J«-*-+i

= Ck + Dk,

where

(15) 0¿^¿ kkt.

By the second part of Lemma 1

(A — 1) ! L « \ u / J«„/s «2 o

= o(l) (*-»»).

Our problem then is to show that lim*-.«, Ck=f(x). But it is known that [4,

p.283]
1 C °°   1 /Ax\ *

7* = —-— - ( - ) er>«"f(u)du -»/(*), A -> =e.
(A — 1)! J x/2 u \u/

It therefore remains only to show that lim*..,«, (7* — C*)=0 and the proof of

the lemma will be complete.

Now

1 c"   1 /A#\ *
(16) 7* - C* = —-— - ( - ) e-**i*f(u)P„(u)du,

(k — 1)1 J x/2   U   \U/

where
/    «    \*+1       / kx<pk    \

Pk(u) = 1 - (--)     exp ( - V      ) (u è x/2).
\u — <t>k/ \     u(u — <bk) /

We have

/' "    dv kxéic

u-Al   V U(U —i(u — 4>k)

, ,       (A + l)<t>k kx<bk
| log (l - Pk(u)) I á LJLJÏ1 +

« — </>* «(« — <pk)
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By (15) we have Og^tgAA*. Since A* = o(l/A2), <j>k<x/A for A>A0. It follows

that for u^x/2, A>A0,

. ,       (A + 1)AA* kx-khk
| log (1 - Pk(u)) | 3S \n im +

x/2 - z/4       (x/2)(x/2 - x/A)

= o(l) (*-*«)

uniformly for u^x/2.

Let e>0 be arbitrary. Then for A>Ai,

| Pk(u) \<e (u\> x/2).
By (16)

Jk-Ck\< —
(k

e rK   1 /kx\k . .
—¡77 I      -(-)*->«•{ f(u)\ du.
— 1) ! J x/2   «  \ u /

As A—>oo the right-hand side approaches e|/(#)|   [4, p. 283]. Hence

lim sup \jk — Ck\ g e | f(x) \,
t-.«

and this completes the proof.

2. Proof of the theorem. We may assume/( oo ) = 0  (otherwise consider

f(x) —/( <»)). By hypothesis

£».*[/] = ((- hkTk/k^[xk+1AkhJ(x)]x.kft 2: 0

for an infinite sequence of integers A. By Lemma 6 with a change of variable

we have

/(*) = lim   f   e-*<Lklt[f]dt (x > 0).

It remains only to show that the integrals

(17) Lk =  f  Lhlt[f]dt
Jo

exist and are bounded. For then it will follow by a familiar argument that

f(x) has the representation (3) [4, p. 307]. From Lemma 5 with x = 0 it fol-

lows that

Lk = á*E C*.,(- 1)*-" f     (« - nkà*-y(M)du
0 J nhk

= (- *»)"*A*àtF*(0)

where

FJx) =
(A-l)**<*> = 71—77T f   *(« - *)*",/(«)¿«-
(Ä —   1)1   •/  z
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By Lemma 3
k (k)

Lk = (- 1) Fk  (Xk), 0 = Xk = khk.

But Fit)(x) = (-l)k}(x), so that£*=/(Xi) and limk,a>Lk=}(0). Then £* is

bounded.

References

1. R. P. Boas and D. V. Widder, Functions with positive differences, Duke Math. J. vol.7

(1940) pp. 496-503.
2. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934.

3. H. Pollard, Real inversion formulas for the Laplace integral, Duke Math. J. vol. 7 (1940)

pp. 445-451.
4. D. V. Widder, The Laplace transform, Princeton, 1941.

Kenyon College,

Gambier, Ohio


