
ON A PROBLEM OF WALSH CONCERNING THE
HADAMARD THREE CIRCLES THEOREM

BY

MAURICE H. HEINS

1. Introduction. The following problem was proposed to the author by

Professor (now Lieutenant Commander) Walsh:

Let 21 denote the class of functions f(z) satisfying the following requirements:

l.f(z) is analytic for \z\ <£(>0); II. |/(z)| <M(>0) for \z\ <R; III. |/(z)|
^m( <M) for \z\ ^r(<R). Under these circumstances it is required to determine

l.u.b. Mi}, p)

where r<p <R and M(J, p) =max|j|_B \}(z) \, and the associated extremal fonc-

tions 0} the class 31.

The requirements of this problem specialize the hypotheses of the Three

Circles Theorem in two directions. First, since the functions }(z) of class 21

are analytic for |z| <£, they are single-valued; the Three Circles Theorem

admits to competition functions whose moduli are single-valued, but which

need not themselves be single-valued. Second, the functions of class 21 are

analytic for \z\ <R, whereas the functions admitted in the Hadamard theo-

rem are required to be analytic only for r < |z| <£. Since the extremal func-

tions of the Three Circles Theorem are analytic throughout | z| <£ only when

m/M is a positive integral power of r/R, the appraisal given by this theorem

for M(}, p) with /£ 21 is the best possible only under very restrictive hy-

potheses on m, M, r, R. By hypotheses II and III on/£2l, the class 21 is

compact and hence there certainly exists a function}o(z) of this class for which

Mifo, p) = Lu.b. M if, p).

The principal object of the present paper is to study the descriptive prop-

erties of these extremal functions. The method of approach is typically

Tchebycheffian in spirit [l, 13]0); but there is a fundamental difference

between the present problem and a characteristically Tchebycheffian prob-

lem. In the latter, one is concerned with determining an extremal function

in a class of functions where the concept of degree is introduced a priori (for

example, algebraic polynomials, trigonometric polynomials, rational func-
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tions) and a given bound is assigned for the degree of all competing functions.

In the present problem no such restriction is imposed. It will be seen that the

extremal functions are rational, defining (1, k) conformai mappings of \z\ <R

onto \w\ <M, where k is a positive whole number, and it will be one of our

objects to show how k may be determined in terms of the data of 21.

In addition to considering the problem for 2t, related extremal problems

will be studied in the course of the present paper.

The following simplifying assumptions may be made without loss of gen-

erality: (a) 217=1, (ß) R = í, (y) f(p)=M(f, p). It will be assumed that these
normalizations hold throughout the discussion.

Mention should be made of related investigations. The corresponding ex-

tremal problem for the class of functions which satisfy in addition to the

hypotheses of the Three Circles Theorem the requirement that they be single-

valued in the annulus of definition has been treated by Carlson [4], Teich-

müller [l2]; and the author [5 ]. The related problem for the class of functions

satisfying the requirements of SI with III replaced by the condition that

\f(z) I ¿m(<l) for z£7 (or by closely related conditions), where 7 is a Jordan

arc with one end point deleted, 7 lying in \z\ < 1, the deleted end point being

on \z\ —I, has been studied by E. Schmidt [lO], R. Nevanlinna [2], and

Beurling [2].

2. Properties of the extremal function. It has already been remarked that

by virtue of hypotheses II and III there exists an extremal function/0(z)£ 21.

Before showing that the extremal function is unique and defines a (1, k) (k a

positive integer) conformai mapping(2) of the interior of the unit circle onto

itself, it should be noted that two simple sets of cases can be handled quite

directly. If m=rn (« = 1, 2, • ■ • ), then it follows from the Three Circles

Theorem that the extremal function is unique and is precisely 2". If r<m <1,

the extremal function and the corresponding extremal value may be readily

obtained. Let p denote l.u.b./ea/(p) and let/0(z) denote a corresponding ex-

tremal function. Clearly, \fo(z)+fo(z)]/2 is also an extremal function and in

addition is real for 2 real. Now let p.* denote the largest possible positive value

which a function <p(z) can attain at z = p, where <p(z) not only is analytic and

of modulus less than unity for |z| <1, but also is real for 2 real and satisfies

\<p(r)\ ¿m. By Pick's formulation of Schwarz's lemma [3], it follows that

p.* — m        p — r
(2.1)-= --,

1 — mpr       1 — pr

and that the unique extremal function, <po(z), is defined by

(2.2) Uz)~m -±=JL.

1 — nupo(z)       1 — rz

(2) For the theory of such mappings see [6 ] where reference is made to the pertinent litera-

ture.
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Note that/x^ju*. Since r<m<\, it is readily deduced that

(2.3) I 4o(z) | ^ m     for     | z | ^ r.

It follows from (2.3) that «o(z) is a member of 21 and hence extremal and that

p=p*. Further, «o(z) is unique. If i>(z) were an extremal function distinct

from «o(z), then ^(r)^m; otherwise "3?(z) would have to coincide with «o(z),

since by Pick's theorem «o(z) is the only function analytic and of modulus less

than unity for [ z | < 1 which satisfies the interpolation requirements : «o(<0 = m,

4o(p)=p*. But if ^(r)9^m, then «(z) ^ [4>(z) + 4>(z)]/2 is also extremal, real

for z real, and 4(r) <m- By Pick's theorem

ti* — \f/(r) p — r
(2.4)-L±L<--

1 - n*4(r)       1 - p'

which is manifestly impossible if (2.1) obtains and «(r) <m. Hence «o(z) is

unique.

If m<r, then it is readily verified that (2.1) and (2.2) do not yield the

extremal value and the corresponding extremal function, since |«o( — r)\

would then exceed m and hence «o(z) would not belong to 21.

To return to the general situation, it suffices now to treat the problem

for only those m which are less than r and are not positive integral powers of r.

Under these circumstances let/o(z) be an extremal function. Then M(}o, r) =m.

If this were not the case and Mijo, r) <m, then one could consider the function

(2.5) 7x[/oOO],

where T\(Z) is defined by

£x - 1 Z - 1
(2.6) - = X- (0 < X < 1).

£x+l        Z+l

If X is sufficiently near one, then certainly

(2.7) M{Tx[foiz)],r} <m

and hence £x[/o(z)]€E2l. On the other hand, £x [/o(p) ] >/o(p) and this im-

plies that/0(z) is not extremal. The assertion that Mijo, r) =m follows.

It is conceivable that for some extremal function /o(z), |/o(z)| =m for an

infinite set of distinct z on the circle |z| =r. If this were so,

(2.8) |/o(rei9)| =m (0 real).

It will now be shown that the relation (2.8) is untenable. Contrariwise,/0(z)

would be a rational function which would define a (1, k) conformai mapping

of \z\ <r onto |w| <m [6, p. 55]. Since m is assumed to be not a positive

integral power of r, \}o(z) | would attain the value unity at most a finite num-
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ber of times for | z| =1. Two cases are to be distinguished according as |/o(l) |

= 1 or not.

To reach a contradiction an auxiliary function is introduced in the follow-

ing manner. Let a denote the arc of the unit circle defined by

(2.9) a:     \d\ <80 <t (80 positive)

and let u(z; a) denote the unique function which is harmonic and bounded

for |z| <1 and which attains the boundary value one on a and the boundary

value zero on the arc of \z\ =1 complementary to a. From a study of the level

curves of u(z; a) (which are the arcs of circles in |z| <1 with end points at

ei9° and e~ie'(3)), it follows that

(2.10) u(p; a) > max u(z; a).
\z\-T

Now let a* denote the subarc of a defined by

(2.11) a*: \d\ <@o <0o

and let u(z; a*) have the same connotation relative to a* that u(z; a) has rela-

tive to a. If ©o is chosen sufficiently small, then max^g,, u(z; a*) may be made

arbitrarily small and hence

(2.12) u(p; a) — u(p; a*) > max \u(z; a) — u(z; a*)}.
\i\-r

These preliminaries agreed upon, if |/o(l)| <1, let Bo be chosen so small

that max|8|g«0 |/o(ei9)| <1, and let U(z) denote u(z; a). If |/o(l)| =1, then let

0o be chosen so small that \f(eiS) | = 1 for | B\ ̂ 0O implies 0 = 0, and let @0 be

chosen so small that the relation (2.12) prevails; in this case let U(z) denote

u(z;a) —u(z; a*). Now let e be real and such that in the first case (|/o(l)| <1)

e~' =  max   | f0(eie) |,

and in the second case ( |/o(l) | = 1)

e~' =     max     | fo(ea) \.

In either case let V(z) denote the unique conjugate of U(z) which is so normal-

ized that F(0) =0. Finally, let w(z) denote

exp [e[U(z) + iV(z)]}.

With this choice of w(z), the function w(z)fo(z) is clearly analytic and of

modulus less than unity for |z| <1. It does not belong, however, to 21. But

the function w(z)fo(z)/{max\t\=.r\w(z)\ } does belong to 2Í. Alternatively from

(2.10) or (2.12)

(3) Details are to be found in chap.  1 of [7 ].
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w(p)fo(p)

max  | w(z)
|,|-r

and clearly /o(z) cannot be extremal. The following theorem is thus estab-

lished.

Theorem 2.1. If m is not a positive integral power of r, and if fo(z) is an

extremal function of 21, then M(f0, r)=m and the relation \fo(z) \ —mis satisfied

for only a finite number of distinct z satisfying \z\ =r.

From the typical Tchebycheffian point of view it is now natural to place

emphasis on the finite set of points of \z\ =r where |/o| =m. This assumption

is justified by the following theorem.

Theorem 2.2. For any m (0<w<l) the extremal function /o(z) is unique.

The function fo(z) is rational, real for z real, and defines a (1, k) conformai map

of \z\ <1 onto itself.

Recall the following results from the Pick-Nevanlinna theory of interpola-

tion [14, chap. 10]: Let Zi, z2, • • • , z„ be n distinct points of |z| <1 and let

Wi, w2, • • • , wn be n points of \w\ <1. If there exists a function/(z) which is

analytic and of modulus less than unity for |z| <1 such that fiz\)=w\

(X = 1, 2, • • • , «), then it is either unique and in this case/(z) defines a (1, k)

conformai mapping of |z| <1 onto \w\ <1, k being at most « — 1, or else

there is an infinite set of functions satisfying these requirements. If this is

so, and if f is a point of | z| < 1 distinct from all the Zx, then the set of possible

values for/(f) fill a closed circ|e Kt, lying in the interior of \w\ <1. Further,

if the additional requirement that /(f) shall be a given point of the circum-

ference of K{ is imposed, then the function/(z) so restricted is unique.

To return to the question under consideration, let/o(z) be an alleged ex-

tremal function of 21, and let Zi, z2, • • ■ , zn denote the finite set of points on

|z| =r for which |/o(zx)| =m (X = l, 2, • • • , n), and let w\ denote /o(zx) for

X = 1, 2, • • • , n, and finally, as above, let p=fo(p)- It follows from the Pick-

Nevanlinna theory that either there exists a unique function «(z), which is

analytic and of modulus less than unity for |z| <1, satisfying

(2.13) 4(zx) = wx (X = 1,2, • • • ,«);   4(p) = ß,

or else the class of functions «(z) satisfying these requirements contains more

than a single member. In the first case,/0(z) is necessarily identical with 4(z)

and hence defines a (1, k) conformai map of at most degree n of | z| <1 onto

itself. In the second case, certainly the class of functions $(z), analytic and

of modulus less than unity for |z| <1, which satisfy

$(zx) = w\ (X = 1, 2, • • • , n)

•"     j v \rj i
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contains the class {<p(z)\. Let Kp denote the circle in \w\ <1 which the set

{<f>(p)} fills. It is clear that p. is an interior point of K„; otherwise the function

4>(z) satisfying (2.13) would be unique. Now let p.* denote the unique point

of the positive real axis which lies on the circumference of K„ and is farthest

from the origin of the w-plane, and let $o(z) denote the unique member of

{i>(z)} for which 4?o(p) =/**. Since p*>p, the function

(2.14) *(z; r) = rfo(z) + (\ - r)((p + p*)/2p*)$>»(z) (0 < r < 1)

has the property that for this set of t, \p(p; t) >f0(p). Observe that the follow-

ing relations hold :

(2.15) | ((p + p*)/2p*)Mzx)\ <| wx| (X= 1,2, •■ • ,n).

Hence for t sufficiently near one, M[\(/(z; t), r]<m. For such t, ip(z; r)G2l

and yet ^(p; r)>p. The contradiction is manifest. It follows that every ex-

tremal function is rational and defines a (1, k) conformai map of |z| <1 onto

itself.
To establish uniqueness, recall that any (1, k) conformai map r(z), of

|z| <1 onto itself, is such that |z| =1 implies \r(z)\ =1. Suppose that/o(z)

and 7o(z) are two distinct extremal functions. Then so is [/0(z) + 70(z)]/2. But

| [/„(a)+Fo(s)]/2 | = 1     for     |2| = 1

implies that/0(z) =F0(z).

To show that/o(2), extremal, is real for z real, observe that [/o(z)+/o(z)]/2

is extremal and real for z real.

Theorem 2.2 follows.

3. Dependence of p and the extremal function upon the data of the prob-

lem. In this section certain elementary results concerning the dependence

of p and the extremal function upon the data of the problem are established.

These results will be useful in determining the degree of the extremal function.

First, for fixed r and p, p is a continuous strictly increasing function of m

for 0<w<l, the image of (Q<m<\) with respect to p(m) being the interval

(0 <p < 1). It is trivial that Wi <W2 implies p(m\) =/x(w2). On the other hand,

it is impossible that for m\ <m,2, p(m{) —p(m2). For then the extremal function

<pi(z), with data (r, p, mi), would belong to the class of functions {/} of that 21

for which M(f, r) ^w2. Let 4>2(z) denote the extremal function for this class.

By Theorem 2.2, fa^fa, and from Theorem 2.1, M(<px, r) =m2. The contradic-

tion is manifest. To establish the continuity of p(m), let mo be a number

strictly between zero and one. It is clear that for 0<m<mo, limm.mo p(m)

=p(mo). This follows from the observation that for m satisfying (1 — e)ma

<m<mo, where e is positive and near zero,

(3.1) (1 — e)p(mo) < m[(1 — «K] < p(m) < p(m0).

On the other hand, if, for m>m0,p* denotes limm_mo p(m), p*=p(m0). If this
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were not the case and p*>p(m0), let/o(z; m) denote the extremal function

for the class {/} with M(f, r) ¿m, and let {mk} denote a monotone strictly

decreasing sequence with limit m0 such that {/o(z; mk)} converges continu-

ously in the sense of Carathéodory for |z| <1 as k—»oo. Let/*(z) denote the

limit function. Now M(f*, r) ^m0 and/*(p) =¡j.*>n(m0) ; this is impossible.

The fact that the image of (0<m<l) with respect to p(m) is (0</x<l)

is immediate.

A corollary of this result is that, iffo(z; m) denotes the extremal function for

the class {/} with M(f, r) ^m, then limm,mo/0(z; m) =/o(z; m0) continuously in

the sense of Carathéodory for \z\ < 1.

A dual extremal problem. Let the positive numbers r, p, p be given, all

less than one, and let r<p. Further let 93„ denote the class of functions «(z),

analytic and of modulus less than one for |z| <1, which satisfy 4(p)=P- It

is required to determine

g.l.b. M(4, r)

and the associated extremal functions.

This problem is dual to the problem originally proposed for 21. As a mat-

ter of fact, the extremal function for that 21 with the data (r, p, m) is the same

as the extremal function for that 93 „ with the data (r, p, p(m)). To see this

let «o(z; p) denote an extremal function of S3„ with n=p(m). Then M(4o, r)

= g.l.b.¿eSB(1 M(4, r) Sm. On the other hand,«0 belonging to the 2Í class {/}

with M(J, r)^m, it is impossible that M(4o, r) <m. The assertion follows.

The substitution of the 93-probIem for the 2l-problem will be of great service.

It should be remarked that, since ^(r") = p"(« = l,2, • • •),iorrn<m<rn~l,

p" <p(m) <pn~1 (n = 1, 2, • • • ).

A third principle is that, if p and p are fixed, then g.l.b.^gsa,, -^7(«.r) (which

will be denoted by M(r)) is a continuous, strictly increasing function of r for

0<r<p. Hence the unique extremal functions #(z; r) of 9%/or which

M [*(z; r), r] = M(r) (0 < r < p)

are such that, if rois a given number of the open interval (0, p), then limr.ro $(z; r)

= $(z; ro) continuously in the sense of Carathéodory for \z\ <1.

It is apparent that, if 0<ri<r2<p, then M(rx) <M(r2), since

(3.2) M[*(z; n). n] = M[*iz; rt), rt] < M[H*; r2), r»].

To establish the continuity of M(r) for 0 <r<p, let r0 be a given number of

this interval. Certainly, if r <r0, limr,r0 M(r)=M(r0). Otherwise let {rk\ be a

strictly increasing sequence with limit r0 such that { f>(z; rk)} converges con-

tinuously in the sense of Carathéodory for |z| <1 as k—><x> and let $*(z)

denote the limit function of the sequence. If for r<r0, limr,r0 M(r) <M(r0),
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then 217[<í>*(z), r0]<2l7(ro) and yet <i>*(z)£23,,. On the other hand, if r>r0,

limr.r() M(r) = 2lf(r0). To prove this, note that for r0<r<p

(3.3) M[t>(z; r0), r0] < M[4>(z; r), r] ^ M[<t>(*; n), r],

and that given «>0, there exists a positive number 5(«) such that, if 0<r — r0

<o(e),

M[i>(z; r0), r] < M[f>(z; r0), r0] + «.

The position of the zeros of "i>(z; r). It is apparent that the zeros of 4>(z; r)

cannot penetrate within some fixed neighborhood of p which is independent

of r. For a given r, the following considerations permit one to obtain further

information about the position of the zeros. It will be seen later that the pres-

ent argument is applicable to other extremal problems.

Let a denote a zero of 3>(z; r) and suppose that there exists a non-

Euclidean straight line(4) C passing through p which separates a from |z| =r.

It will be shown that this assumption is untenable. If Zi and Z2 are two points

of |z| <1, 7>(zi, z2) will be used to denote the non-Euclidean distance be-

tween them. Let ß denote the unique point of | z| < 1 specified by the require-

ments: (1) C separates a from/3; (2) the non-Euclidean straight line passing

through a and ß is orthogonal to C; (3) D(a, p) =7>(/3, p). Clearly, C is the locus

of points of ¡z| <1 with the property that they are equidistant from a and ß

in the non-Euclidean sense. It follows that for |z| =r, D(a, z)>D(ß, z); and

hence that for Izl =r

(3.4)
1—52

-ß

ßz

The alleged extremal function i>(z; r) can be written in the form

z — a
4>(z; r) =-g(z),

1 — 52

where g(z) is a (1, k — \) conformai transformation of the interior of the unit

circle onto itself. But consider

p.« *•(.). iiz±.±z>.«\/(izJL).
U - 5p   1 - ßz ) /   \\ - ßpj

which is a competing function and yet M[3>*(z), r]<M[$(z; r), r]; this is

impossible if $(z; r) is extremal.

Further, there can be no zero of "i>(z; r) on the real axis between r and p.

This follows from the readily verified inequality D(reie, ax) <D(reie, a2), for

0 real and 0:1 and a2 real and satisfying r<ai<a2. Hence we have the fol-

lowing theorem.

(4) For the concepts of non-Euclidean geometry employed here, see chap. 2 of [3].
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Theorem 3.1. No zero of 4>(z; r) is separated from \z\ —rby a non-Euclidean

straight line passing through p. Further, no zero of $(z; r) lies on the real axis

between r and p.

4. Results preliminary to studying the degree of an extremal function.

The major object of this section and the succeeding one is to study the rela-

tion between the degree of an extremal function and the data defining it. The

present section contains preliminary results in this direction.

A simple result of this type is the following.

Theorem 4.1. If rn<m<rn~l (» = 1, 2, • • • ), and iff0(z; m) is the corre-

sponding extremal function of 21, then the degree o//o(z; m) is at least n.

Let k denote the degree of/0(z; m) and assume that k<n. It may be as-

sumed that/o(z; m) does not vanish at the origin; otherwise it would suffice

to study fa/z\ if /o had an /-fold zero at the origin. Actually, it will turnout

that under the hypotheses of this theorem, /0 does not vanish at the origin.

It follows from the theory of (1, k) conformai transformations mapping | z\ < 1

onto itself, from the fact that/o(z; m) is real for z real, and from Theorem 3.1

that/o(z; m) can be represented as follows:

(4.1) /o(z; m) = f[   ' ~ "* [ | ax | < 1, X = 1, 2, • • • , *].
X-l    1   — 5x2

Hence

(4.2) /„(1/z; m) = l/foj^m).

Define the rational function £(z) by

(4.3) Pi*)m-z*+M*;m).

Since m<r"~1^rk, it follows from Rouché's theorem that £(z) would have

k zeros interior to |z| =r. Since —z* shares the property expressed by (4.2)

with/o(z; m), F(z) would have k zeros exterior to |z| =l/r. Observe that

£(1)=0, and yet by assumption £(z) is of degree 2k. The contradiction is

manifest.

The degree of /o(z; m) (rn<m<rn~1; n = \, 2, ■ • ■ ) is at most equal to

the number of times, /, |/o(z; m)\ attains the value M(Jo, r) on |z| =r. This

follows from the Pick-Nevanlinna theory. But this remark can be strength-

ened by deleting "at most" and this is the substance of the following theorem..

Theorem 4.2. With the hypothesis o} Theorem 4.1, the degree o}}0(z; m) is

equal to the number o} times that |/o(z; m) | attains the value M (Jo, r) on \z\ =r.

Let k be the degree of/0(z; m). From (4.1) it follows that/0(z; m) can be

expressed in the form
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(4.4) fo(z;m) = Pk(z)/Qk(z),

where Pk(z) and Qk(z) are polynomials of degree k in z, Pk(z) being the numer-

ator and Qk(z) being the denominator of (4.1). The trigonometric polynomial

(4.5) MB) = m21 Qk(reie) \2 - | Pk(reie) \2 (8 real)

is of order k, non-negative, and vanishes precisely I times in any 0-interval of

the form 0og0 <0o + 27r. Hence by a well known result of the theory of trigo-

nometric polynomials [13, p. 39] it follows that l^k. The proof is complete.

Corollary. Under the same hypothesis, z = 0 cannot be a zero of fo(z; m).

5. The dependence of the degree of the extremal function upon the data.

On the basis of the evidence gathered from the results of the previous sec-

tions it is natural to conjecture that the degree of the extremal function

f>(z; r) of 53 M (it is more convenient to study the 33-problem in this connec-

tion) is n, if pn<p<pn~1 (n = 2, 3, • • • ). This conjecture will be established

in the present section.

The following lemma is fundamental for the argument(6).

Lemma 5.1. Let S5* consist of those (p(z)£58„ which are real for z real. If p

is sufficiently near one and if r is sufficiently small, then

g.l.b.   | <p(reie) | (0 real)

is attained by the unique function $„£$8/ defined by

<f>„ — p        z — p
(5.1)

1  — p<pix 1  — pZ

Clearly, 0£33„* can be written in the form

P + ((z- p)/(l - pz))*(z)
(5.2) <p(z) m

1 + p((z - p)/(l - pz)M*)

where \p(z) is analytic and of modulus not greater than one for |z| <1 and is

real for z real. It has already been remarked that for 0=0 and r<p<p the

extremal function of this lemma is defined by (5.1). Note that, since \p(z) is

real for z real, Pick's lemma implies that if |^| <1 for | z| <1, then

I 7f I I 22 I
(5.3)

1  - | ^|2 1  - | 2|2

Let0M be given by ip=\po in (5.2). It suffices to show that ^o = l provided r

is sufficiently small and p is sufficiently near one. If \¡/o(reie) is denoted by u+iv,

it is obvious that, if |^o| f^l for |z| <1,

(6) Related questions have been considered by Rogosinski [9].
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r   sin
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1 - (u2 + v2) 1 - r2

Clearly, the extreme value of <pjreie) can be attained only when |^o| =1 or,

if this is not the case, when equality prevails in (5.4). The locus defined by

(5.5)
l»l

1 - (u2 + v2)

r\ sin 0 I

1 - r2
(8 jé 0 (mod tt))

in |m+m>| ^1 consists of two circular arcs passing through —1 and +1 (ap-

propriate conventions being understood at the end points), the one being the

reflection of the other with respect to the real axis. Hence, the image of this

locus with respect to

u + iv
p + A(r,8)(u+iv)

1 + pA(r, 8)(u + iv)

where

re'" — p
A(''d)=--='

1 — pre%%

consists of two circular arcs lying in the interior of the unit circle and having

end points in common. Observe that for r sufficiently small

P + A(r,8)

l+pA(r,8)
<

P-A(r,8)

1 - pA(r, 8)

uniformly with respect to 0. Hence it is sufficient to show that on each arc

defined by (5.5) the value

(5.6)
p + A(r,8)(u + iv)

1 + pA(r, 8)(u + iv)

has a relative minimum at u+iv= +1. To study (5.6) for values of u+iv

satisfying (5.5) and near one, set w = l— r. It follows that \v\ is asymptoti-

cally given by

(5.7)
2r   sin 0

v   ~ '
1 - r2

It now suffices to show that the derivative of

(5.8)   a(r) m
p + A(r,8)(l -ar)

1 +pA(r,8)(\ - ar)

2r | sin 0 |
where    a = 1 + -i,

1 - r2
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is positive for t = 0. Observe that

r(r) =
ß+A(r, 0)

l+uA(r, 0)

H+A(r,d) »

l-ai4(r,tf)T/0»+i4(r,fl))

1+M(r, Ö)

Hence

(5.9) (t'(0) = 2

and since

1-Mo4(f,0)r/(1+M(M))

l+«4(r, 0)r(--J
\l+pA(r, 0)     p.+A(r,6)J

+

/» + i4(r,«)

í+nA(r,$)

2    I oAjr, ß)(ß2 - 1) ) _

l(l+MJ4(r,Ö))(M + ^(r,0))/;

sgn »'(O) = - sgn <R
oü4(r, 0)

(l+M(r,ö))(M + ^(r,0)) }■

it suffices to show that

(5.10) 51k
aA(r,6)

(1 + nA(r, 0))(M + Air, 9)))

is negative for r sufficiently small and p. sufficiently near one. Note that (5.10)

is continuous in r and p at r = 0 and p=l and that for r = 0, p = i, (5.10) re-

duces to — p/(l— p)2.

The proof of the lemma is complete.

Actually, precise relations between ¡jl, p and r may be found which guaran-

tee that <r'(0) <0, but these will not be considered here.

The proof of the conjecture concerning the degree of <¡?(z; r) is now easy

provided that r is such that the conclusion of Lemma 5.1 is true for p suffi-

ciently near one. Let p satisfy pn<p<p"~1 (n = 2, 3, • • • ). If $(z; r, p) is

the corresponding extremal function, it follows from the results of §3 that

for p sufficiently near pn_1, $(z; r, p) has in the neighborhood of z = 0 a set of

zeros cti(p),a2(p), • • •,aN(p) of respective multiplicities ki(p),ki(p), • • -.^(p)

with £i+¿2+ • • • +ktf = n — l. Let 0(z; p) be defined by

(5.11) «,,)-n[f=^-T,=il_l — a,(p)zA

Since <£(z; r, p) is real for z real, it follows that 0(z; p) is also. Hence 6(p; p)

is positive. Further, it follows from Theorem 4.1 and §3 that 6(p; p)>p. Let

p* denote p/6(p; p). For p sufficiently near pn_1, p* is arbitrarily close to one.

Apply Lemma 5.1 with p* replacing /¿ of that lemma. Clearly,

(5.12)
Qire*; r, u)

6(re'°, M)
è | 4Arew) (0 real),
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and hence, since f»(z; r, p) is extremal, it must necessarily be equal to

8(z;p)<pp.(z). Thus for values of p <pn_1 but sufficiently near p"~\ the degree

of $(2; r, p) is precisely n. Let pi be the least positive number satisfying:

(1) Mi^P"; (2) for pi<p<pn~1 the degree of $(z; r, p) is precisely n. Since

<ï>(z; r, p) depends continuously on p, it follows that f>(z; r, pi) is also of de-

gree n. It suffices to show that pi=pn. Suppose that this is not the case. Since

for values of p less than pu but sufficiently near pi, in arbitrarily assigned

neighborhoods of the zeros of <ï>(z; r, pi), f»(z; r, p) has zeros of the same total

multiplicity as $>(z; r, pi), a repetition of the argument just applied to p

near pB_1 shows that for some positive e, 3>(z; r, p) would be of degree ra + 1

for pi~€^p<pu That this situation is impossible will follow from Theorem

4.2.
Recall (4.4) and (4.5) and observe that for pi — t^p<pi,

(5.13) *(*; r, p) m P„n+1(z)/Q,,n+1(z),

where

n+l

7„,„+l(2)   =   J! (Z  -  <*k(p))
k-1

and

n+l _

&.»+i(z) = n (1 - <*k(p)z),
k-l

the ak(p) being the zeros of 4>(z; r, p). Further, let <$(z; r> Mi) be written in

the form P^.n(z)/Q^,n(2), with P^.nand QH,n defined in the manner of P„,n+u

(?d.n+i. The coefficients of Pß.n+i and Q„,„+i are uniformly bounded independ-

ent of pin (jii — e^pKpx). Since under the assumption made one of the zeros

of $(z; r, p) would tend to —1 as p^pi (p<pi), it follows that

lim   { I P^re») |2 - | m(p)Qß,n+1(reu) \2}

= I 1 + re«\2{ I Pn.M") I2 - I ™{>*ÙQn.n(re») |2}.

This is impossible since 11 +re*s|2 does not vanish for 0 real and since there-

fore by Theorem 4.2 the right-hand member of (5.14) accounts for precisely

n double zeros in a 0-interval of the form (0O = 0 <0o+2ir), whereas the expres-

sion inside the brackets on the left-hand side of (5.14) always accounts for pre-

cisely n + l double zeros in a 0-interval of the same type, when pi — t^p<pi.

Hence pi=pn, and the proof is complete.

Theorem 5.1. If pn<p<p"~1 and r is sufficiently small, then the degree of

$>(z ; r, p) is precisely n.

The restriction on the size of r can be dropped by the following argument.
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Consider the function (6) 6(z; r, p) defined by

(5.15) ©(z; r, u) m $(Z; r, n)<i>(r2/z; r, p).

Clearly, ®(z; r, p) is analytic and of modulus less than unity for r2^ | z| ^ 1

and is real and positive for |z| =r since $(z; r, p) is real for z real. At the

points of |z| = r where | 4>(z; r, p)\ =m(r, p) (m(r, p) =max|j|_r | $(z; r, n)\)

the function 0*(z; r, p) = @(z; r, n) — [mir, p)]2 has double zeros since these

points yield relative maxima of 6(z; r, p) on the circle |z| =r. Since the de-

gree of ®*(z; r, p) is twice the degree of 4>(z; r, p), it follows that 0*(z; r, p)

can have no other zeros.

Now suppose that r0 is the least upper bound of those r for which the de-

gree of «^(z; r, fi) is n (p. being fixed and satisfying the hypothesis of Theorem

5.1). If ro — p, then the desired extension of Theorem 5.1 would be established.

Suppose therefore that ro<p. The continuity of $(z; r, p) with respect to r

(0<r<p) and Theorem 4.1 imply that the degree of i>(z; r0, p) is precisely n.

Consider now values of r which are slightly larger than r0. From the continu-

ity of m(r, p) and $(z; r, p) with respect to r, the properties of @*(z; r, p)

already enumerated, and Hurwitz's theorem, it follows that for the r under

consideration the degree of 0*(z; r, p) is 2« and hence the degree of €>(z; r, p)

is n. It follows that ro = p. Hence we have the following theorem.

Theorem 5.2. 7/ pn ^¿t <pn_1, then the degree o} $(z; r, p) is precisely n.

6. Examination of the case where p2<p<p. In this section the location

of the zeros of $(z; r, ¡I) is studied in the special case p2<n<p. It will also

be shown how $(z; r, p.) may be calculated in terms of the data.

First, note as in §5 that for p<p, but sufficiently near p, <J?(z; r, p) has a

simple real zero in the neighborhood of z = 0. This zero must be positive, for

otherwise the argument of §5 would prove that $(z; r, p) would be of the

second degree and would have two negative zeros. But then | $(re'e; r, p)\

(6 real) would attain its maximum only at 0 = 0 (mod 2ir) and this contra-

dicts Theorem 4.2. The second zero of <I> is negative and near — 1. By em-

ploying the typical continuity argument of the previous sections and by

recalling the Corollary of Theorem 4.2, it may be shown that for all p be-

tween p2 and p, $(z;p, r) has one simple positive zero and one simple negative

zero.

Further, | $(re'e; r, p,)| (6 real) cannot attain its maximum at either 0 = 0

(mod 27r) or 0=^ît (mod 27r). For it follows from Theorem 4.2 that if the maxi-

mum is attained for one of these sets of 0 it must be attained for the other.

On the other hand, if this situation were to occur for some p, say po, between

p2 and p, then it would be true for all p. subject to p2 <p <p. This fact may be

established by studying the trigonometric polynomial (4.5) for the present

(6) I am indebted to Professor R. M. Robinson for suggesting the use of the function

@(z; r, ii) in this connection.
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situation and observing that if | $(rei9; r, ju)| assumed its maximum at 0 = 0

(mod 2ir) and 8=w (mod 2ir) for one value of p between p2 and p, and for

another such p at 0^0 (mod ir), then there would be values of p between

p2 and p for which the derivative of (4.5) would have at least five zeros in a

0-interval of the form 0o=;0<0o+27r. It is well known that this is impossible.

Let a(p) be the positive zero and ß(p) be the negative zero of $>(z; r, p).

Note that a(p) and ß(p) depend continuously on p and that ß(p) is near — 1

for p near p and is near 0 for p near p2. Hence there is a value of p such that

ß(p) = —r, and in this case it is impossible for | <Ê(rei9; r, p)\ to attain its

maximum at 8 = tt (mod 2ir).

Computation of <£(z; r, p). Set

2 — a(p)     z — ß(p)
(6.1) 4>(z;r,p)=-—-*-^- ■

1 - a(p)z   1 - ß(p)z
Clearly,

| m(p)(l - areiS)(l - ßre») \2 - \ (reie - a)(rew - ß) |2

(6.2) m [m(p)]2{(l + a2r2 - 2ar cos 0)(1 + ß2r2 - 2ßr cos 0)}

-  {(r2 + a2 - 2ar cos 0)(r2 + ß2 - 2ßr cos 0)}.

If in (6.2) cos 0 is set equal to x, a polynomial

(6.3) Ax2 + 223*+ C

is obtained, which is non-negative for — Kx<l and vanishes at a  single

value on this interval, say x0. Since A >0, A, B, C must satisfy

(6.4) 232-i4C = 0,

where A, B, C are given by

i4 = 4aß([m(p)]2 - l)r2,

(6.5) B = (a + 0>{.(1 - aß[m(p)]2)r2 + (aß - [m(ß)]2)},

C = (a2ß2[m(p)]2 - l)r* + ([m(p)]2 - í)(a2 + ß2)r2 + ([m(p)]2 - a2ß2).

Now ß(p) can be expressed in terms of a(p) by

,.  ,. P — <*(p)     P — ß(p)
(6.6) -= p,

1 - a(p)p   1 - ß(p)p

and from (6.4)  [m(p)]2 can be expressed in terms of a, r, p, p and one need

find only that value of a between zero and p making m2 least.

7. A related extremal problem. Referring to the class 93„ of functions tp(z)

defined in §3, preserving the same notation and letting Er denote the interval

(— r^x^r<l) (x real), consider the following extremal problem:

To determine g.l.b.4,çssll{maxxQEr\(p(x)\ } and the associated extremal func-

tions.
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Clearly, the dual to this problem is to determine l.u.b.*e(Sm «(p) and the

associated extremal functions of fëm, where 6ro is defined to be the class of

functions «(z) which are analytic and of modulus less than unity for |z| <1,

and satisfy the further requirements that for a given positive number m,

less than one, max«e«,!«■(*) I =w> and that «(p) is real. The object of this

section is to study the descriptive properties of these extremal functions.

The methods of §§2-4 apply without essential modification and the fol-

lowing first result may be stated without proof.

Theorem 7.1. The extremal fonctions far the problems just proposed are

unique and define (1, k) (k depending upon the parameters of the respective prob-

lem considered) conformai maps of the interior of the unit circle onto itself.

Further, they are real for z real. The totality of extremal functions «o(z; p;)(£93<i),

where all values of p between zero and one are considered, is the same as the

totality of extremal functions «o(z; »»)(GS».), where all values of m between zero

and one are considered.

The extremal function «o(z; p) depends continuously in the sense of Cara-

théodory on p for \z\ <1 (cf. §3) and similarly «o(z; m) depends continuously

in the same sense on m for \z\ < 1.

Because of this theorem for the remainder of the present section attention

will be confined to the extremal problem for 33M. A first result in the study of

the descriptive properties of the extremal function «0(z; p) is the following:

Theorem 7.2. All the zeros of «0(z; p) are real and less than r.

This follows on applying the argument of Theorem 3.1.

Another simple result is that «o(z; p) admits no multiple zeros. To estab-

lish this, consider the following simple lemma.

Lemma 7.1. Let on, a2, ßu ß2 be real and satisfy the two requirements:

(1) - 1 < «i < a2 ^ ß2 < ßl < p;

p — ai     p — ßi p — a2     p — ß2

(2) -=-
1 — a¡ip   1 — ßip       1 — a2p   1 — ß2p

Then for —l<x<p,

x — cti    x — ßi        x — a2    x — ß2

(7.1) -<-
1 — aux 1 — ßiX      1 — ol2x 1 — ß2x

To establish this lemma, let rk(x) denote

l^L.l^lfL (,= 1)2).
1  — CtkX   1  — ßkX

Observe that R(x)=r2(x)—ri(x) is rational and of the fourth degree. Since
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rk(l/x) = l/rk(x) (k = l, 2) and since R(-i) =2?(1) =R(p) = 2?(l/p) =0, R(x)

vanishes for no other x. Hence the lemma follows.

If <po(z; p) admitted a multiple zero, by Lemma 7.1 it could be replaced

by a function i>(z)G93(1 such that

max  | $(x) I < max  | <bo(x; p) \
»€=&■ *G£>-

and <po(z; p) would not be extremal. Hence we have the following theorem.

Theorem 7.3. The extremal function <pa(z; p) admits no multiple zeros.

These results and the following one will be quite useful in studying the

degree of <f>o(z; p) and the location of its zeros.

Theorem 7.4. Let m(p) denote g.\.b.4>^sslt{ma.xx^Er\4>(x)\ }. Then cpo(r; p)

= m(p).

Let e be positive and less than one and let T„,t(z) be defined by

where the determinations of Z' and Zl~* which are positive for Z positive

are used. The function Tp,,(z) is defined and*analytic for |z| <1; further

| 7,,,| <1 for |z| <1 and Tp,t(p) =p. It follows from Pick's lemma that

(7.3) T„,t(x) > x   for    - 1 < x < p.

To establish Theorem 7.4 note that by Theorem 7.2 and the fact that

<po(p;p) =p,<po(r;p)>0. U<p0(r;p) <m(p), for «sufficiently small^0[7fl,<(z) ;p],

which belongs to S8M, would be such that

(7.4) max  | <t>0[Tp,t(x); p] | ^ max  | 0O(*; m) | ■
lg Er x£ Er

By Theorem 7.1, <f>0 [Tp,t(z) ; p] =<p0(z; p), and this is impossible for e positive.

Let k denote the degree of <po(z; p) and let «i, «2, • • • , a* denote the zeros

of <po(z;p), where

(7.5) - 1 < ai < a2 < • • •  < a* < r.

For x real and strictly between «i and ak, <j>o(z; p) admits at least k — 1 (non-

vanishing) relative maxima and minima. There can be no more than k—l

relative maxima or minima with x strictly between —1 and 1. This is estab-

lished by noting that
<Po(i/x; p) = l/<r>o(*; p)

and that the numerator of <po'(*; p) is at most of degree 2è —2. Hence there

are precisely k — 1 relative maxima and minima for <f>o(x; p) with —1 <#<1.

Let ¿x denote the position of the relative maximum or minimum for which
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ax<£x<«x+i (X = l, 2, • • • , k — 1). Lemma 7.1 permits the inference that, if

— r^Ç\<r, then |«o(£x; p)\ =m(p). Otherwise |«o(£x; p)\ <m(p). Let c*x and

«x+i be replaced by ax* and ax*+i subject to the restrictions that (1) ax*<ax

<ax+1 <«x*+i-;

* *
p — a\     p — a\+i p — ct\      p — ax+i

1 — afp   1  — ax+ip        1 — a\p   1 — ax+ip

(3) a\* is so near ax and «x*+i is so near «x+i that the function obtained by re-

placing the factors (z —ctx)/(l —axz) and (z—ax+i)/(l — «x+iz) in «0(z; p) by

(z—ax*)/(l — ax*z) and (z—ax*+i)/(l — «x*+iz) respectively is in absolute value

less than m(p) at x = £\. It follows from Lemma 7.1 that «0(z; p) could not

be extremal.

Let / denote the number of positions on the interval ET, where |«o0k; p)\

= m(p). From the Pick-Nevanlinna interpolation theory, it follows that k^l.

Let K denote the number of ax in the interval £r. Then since «o(r; p) =m(p)

and since |«o(— r; p)\ may possibly attain the value mip), l^2 + (K — 1)

g2 + (/fe-l)=£ + l. Hence K^k-l. At least k-1 of the ax are in ET. That/

can equal ¿ + 1 will be seen presently. One immediate consequence of these

observations is that at successive points of £r where |«o(«; m)| =m(p) the

respective signs of «o(ac; p) are opposite. Hence the following theorem holds.

Theorem 7.5. 7/«0(z; p) is of degree k, |«o(*; m)| attains m(p) at least k

times, at most k + 1 times on Er. At successive points where |«o(x; p)\ =m(p),

the respective signs of 4o(x; p) are opposite. At most one zero of «o(z; p) lies to

the left of x= —r.

By use of this theorem an estimate for the degree of «o(z; p) in terms of y.

may be obtained quite simply. Observe that at least one zero of «o(z; p) is

not positive, since |«o( — r; p)\ ^4o(r;p), and that there are at least k — 1

zeros of «o(z; p) in £r. Hence

and hence

(7.7) log-/'l°g(1-^) < *.- K \og-/\og(^^j.

How do «o(z; p) and its degree kip) vary as p decreases from one to zero ?

The following lemma will be of service in discussing this question.

Lemma 7.2. For each k ik = 1, 2, • • • ) there exists a (1, k) directly conformai

mapping 7r*(z) of \z\ <1 onto itself which satisfies the following conditions: (1)

all the zeros of irk(z) are simple and lie in the interior of Er; (2) maxz(ZEr\Trk(x) |
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is attained at k+1 distinct points of ET including —r and r by \ xk(x) \ ; (3) irk(r)

is real and positive. The function irk(z) is the only (1, k) directly conformai

mapping of \z\ <1 onto itself which satisfies these conditions. Hence maxjgs,

| ivk(x) | depends only on k and r.

The proof of the existence statement will be omitted inasmuch as it is not

essential for the argument that follows(7). Uniqueness may be established by

studying the ramification properties of the covering of \w\ <1 defined by

w = TTk(z). Properties (1) and (2) of irk(z) imply that irk(z) is locally (1, 1) over

every point of |w| <1 except possibly the points w\ = m3Lxx^Er\irk(x)\ and

W2 = —maxir5^r| irk(x) \. The behavior of the mapping over W\ and W2 may be

readily inferred from (1), (2), (3). At all events if ^(z) and ttÍ2)(z) both

satisfy (1), (2), (3) and in addition

I    C1>/  ^ I I    mi  \ \
max  I 7Tjfc  (x) | = max  | irk  (xy\,

then the Riemann domains lying over \w\ <1 which are defined by tfi"'(z)

and 7rSt2)(z) are identical and the condition (3) guarantees Trt1}(z) =wk\z). Sup-

pose now that

max  \ wk  (x) |  < max  | irk  (x) \
»£ft xQEr

and denote the left and right members of this inequality by m\ and W2 re-

spectively. The Riemann domain which is the image of |z| <1 with respect

to w = irk)(z) would be a continuation of the Riemann domain which is the

image of \z\ <1 with respect to w = (mi/m2)irt2)(z). Hence there exists a func-

tion 0(z), analytic and univalent for |z| <.l, which maps |z| <1 into itself

and satisfies

(7.8) (mjmi)*?(z) m ^[«(z)],        8(r) = r.

Observe that the derivative of the left member of (7.8) is different from zero

at z= —r by virtue of condition (1). Hence 8(—r) must equal — r since B(r) =r

and 0(a) is univalent. This is clearly impossible unless 0 = z and this can hap-

pen only when mi=m2- The last statement of the lemma is now evident.

To return to the study of <p0(z; p) and k(p), if p iSp < 1, the argument used

in connection with the Three Circles Theorem problem shows that <po(z; p)

is defined by
p — (bo(z; p)     _   p — 2

1 — p<bo(z; p)       1 — pz

Thus for pi£p,<l, k(p)=\. But for p<p, this cannot be the case because

Pick's lemma would imply \<p0( — r; p)\ ><p0(r; p). Next, let B(x; p) denote

(') A forthcoming paper of the author will treat the properties of the ir*(z) which are ana-

logues of the Tchebycheff polynomials in the hyperbolic plane.
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g.l.b.^ga |«(at; p)\ where x(E.En and consider values of p lying between

(p+r)/(l+pr) and one. For such p, B(x; p) is equal to 4o(x; p) as defined

by (7.9).
Recall the last statement of Theorem 7.1 and consider values of p less

than but very close to p. Since «o(z; p)=z which has a simple zero at z = 0,

it follows from Theorem 7.1 and Hurwitz's theorem that for values of p under

consideration, «o(z; p) has a simple zero in the neighborhood of z = 0, say a(p).

But then p*=p[(p — a(p))/(l—pa(p))]~1 would be very close to one and it

follows that for #££r

(7.10) |«o(*;p)|è
x - a(p)

1 — a(p)x
4o(x; p*).

This implies that actually «0(z; p) =«o(z; p*) (z — a(p))/(i —a(p)z), and hence

for p<p but close to p, k(p) =2. For such p,4o(z;p) has a zero near the origin

and another near —1. Let p2 denote the greatest lower bound of the set of p

for which not only k(p) =2, but also there exists no p* with k(p*)>2 separat-

ing p from p. From Theorem 7.1 and the fact that the degree of lim„_„2«0(z; p)

is at most two and cannot equal one, it follows that k(p2) =2. To continue the

examination of k(p), consider values of p less than but near p2. A repetition

of the argument used for p less than but near p shows that in the present case

k(p) = 3 and that one zero of «o(z; p) is near — 1 and two are in the interval £r-

Now let p3 denote the greatest lower bound of the set {p} satisfying: (1) p <p2;

(2) k(p) =3; (3) there exists no p* with k(p*) >3 such that p<p*. From Hur-

witz's theorem and the last statement of Theorem 7.5, it follows that

2^k(p3)^3. From Theorem 7.1, Hurwitz's theorem and the first statement

of Theorem 7.5 it follows that |«o(x; JU3) | attains m(p3) at least three times

on Er. Suppose now that k(p3) =2. In this case |«o(x;/i3)| would attain m(p3)

precisely three times on £r. But then the lesser of the two zeros of «o(z; p3)

would necessarily exceed — r and |«o(— r; p3)\ =m(p3), this last observation

following from the fact that 14o(x '< Pi) I 's monotone strictly decreasing for x

between —1 and the smallest x on Er for which |«o0k; Ms)| =m(p3). Hence

Lemma 7.2 implies that «o(z; p3)= tt2(z). But Theorem 7.5 and Theorem 7.1

imply that «o(z; p2)—Tr2(z). The contradiction is manifest and it follows that

k(p3) =3. From a step-by-step argument modelled on these considerations it

follows that there exists a strictly decreasing sequence [p\\ with Mo = l, Pi = P,

and limx..w aix = 0, such that for p\^p<p\-i, k(p)=\ (X = l, 2, • • • ) and

«o(z; ynx)=7rx(z). Hence of course |«o(*; p\)\ attains m(p\) precisely X+l times

for x(E.ET.
From this property of «o(z; p\), p2 and «0(z; p2) can be calculated quite

simply. Set

z — a    z — ß
4o(z;p)=-- (a>ß).

1 — az 1 — ßz
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From <po( — r; p2) =<Po(r; P2) it follows that

r + a    r + ß        r — a    r — ß

1 + ar 1 + ßr      1 - ctr 1 - ßr '

and this implies a+ß = 0. Hence <po(z; P2) may be written in the form

4o(z; P2) "= (z2 - «2)/(l - a2z2).

Since the zeros are symmetrically located with respect to the origin, (p0(0; p.2)

must be a relative minimum and hence <po(0; p2) *■ — <po(r; P2), that is

(r2 - a2)/(I - a2r2) = a2,

whence

a*-rY{l + (l«- r4)1'2};

P2 = {p2(1 + (1 - rl)m) - r2}/{l + (1 - r*)""1 - pV2}.

8. Extensions of the results of §7. Let E denote any set of points lying

in ( — 1 <x<p) which is closed relative to this interval and has the property

that l.u.b. E<p. An obvious extension of the problem treated in the last

section is the following extremal problem:

To determine g.l.b.^^ {l.u.b.x^B\<p(x)\ } and the associated extremal func-

tions.

Here, as throughout the present paper, the principal concern will be to

discover descriptive properties of the extremal functions.

The case where g.l.b. E> — 1 calls for no special attention except to re-

mark that, when E consists of only a finite number of points and p is suffi-

ciently small,

g.l.b. {max I 4>(z) | } = 0,

and there may be an infinite set of extremal functions. On the other hand, the

case where E is not compact relative to ( — \<x<p) is decidedly different,

though it should be noted that the methods employed are much the same as

those used in §7, and this case will now be considered.

Let <po(z; Mi E) denote an extremal function of the present problem. It

follows, as in §7, from a proof patterned on that of Theorem 3.1 that the

zeros of <f>o(z; p, E) are real and lie strictly between —1 and l.u.b. E; and

from Lemma 7.2 with az==ßt that all the zeros are simple. Two cases present

themselves: either the zeros of <po(z; p, E) are finite in number, or else they are

infinite in number. Suppose that the first case is at hand and let p\, ßt, • • •, ßy

denote these zeros with

(8:1) fit > fit > • ■ • > ft*.
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Clearly

Equality cannot occur in (8.2) because then

_,        »    / z- ßk\
4o(z;p,E) ^n (--—)

k-i M — ßkz/

and limI^_1|«o(x; p, E)\ =1, which contradicts the hypothesis that g.l.b. E

= — 1. Let/i* denote the quotient of p. by the left member of (8.2) and consider

the problem of determining the extremal function «o(z) which is to satisfy:

(1) «o(z) is analytic and of modulus less than unity for |z| <1; (2) 4'o(z)^0

for |z| <1; (3) \¡/0(p)=p*; (4) for a given x with —\<x<p, |«0(*)| is less

than or equal to |«0*01 where «(z) is any function satisfying the requirements

(1), (2), (3) imposed on «o(z). It is readily verified that «o(z) is unique and is

given by

( 1 - (z - p)/(l - pz).
(8.3) «„(z) - exp {log p* —-^-— ) (log p* real).

( 1 + (z - p)/(l - pz))

It is to be observed that «o(z) is independent of x.

Returning to the problem at hand note that then

X  / z - ßk \
(8.4) «*«=■ «»«ri (-—T-)

k=l   \1 — PkZ/

would be extremal and that with x> —1, \imx^i4*(x) =0- This would imply

that «*(z) would attain

g.l.b.  {l.u.b. 1*(*)| }

on E and only at a finite number of points. By recasting the argument of

Theorem 2.2 to apply to the present situation and by noting that with x > — 1,

lim*_i0*(a:)=O, it follows that the assumption that «o(z; p, E) has only a

finite number of zeros is untenable.

Let {ßk} (k = í,2, • ■ ■) with'

(8.5) 0i >/&>••• (Iim0*=-1)
fc—t»

denote the zeros of the extremal function under consideration. A repetition

of the argument just employed shows that «o(z; p, E) is a Blaschke product(8)

of the form

(8) For the theory of Blaschke products see chap. 4 of [6].
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^T       Z   -   ßk

(8.6) 0„(z; p, E) - II-=-.
t-i 1 — p*z

No question concerning the convergence of this product without the custom-

ary constant factors arises since all the ßk save a finite number of them are

less than any real number which is greater than — 1.

The uniqueness of <po(z; p, E) is now disposed of quite simply. Suppose

that $0 is extremal and distinct from <p0; it follows that (<p0+$o)/2 is also

extremal. A known result(9) of the theory of Blaschke products states that

a Blaschke product is analytic at every point of |z| =1 which is not a limit

point of its zeros and has a modulus equal to one at such a point. Since

(<po+$o)/2 must be a Blaschke product of the same type as <p0 and $o (that

is, with respect to the location of its zeros), it follows that for zj¿ — 1, | z| =1,

0o—$0 and hence for all z with \z\ <1, 00=^0.

The uniqueness proof is complete.

Is the extreme value attained on E? This is to be answered in the affirma-

tive, for otherwise an appropriate small displacement of two successive zeros

subject to the restriction of Lemma 7.1 would imply the existence of an ex-

tremal function distinct from <pa. Further, it follows from this lemma that

there are points of E strictly between successive ßk and that for at least

one point of £ between successive ßk, \<i>o\ attains its extreme value. This has

as a consequence that the relative maxima or minima between successive

zeros are in magnitude at least equal to the extreme value. Hence to sum up

we state the following theorem.

Theorem 8.1. If E consists of a finite number of points {xi} where

— l<iCi<a;2< • • • <xn<p and if p<Y["-i(p—x.)/(l—pxK), then the problem

has a trivial character. In all other cases the extremal function is unique.

If E is compact, the extremal function is a (1, k) (k depending upon the data)

directly conformai mapping of \z\ <1 onto itself.

If E is not compact, then the extremal function is a Blasche product with its

zeros all in the interval ( — 1 <x <l.u.b. E), — 1 being their unique limit point. In

addition, between successive zeros there are points of E where \<po\ attains its

maximum on E(10).
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