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The approximation by integral functions to functions defined on the real

axis — oo <£< oo or on its positive part only (0<x< oo) has been treated by

the author in an earlier paper(1). The present paper deals with the correspond-

ing problem for functions defined on regions R of the extended z-plane

(z=x+iy). The only case of interest is that in which the point 2= oo lies

on the boundary of 7?, as has been shown in the previous paper. Originally

the author had intended to treat only the cases where 7? is a half-plane or a

strip. It has turned out, however, that simple results can be obtained for

approximation in an angle 0 (0 < arg z < 6 ; 6 < 2w). This problem is evidently

much more general than that concerning the half-plane, and it is adapted

to elucidate results of the above paper. It will be shown that a function F(z),

analytic and bounded in the interior of an angle 0 and satisfying some con-

dition of continuity in the closed domain, can be approximated uniformly by

integral functions of finite types of the order p=ir(2ir — 0)~\ and that this

is the "best possible" value (§2). The uniform approximation by integral func-

tions to unbounded functions in an angle 0, in particular to zr (0<r< 00),

is treated in §4; there are, however, rather interesting questions which arise

in the general case, but are left open in the present investigation. The approxi-

mation by rational functions is known to apply under very restrictive con-

ditions only; it fails, for instance, for the function zr.

The approximation to bounded functions in the half-plane is treated in §3,

that in the strip in §5. For the half-plane, extensive use is made of the funda-

mental theory of the class £>P(2), developed by E. Hille and J. D. Tamarkin;

some of the results deduced for the strip can be regarded as an extension of

this theory. The investigation of the strip starts from Theorem 13. Its proof

and that of some other results is given as an appendix. Incidentally results
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(1) Trans. Amer. Math. Soc. vol. 54 (1943). References to this paper are indicated by F.

There is an error in equation (2.1)F, which should read

(2.1) W(r) =    rn//(r««*)»rf*.
J„ i-i

Unfortunately, in my manuscript I have written JZ instead of H.

(2) Fund. Math. vol. 25 (1935) pp. 329-352, 1 ££<°°. For 0<p<l see T. Kawata, Jap. J.
Math. vol. 13 (1936) pp. 421-430. ¿p (0</>á 00) is the set of functions F(z) which, for 0<y< 00,

are analytic and such that ¡ F(x+iy)\p¿M, where M is independent of y. For the notation

I F(x-\-iy) I p see the end of this section.
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due to G. H. Hardy, A. E. Ingham, and G. Pólya(3) are generalized.

Applications of results of this paper and the one mentioned above will be

made in §6, in particular to deduce a new theorem on approximation by ra-

tional functions in a strip. Some auxiliary results are given in §1, among them

a theorem which is a supplement to Theorem 3(b)F.

The symbol \f(x+iy) \ p will be used to denote

or     ess.u.b.  | f(x + iy) \
— 60<X<00

for 0 <£ < » or ¿> = », respectively; in this notation the first variable which

occurs is that of integration. Finite positive constants are denoted by

A, A', A", ■ ■ ■ , B, B', B", • ■ • . Throughout this paper the function F(z)

which is to be approximated is required not to reduce to a constant.

§1. Some auxiliary results

1.1. Functions of order one and finite type.

Lemma 1. Let <c(z)GGa (0<a<»)(4) and k(x)£Lp(-<*>, ») (0</><»).

Then K(x-\-iy)e~aM—»0 as |*|—>», uniformly for — »<y<», and thus

K(x-\-iy)—»0 ai | x\ —» », uniformly in any finite interval of y.

It will suffice to take y>0. By Lemma 2'(b)F, | iv(*+*y)L

= | K(x)\pexp (a\y\ ). Taking y = y' —1, we have |exp (iax—ay')K(x+iy'—i)\p

?¡ea\ k(x)\p for y'2t0. Hence the function exp (iotz)n(z—i) (z = x-\-iy') be-

longs to §„ and tends, therefore(6), to zero as \x\ —>», uniformly for y' = 5

whenever ô>0. Taking y' =y + l and 5 = 1, we have proved the lemma.

1.2. Functions of finite order and type.

Lemma 2. Let (i) F(z) be an integral function of the type a (0^a< ») of

the order p (1/2 <p < »), let (ii) the contour C consist of two straight lines start-

ing at the origin and forming the angles 0 = 2ir—irp~l and T = 7rp~1 between them,

let F(z) be bounded on C with upper bound A, and let (iii) F(z) be bounded in

the angle 0. Then, for any z, \F(z)\ ^A exp (a\z\ "). When l/2<pál the con-

dition (iii) is to be omitted.

Proof. For &=ir (p = l) the result is well known(8). By a Phragmén-

Lindelöf(') theorem, \F(z)\ SA in the angle 0 for l/2<p<l and, by (iii),

for p>l. We may take arg z = (0— w)/2 and arg z = (37r — 0)/2 as the two

(3) Proc. Royal Soc. London, Ser. A vol. 113 (1927) pp. 542-569.
(4) Ga is the set of integral functions F(z) which, for any e>0, satisfy an inequality

\F(z)\ <j4eexp {(a+€)|z| j. Obviously GpCGa whenever 0 g/3<a; trivially any polynomial be-

longs to Go.

(6) Hille-Tamarkin, loc. cit., Lemma 2.4.

(8) G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Berlin, 1925,

p. 36, no. 202. A shorter proof is given in §2F.

(') See, for instance, E. C. Titchmarsh, The theory of functions, Oxford, 1932, 5.61.
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1944] APPROXIMATION BY INTEGRAL FUNCTIONS 9

lines forming the angle T ; it is bisected by the positive part of the imaginary

axis which we denote by L. Given €>0, the function

(1.21) G(z) = F(z) exp {(a + 2¿)z'ei-i^2 \

is analytic in T, its modulus is less than A' exp {(2a+3e) | z\ "} in T and is not

greater than A on C. On L, we have

(1.22) \G(z)\ g |Fí»| exp {- (a+ 2e)\z\'} £ A"*-™',

which tends to zero as \z\—>oo. Applying the above mentioned theorem to

G(z) in both angles formed by L and C, we deduce that G(z) is bounded in both

angles and, therefore, in T. But | G(z) \ ^A on C; therefore, by the same Phrag-

mén-Lindelof theorem, ¡G(z)\ ¿A in T. Hence \ F(z)\ ^A exp {(a-r-2e)|sj"}

in r and, therefore, in the whole plane. Taking e—»0 we arrive at the required

result.

Remark. If z lies in T, and if \p is the angle between the line joining the

origin to z and one of the two lines bounding T (0<\p<T), then

I F(z) | ^ A exp {a\ z \p sin pi^}(8).

This follows from (1.21), taking z = r exp {i(@-ir + 2\¡/)/2}.

By the Liouville theorem, F(z) reduces tó a constant when a = 0.

1.3. Induced convergence.

Lemma 3(a). Let the Fn(z) (re = l, 2, ■ ■ • ) be integral functions of a fixed

type a of the order p (0<a< oo, l/2<pgl), let 0 and C be defined as in

Lemma 2 and let, uniformly on C, Fm(z) — Fn(z)-+0 as m, re—>oo. Then there

is an integral function F(z) such that, for any e > 0, | T^z) | <A e exp {(a + e) | z | *}

and that, uniformly in the angle 0, Fn(z)—>F(z) as n—>oo.

(b) For l<p< oo the result holds under the additional condition that the

functions Fi(z) — Fn(z) (n = 2, 3, • • • ) should be bounded in 0.

Proof. The functions Fi,n(z) = Fi{z) — Fn(z) (re = 2, 3, • • ■ ) are bounded

on C, uniformly with respect to z and re. By Lemma 2, there is a constant A

independent of re such that

(1.31) \Fi,n(z)\ ^A exp {«|z|"} (l/2<p<oo).

By the argument used in the proof of Lemma 3F, we deduce that the Fi,n(z)

converge to an integral function i>(z) satisfying (1.31), uniformly in any finite

domain and uniformly on C. Hence F(z) = Fi(z) — $(z) is the required function.

1.4. Functions bounded in sectors.

Lemma 4. Let k(z) be an integral function of the type b (0 < b < oo ) of the

order p (1 ̂ p < °°), bounded in the domain D defined by D=Di-\-D2,

(8) It can be shown that the result holds for the limiting case p = l/2. //, therefore, F(z) is

an integral function of the type a of the order 1/2 and | F(x)\ ¿A for 0<x< oo, then \ F{z)\

■ÍA exp  {ar(|z|/2-*/2)"2).
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Di-.     I arg z I g 7r/2 — 7r/2p,        D2:     \ arg z — r \ = ir/2 — 7r/2p,

wi/ft upper bound A. Then \k(z)\ ^A exp (6|y| ").

As in the proof of Lemma 2, we deduce that, for |arg z—7r/2| _7r(2p)-1,

I «(z) I S A exp {b \ z |" cos p0t/2 - <p) ]

(4> = argz;  \<j> - ir/2 \ ^ x/2p).

We have y=|z| sin <j>>0, and sin" </>2;cos p(ir/2—<p), by the inequality

cos pXiScos" X (p2:l, 0^Xg7r(2p)_1). Hence from (1.41) and from the

hypotheses we deduce that \k(z)\ ¿A exp (b\y\p) for y 2:0. In a similar way

the result is shown for y <0, which completes the proof.

Lemma 5. If I is any positive integer, then there are even functions h(z) such

that z%(z) (i = 0, 1, • • • ,21) satisfies the hypotheses of Lemma A.

Without loss of generality we may take 6 = 1. The Mittag-Leffler function

(1.42) EUp(z) = ¿ '"
„_o T(l + p ln)

is of the type unity of the order p, and is bounded for |arg z—ir\ Sw — Tr(2p)~1

when 1/2^p< ». Now >*"

(1.43) h(z) = z-2i{Eilp(il-u>z) + Eilp(- il-v>z) -2}1 (^ 1)

is the required function. For E1/p(iz) is bounded for ir(2p)-1 —7r/2^arg z

g37r/2-7r(2p)-1, while E1/p(-iz) is bounded for 7r(2p)-1-37r/2^arg z^tt/2

—w(2pYl and, therefore, for ir/2+7r(2p)-1garg *S5t/2—*(2p)-1.

Lemma 6. 7/pel and H(z)=z'h(z) (Qgj£2l—2), defining h(z) by (I A3),

then

/oo | 270 - z) | dt ¿ A exp ( | y |») (A = A(l, p)).
-00

Putting t = u+x, the integral on the left takes the form /*„ |27(m— iy) \du.

When p = l, then, by Lemma 2'(b)F, |T7(m — iy)\ i2rexp (\y\ )\ H(u)\ i. Let

now p>l. For \y\ <1, the integral is certainly majorized by a constant A',

since 770c+t'y) and x2H(x-\-iy) are bounded in the strip |y|^l, | aq < ». For

|y| 2:1, we have

02 + 1)'-''2| 770 - iy)\ Ú \t- iy\"\ h(t - iy) \ S A"e^f,

I 270 - iy) | dt S A"e^p I    02 + i)'i2~ldt :g A'"e^',
-O0 J —00

which proves the lemma.

1.5. An approximation theorem concerning functions of L„ (— », »).
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Theorem 1. Let F(t)EL„ (— oo, oo), that is to say, let F(t) be measurable

and essentially bounded in (— oo, oo). Then there are functions ga(z)EG„

(0 <a < oo) such that, for almost all x in ( — oo ,  oo ), ga(x)—>F(x) as a—> oo.

Let k(z)GGi and such that both n(t) and tn'(t) belong to Li (— <x>, oo),

and that f"*ic(t)dt = l (see (6.3)F), and take

(1.51) ga(x) = « I    K(at)F(t + x)dt.
J -00

Then U„(*)|^|k(0|i|F(0|oo, and

/oo
k(0 [F(x + t/a) -F(x))dt.

-OO

Let x be any point of the "Lebesgue set" of F(x), and

[F(x + u/a) - F(x) }du = a  I        {F(x + u) - F(x) }du.
0 J 0

Then 77a(0 =o(t) as t/a—>0. Integrating by parts, from (1.52) we deduce that

F(x) - ga(x) =  f   K'(t)Ha(t)dt,
•* —oo

taking   into   consideration   that   /«'(O->0   as   t—*± °o   and   that   |77a(0|

g2|i||7?(0|«,. Given e>0, we put

a— M /» M /» oo\
+  j     +  \     ) K'(t)Ha(t)dt = 7i 4- h + T3

-oo •' -.V       J M /

and fix M so that, for any a>0, |71 + 73| ^e/2. Taking 73 = /\ |/k'(0|¿¿, we

can find a 5 such that

\l¡\ ^ B    max     I rlHa(t) I < e/2     for     I */« I g S ( M á ¿O-

Henee \F(x)—ga(x)\ ^e for a ^M ó-1, therefore ¿«OO—►T'Xx), asa—>oo , at any

point x of the Lebesgue set. This proves the theorem.

§2. On functions analytic and bounded in an angle

2.1. Order of the approximating function.

Theorem 2. Let 0<®<2ir and F(z) (z=x+iy= |z|e1'*) be analytic in the

interior of the angle 0 (0 <</><©), and let, for any e>0, F(z) be bounded and

uniformly approximated by integral functions gn(z) (w = l, 2, • • • ; gn(z) inde-

pendent of e) of order p in the domain e^cp^Q — e, Oi=|z| <°o. Then

p^ir(2ir-®y\
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Proof. Suppose p to be smaller than 7r(27r — 0)-1; then there is an e>0

such that p + €<ir(2îr + 2e — 0)-1. Each of the functions gn(z) is bounded

for e^</>;£0 — e. In the remaining angle 0 — e<<p<2w-\-e we have g„(z)

= 0{exp (|z|'+*)} as |z|—>», while gn(z) is bounded on the two straight

lines forming this angle. It is less than 7r(p + e)-1, therefore g„(z) is bounded

in this angle, again by a Phragmén-Lindelof theorem. Hence, by the Liouville

theorem, gn(z) reduces to a constant. So does F(z), which is a contradiction.

Remark. If F(z) is not bounded and p<ir(2ir — 6Y1, then F(z) is an in-

tegral function of order p.

Theorem 3. 7,e/ F(z) and the gn(z) satisfy the conditions of Theorem 2. Given

any p'>p, there is a set fn(z) of integral functions of order p' which approximate

to F(z), as ra—>». uniformly in the domain e:S</>;£0 — efor any «>0.

We have to find a single integral function 27(z) of order p' which is bounded

for O^<p^0. We can take, for instance, 77(z) =EnP>{z exp 0'7r(2p')-1)}. Then

{/„(z)} = {gn(z)+n~1H(z)} i»«l, 2, • • • ) is the required set. Evidently the

result holds dropping the condition that F(z) should be bounded.

Remark. The theorems remain true if e is replaced by zero.

2.2. Best order. By Theorem 3 there exists a lower bound of the orders

of the integral functions which approximate to an analytic bounded function

in the angle©. By Theorem 2, this lower bound is not smaller than 7r(27r —0)~l.

This minimum value is in fact attained.

Theorem 4. Let 0 < 0 < 2a- araa* (i) F(z) (z = x +iy) be analytic and bounded in

the angle ]argz—ir/2\ <© /'2, with limit-function F'(f) (z—>f, argf=7r/2±0/2),
(ii) F(z) be uniformly continuous on the lines bounding this angle, or (ii)' F(z2)

be uniformly continuous on the two lines arg z = (w — 0)/4 and arg z = Or+0)/4

(0¿ \z\ < »), for irS@<2ir or O<0<x, respectively. Then there is a set of

integral functions ga(z) (0<ct< ») and a constant A, independent of a, such

that

(2.21) \ga(z)\ ^Aexp(\az\>),        p = t(2t - ®)~\

and that ga(z)—>F(z), as a—>», uniformly in the angle |arg z—ir/2\ <0/2.

For the border line case 0 = 0 (p = 1/2) see Theorem 3(a, b)F.

We note that the existence of the limit function F(Ç) at almost all points f

is a consequence of the regularity and boundedness of F(z) in the interior of

the angle 0 and that, therefore, F(z) is defined for |arg z—ir/2\ ;£©,

0^|z| <» (compare §2.4). The conditions (ii) and (ii)' are not necessary,

except for 0 =ir and for the limiting case 0 = 0 (Theorem 3(b)F). Take, for in-

stance, F(z) =Ei/p(iz). Possibly both (ii) and (ii)' can be replaced by the

weaker condition (ii)": F(zllf) is uniformly continuous on the two lines

argz = (2p)-10r+©)-

We need some lemmas.
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Lemma 7. Let k be a non-negative integer, let F(t) be defined for almost all t

in (—oo, oo), measurable and bounded on any finite interval and 0(\t\k) as

|i|->oo ; let pel, l^k/2 + í and h(z) be defined by (1.43). Then

h(at - az)F(t)dt
-00

is an integral function and satisfies the inequality

(2.23) \ga(z)\^A(i+\z\k + a~k)exp(\ay\")      (A = A(k, p)).

First we take k = 0, that is F(t)EL„(- oo, oo). Then

\ga(z/a)\^a\F(t)U f    \h(at-z)\dt = \F(t)\„ f    \h(t-z)\dt.
J —oo J — oo

Using Lemma 6 we arrive at (2.21). Now we take k>0. Using Lemma 6

again the proof is completed in a way similar to that of Lemma 5F.

2.3. Properties of boundedness.

Lemma 8. If F(z) satisfies the condition (I) of Theorem 4, for 0^7r, then

the functions ga(z) (0<a< oo), defined by (2.22), are bounded for |arg z—ir/2\

¿0/2, uniformly with respect to a.

First we take 0<arg z<7r. Let z be any fixed point in the upper half-

plane and B the upper bound of T^z) in the angle. We draw a small semi-

circle with centre at the origin, apply the Cauchy theorem and observe that

h(T—z)(r—z)2 is bounded as \r\—»oo, uniformly for 0^^y(r)^y. Thus we

can move the path of integration upwards,' and so

.(*)

1    c ¿iH-oo /»

= a     I h(at - az)F(r)dr    ^ B  I
I J »K-oo J -

h(t) | dt.

Hence the ga(z) are bounded for 0<y< oo, uniformly with respect to a.

Now we take z = ««•'* where — oo <u< oo and \¡p\ <(®—w)/2. Using the

Cauchy theorem again, we turn the line of integration by the angle <p, and so

, r«**

| ga(z) | = «   lim h(ar - az)F(r)dr    g Ba I      \ ÄJae**^ - u) } \ dt,
\  T-.» J -Te** J -oo

| ga(z) \£B C   \ h(te<*) | dt.
''-OO

The function h(r) is certainly bounded for \t\ £1, while &(r) =0(|r|-2), as

|t| —♦ oo, uniformly for | arg t\ < (0 —ir)/2. This completes the proof for the

case 7T < 0 < 27T. The proof for 0 = it is left to the reader.

2.4. Proof of the theorem for tt<0 <2t. For 0 = ir, see §3.
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Let K(z)=ah(z) where h(z) is defined by (1.43) and a is fixed so that

/"«,/c(i)<Ö = l.Then

/Te'* K(r)dr =1 (t = te**, -»<<<»),
-Te**

whenever |^| á (©— 7r)/2. The function ga(z) is defined by (2.22), replacing

h(z) by k(z), and z is supposed to lie on the straight line arg z= (it —0)/2 =<p

(0^ | z| < »). First we show that ga(z) can be represented in the form

/oo
jcfae^O - I z\ )}F(tei*)dt.

-00

For fixing z= | s| ef* and a, and turning the path of integration in (2.22), we

have ga(z)=aei*Jl„K(atei*-az)F(tei*)dt (<p<\¡/^0). Given í > 0 we can find a

number M such that

(2.43) ai   \        +  f   ) I K(atei* - az) \ dt < eB~\

uniformly with respect to ¡p f°r </> = ^ = 0 as we can easily see from a figure,

using Lemma 5. By the Lebesgue convergence theorem, we have

/M n MK(atel* - az)F(tei*)dt -> J       K(ate^ - z)F(tei't')dt
-M J—It

as ^—»0, which, together with (2.43), finally gives (2.42).

Using (2.41), we deduce from (2.42) that

/00

(t(fe'*)(F {«'*(//« + | 3 | )} - F(ei<> | z | ))dt

(0 á |*| < oo).

By the conformai transformation z = w /x exp (iir/2—i®/2), we deduce from

(i) and (ii) that F(z) is continuous for | arg z — 7r/21 ^ ©/2, 0 :£ | z | < ». Hence

F(t) (r=»ei*) is uniformly continuous for 5;£z>< » (5>0). Using a familiar

argument, we deduce that, uniformly on the line arg z= (it — @)/2. =<j>,

ga(z)—^F(z) as a—»». The same result applies to the line arg z = (ir + 0)/2

(0g|z| <»).

In consequence of the hypothesis and of Lemma 8, the function ga(z) — F(z)

is bounded for | arg z— 7r/21 <0/2, We can now employ a Phragmen-Lindelöf

theorem. Thus we have, uniformly for |argz— 7r/2 j <©/2,

| ga(z) - F(z) |  g      u.b.       | gŒ(z) - 7(z) | -»• 0    as    a -» » ,
arg z-(i±0)/2

which completes the proof.

2.5. The case 0<@<7r. The function F(z2) is analytic for | arg z—v/i

<0/4and,defining F(z)=F(ze--2,>) for |argz+37r/2| g0/2,for |argz+37r/4



1944] APPROXIMATION BY INTEGRAL FUNCTIONS 15

< 0/4, F(z2) is uniformly continuous on the two lines z = u exp (iw/4 ±¿0/4)

(— oo<w<oo) which form both the above angles between them. By the sub-

stitution 0'=ir+0/2, z=ze~iT/i the regions concerned become | arg z\

<(©'-■tt)/2 and |argz+7r| <(0'-tt)/2. The function

(2.51) <2«(I) = «1/2 f   K{a1'2(t-T)}F{(te"'y}dt
•'-oo

has the following properties:

(I) It is an integral function, and \Qa(z)\ <A exp (¡za112]"')

(p' =tt/(2w — ©'))• This follows from Lemma 7.

(II) Qa(z)-*F(z2eirli) as a->oo, uniformly for |argz| <(0'-ir)/2 and

| arg z+7r| <(0'—7t)/2. This can be seen by arguments used in §§2.3 and 2.4.

(III) Qa(z) is an even function ; for k(z) is even.

Therefore Pa(w) =Qa(w1/2) is an integral function, and | Pa(w)\ <A exp (|aw| '),

where p=p'/2=ir(2ir-@')~1/2 «*(2t—8)_1. Taking w = z2, from (II) we

have Pa(w)^>F(weilrl2) as a—»oo, uniformly for | arg w\ <©'— x = 0/2.

Finally, putting ga(z)=Pa{z exp (— tV/2)}, we have g«(z)—>7*"(z) uniformly

for | arg z—ir/2 \ < 0/2, and | ga(z) \ <A exp (| az\ "). This completes the proof.

2.6. The problem of best approximation. By means of Lemma 3, we can

prove

Theorem 5. Let F(z) be defined for |arg z—ir/2\ <0/2, whether it be ana-

lytic or not, and bounded in this angle, and let b>0 be fixed. Then in the set G,

consisting of the integral functions of the type b of the order p=Tr(2ir — ®)~1 or of

smaller type or order, there is at least one function g(z) such that, for any h(z) EG,

u.b.        I F(z) - g(z) I g u.b. I F(z) - h(z) I.
|arg2-ir/2|<8/2 |argî-ir/2|<0/2

2.7. Approximation in regions different from the interior of an angle.

Theorem 6. Let (i) Rbe a region extending to infinity, bounded by a Jordan

curve C(9), and let all the points of R lie in the interior of an angle © (0 < 0 < 2w).

Let (ii) F(z) be analytic and bounded in R and (iii) its limit function be continu-

ous everywhere on C, including infinity. Then F(z) can be approximated by in-

tegral functions of order p=Tr(2w — @)~1(10) uniformly in R (or R-\-C).

(9) Here C is a Jordan curve in the general sense, that is to say, it is mapped on an ordinary

finite closed Jordan curve r by any substitution i£> = (z—Zo)_1 where Za does not lie on C, ex-

terior to R-\-C, say. The function F(z) is said to be continuous everywhere on C, including in-

finity, when it tends to a finite limit L, as z moves towards the point at infinity along C. Then

A (if) = F(zo+w~') is continuous on the curve V and, by (ii), analytic and bounded in its interior

R', therefore continuous in the closed domain R'-\-T. Hence, uniformly in R + C, F(z)^>L

as I s I —)• oo.

(10) Among the functions approximating to F(z) there may occur integral functions of

order smaller than p. By the argument of Theorem 3, they can be replaced by functions of

order p. This applies to Theorems 7, 7', 10.
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Let the angle 0 be formed by the lines arg z = ir/2 —0/2 and arg z=ir/2

+0/2. It is known that, uniformly on C+R, F(z) can be approximated by ra-

tional functions whose only singularity lies outside C+2?, at the point z = — *,

say. Hence(n), given €>0, there are numbers ak (k = 0, 1, • • • , ra) such that

(2.71) F(z) - £ ak(z + i*)"*

uniformly in C+R- By Theorem 4, each of the functions ak(z-\-i)~k

(£ = 1, 2, • • • , ra) can be approximated by integral functions of order p, uni-

formly in the angle 0. This yields the required result.

Probably (iii) can be replaced by a milder condition (see §4.1).

Application. Let C be a parabola and its "interior" R be defined as the

part of the plane lying on its concave or convex side, respectively, and let

7"(z) satisfy the conditions of. Theorem 6. In the first case F(z) can be uni-

formly approximated by integral functions of any order p>l/2. It can be

shown, however, that in the second case F(z) cannot be approximated uni-

formly by integral functions of any finite order.

§3. On functions analytic and bounded in a half-plane

3.1. Approximation in the mean in a half plane. In this section we take

@=7T, p = l. The results will be sharper than those obtained in the general

case (see §2). We shall deal not only with functions which are bounded in the

ordinary sense, but also with the class &p. In the latter case uniform conver-

gence will be replaced by convergence in the mean of order p when 0<p< ».

We shall prove

Theorem 4'(a). 7ra order that, uniformly in the half-plane, the function F(z)

can be approximated by functions ga(z)GGa (0<a—>») which belong to ¡Qx,

it is necessary and sufficient that (i) F(z) belong to ¡Qx and (ii) its limit function

F(x) is uniformly continuous in ( — », » ).

Theorem 4'(b). Let 0<p< ». 7ra order that there should exist functions

ga(z)E:Ga (0 <a < » ) belonging to ÍQP and such that, uniformly with respect to y,

(3.11) \F(x+ iy) - g*(x+ fy)|P-+0 (<*->■ »,0 < y < »),

it is necessary and sufficient that F(z) belong to !qp.

Without proof we state

Theorem 4". Let F(z)£.íqp (0<pS »). Then there are functions ga(z)GGa

(0<a< ») such that for any «>0, dnga(z)/dzn-^>dnF(z)/dzn (ra = 0, 1, 2, • • • ;

a—»») uniformly in the half-plane e^y< ».

(") J. L. Walsh,  Interpolation and approximation by   rational functions in the complex

domain, Amer. Math. Soc. Colloquium Publications, vol. 20, 1935, §2.4.
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Proof of Theorem 4'(a). The necessity of (i) follows from a known theo-

rem, that of (ii) from Theorem 3(b)F. The sufficiency of the conditions is

deduced from the Lemmas 4F and 8 and from Theorem 3(b)F by means of a

maximum-modulus theorem.

3.2. Proof of Theorem 4'(b). The necessity of the condition follows from

a known result. To prove its sufficiency, we take first i^p< oo. The limit-

function F(x) belongs to Lp(— oo, co), while n(t) (see §2.4) belongs to

Li(— oo, oo). By Lemma 4F, therefore, ga(z) belongs to Ga. Using Lemma 1

and the known results(12): F(z) is bounded for y^ô (5>0), and

\F(t+ iô) -F(0|,-»0    (álO), I K(t-z)\p. g e»|*(0|p' ^ B,

where z is fixed (y>0) and p' =p(p — l)~1, we can apply the Cauchy theorem.

Thus we deduce that

/i iy+oo /% oo

k(<*t — az)F(r)dT = a  I     K(at)F(t 4- X 4- iy)dt.
IB—oo "  —oo

By a well known convexity theorem, we have

| k(1) | | F(ta~l 4- x+ iy)\Pdt.
-00

Hence

/co y» oo /• 00

| ga(x 4- iy) \"dx ¿ | K(t) Ii-1 I     | «(0 If     I F(* + *y) I'«**«
-OO J — 00 •>* -OO

.*áB;i«(oir,
where 73 p is the upper bound of | F(x+iy)\ P for 0<y< ». Thus ga(z)E&P-

Using theorem 3(a.)F and a maximum-modulus theorem due to Hille and

Tamarkin(13), the proof is now completed as that of Theorem 6.

3.3. The case 0<p<l. To cope with the case 0<p<l, we represent

T^z) in the form(14) F(z) =<p(z)II(z) where H(z)E^>x, while $(z) belongs to

$£>p and has no zero for y>0. Let k be an integer not smaller than p~l and

kp=q, so that g^ 1. The function

*(*) = {«W}1'* (y>0)

belongs to §,. Let 77(x), €>(ic), iZ'(x) be the limit-functions of 77(z), 4>(z), ^(z)

respectively; then <p(x) = {\p(x)}k. By the result of §3.2, there are functions

fff(z)EGß (0<ß< oo ) belonging to £>a and such that \fß(x)—}p(x)\t-^Oasß^Kx>.

Let e„i» = \fß(z)}k. Then Çfl(a) EGka and, by Lemma 6F, | Qß(x) - *(*) | p^0
as /3—>=o. By Theorem 1 and Lemma 8, there are functions hy(z)EGy

(0<7< oo) belonging to §„ and such that, for almost all h in (— oo,   co),

(,2) Hille and Tamarkin, loc. cit., Lemma 2.4 and Theorem 2.1 (iii), part 1; Lemma 2'F.

(13) Loc. cit., Theorem 2.1 (iii), part 2.

(") Hille and Tamarkin, loc. cit., Theorem 2.2, and T. Kawata, loc. cit.
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hy(x)^H(x) as y—>». It is easy to see that |â7(z)| ^A (y>0) where A is

independent of y (see (1.51)). Now the function ga(z) =Qs(z)hy(z) belongs to

¡Qp and to G„, where a = kß-\-y, and we have

/OO /» 00I F(x) - ga(x) \pdx ¿ ess. u.b. | H(x) \p I     | <f(x) - Q»(x) \pdx
-00 — 00<X<00 J _oQ

/OO

\Qß(x)\p\H(x) - hy(x)\pdx.
-00 '

Given e>0, we can fix ß so that the first term on the right is smaller than e/2.

Then, by the Lebesgue convergence theorem, we can fix y0 so that the second

term is less than e/2 for yayo; for \H(x) —hy(x)\pS(\H(x)\x-\-A)p. Thus

I F(x)— ga(x)\ p—»0 as a—>», and applying the Hille-Tamarkin maximum-

modulus theorem, we arrive at (3.11).

3.4. Best approximation. In consequence of the above maximum-modulus

theorem, the results of §9F on best approximation can be extended to the

case F(z)E;i£>p (compare §2.6). In the case p — 2, in particular, the sequence

of best approximation is

1    /""sin a(t — z)
(3.41) ga(z) = Da(F; z) = — -F(t)dt    (0 < a -+ »).

v J -„       t — z

§4. On functions which are analytic in an angle but

not necessarily bounded

4.1. Introduction. If, uniformly in a region R extending to infinity, a func-

tion F(z) is approximated by rational functions, it is necessary that there

exist a polynomial /(z) such that F(z) —f(z) tends to a finite limit uniformly

for z in R as | z| —* ». Obviously this is a very restrictive condition.

Consider first bounded functions. In this case we can take/(z) =0. Func-

tions which oscillate in the region concerned, or on its boundary, near z= »,

for instance Fa(z)=exp (z°) (l/2<a^l, 7r(2a)-1^arg z^37r(2a)_1), cannot

be approximated uniformly by rational functions, no matter how the poles

are chosen. By Theorem 4, however, Fa(z) can be approximated by integral

functions of any order p2:a(2a — l)-1, uniformly in the domain ir(2a)_1

^argzg37r(2a)-1.

Now consider unbounded functions. When r is not an integer, the func-

tion zr (0<r< ») cannot be approximated by rational functions uniformly

on any straight line, or any curve extending to infinity. For there is no poly-

nomial f(z) such that zT—f(z) remains bounded on this curve, not to speak

of continuity (see §2.7). By integral functions of finite order, however, zr can

be approximated uniformly for Ogarg z<|© whenever 0^@<2ir (Theorems

11, HO.
On regions extending to infinity, therefore, approximation by integral
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functions appears to be a stronger tool than that by rational functions.

We shall now state some theorems on the approximation by integral func-

tions to functions which need not be bounded.

4.2. General theorems.

Theorem 7. Let 0<®<2w, p =tt(2w — @)-1. If F(z) is analytic in the angle

© (0<arg z<0), and if there is an integral function h(z) of order not greater

than p such that F(z)—h(z) is bounded in the angle, and that

(a) F(z)-h(z)     or     (b) F(z2) -h(z2)

is uniformly continuous on the two straight lines forming the angle (a) 0 or

(b) 0/2, for ir 5| © < 27T or 0 < © <tt respectively, then there are integral functions

of order p which approximate to F(z) uniformly in the angle ©.

This follows immediately from Theorem 4. For its conditions are satisfied

by the function F(z)—h(z).

Theorem 7'. The function F(z) can, uniformly in the upper half-plane, be

approximated by functions ga(z) GG„ (0 <a—* » ) if, and only if, there is an in-

tegral function h(z) satisfying an inequality \h(z)\ <A exp (¿>|ä| **) for some

pS 1 araa" such that F(z)—h(z) is bounded in the half-plane and uniformly con-

tinuous on the real axis.

The sufficiency of the conditions is obvious; so is their necessity, taking,

for instance, h(z)=gi(z). A similar result holds for the approximation in the

mean of order p (0<p< »).

Theorem 8. Let, uniformly in the angle 0 (0<©<27t), F(z) be approxi-

mated by integral functions of finite types of the order p=w(2w — &)~1, and let

the limit inferior of the types be a finite number ß. Then F(z) is an integral func-

tion, satisfying an inequality | F(z)\ <A( exp {(/3 + e)|z| "} for any e>0.

The proof is based upon Lemma 3, observing that the difference of any

two of the approximating functions is an integral function of finite type of

the order p, bounded in the angle 0, and using an argument presented in §8F.

4.3. A Lipschitz condition. When we try to apply Theorems 7 or 7' to a

given function F(z) which is not bounded then a particular difficulty arises.

There is no general criterion for the existence of a function h(z) as required

in the theorems.

We shall deal with special cases, using another method. We start with a

Lipschitz condition.

Theorem 9. Let l¿p=ir(2ir — @)~1 and 0<r^l; araa" let k be a positive

integer. If

(i) F(z) is analytic for |argz— 7r/21 < 0/2 araa", uniformly for |argz — 7r/2 J

<0/2, F(z)=0(\z\k) as \z\->°o,and
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(ii)  | F(z+t) — F(z)\ ^^4|0r uniformly for — oo<¿<oo,0<y<oc, and

(iii)  | F(z-\-r)—F(z)\ ^A\t\t uniformly with respect to u, t and <p,

where z = uei*, T=tei*, — oo <w< oo, — oo </< oo, |<p| <(©— 7r)/2, then there is

a set of integral functions ga(z) suchthat \ga(z)\ <Aa,e exp (| (a+e)z|?) for any

€>0 and that, uniformly for |argz— ir/2\ <@/2, ga(z)—*F(z) asa—><x>.

Evidently (iii) is to be dropped when p = 1, © =ir. By means of a conformai

transformation we deduce that the limit-function of F(z) exists at any finite

point of the two lines arg z= +(©— 7r)/2 and that, therefore, (iii) holds on

these two lines. We set

(4.31) ga(z) = a f   K{a(t- z))F(t)dt,
J -00

where k(z) is defined as in §2.4 and tk+2n(t) is bounded in (—°o, oo). By

Lemma 7, ga(z) is an integral function satisfying (2.23). Fixing z in the upper

half-plane and observing that, uniformly for 0<3(r)^y, k{oi(t — z) }rk—»0 as

|t| —>oo, we can apply the Cauchy theorem to move the path of integration.

Thus we deduce that

(4.32) ga(z) = a f   K(at)F(t 4- z)dt.
J —a,

Hence, using (ii), we have

| ga(z) - F(z) \*f\ <t(0 | | F(t/a + z)- F(z) | dt

(4.33)

' n(t)tr | dt.
/OB-0«

The term on the right tends to zero as a-**oo, uniformly for 0 <y < oo.

Observing that tkn(atei*-auei*)-^0as*->+ oo (u,<p fixed, |<¿>| <(©-tt)/2),

uniformly for 0^\¡/^<f> or <p^\j/^0, we can turn the path of integration in

(4.31); hence

g„(z) = ae* J     «{ae^^ - u) ¡F^e^dt (z
J -oo

«e'*).

Using (iii) it can now be shown that ga(z)-+F(z) as a—> °o (see 4.33) uniformly

for \<p\ <(©— x)/2. This completes the proof.

4.4. A Taylor condition.

Theorem 10. Let, uniformly for |argz — ir/2| <0/2, the functions F,(z)

(j = l, 2, • • • , n) be approximated by integral functions of finite types of the

order p=ir(2ir — @)~1 (p^l); let F(z) satisfy, condition (i) of Theorem 9, and

let0<ri<r2< • • • <rn<<x> and
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n

(4.41) F(z + r) = F(z) + £ T'iFi(z) + R(z; r)
j-i

where, uniformly for 0<y<», — » <t < » (arg r = 0 or -tt) , araa" uniformly for

— » <«< », — » <ü< », (ir —@)/2<<p<(©-7t)/2 (z = uei*, r=vei<<'),

| 2?(z; t)| ^ Ao\ t\c (0 < c < »).

Then, uniformly for |arg z—7r/2| <@/2, 27(z) cara 6e approximated by integral

functions of finite types of the order p.

Let 2>max (k/2 + í, rn/2 + l, c/2 + 1) (see §1.4 (1.43)), and let ga(z) be

defined by (4.31). Then we have

n r% oo (% co

(4.42) ga(z) -7(z) = X) orr*Fj(z) I    kO)»"'^ + a j    K(at)R(z; t)dt.
) = 1 «/ _0O «J -00

The last term is majorized by ^4oa_c, as we see by estimating the integral first

for y>0 and then for |arg z\ <(©— 7r)/2 and for |arg z—ir\ <(S—ir)/2.

From the hypotheses we deduce that the integrals f-*ic\t\tr'dt are finite

constants c¡, and that there are integral functions ga,i(z) of the type a" of

the order p such that Fj(z) —ga,j(z) is bounded uniformly with respect to z

for | arg z—ir/2\ <©/2 and to a for a0<«< » («o>0), with upper bound -4,-,

say. Hence, taking |a(z) =ga(z) — ̂2c,a~r'ga,,(z), we have

n

I 7(z) — £«(z) | ^ £ a-7'^,-1 Ci | + a-c^4o —> 0    as    a —» »
j-i

uniformly for |arg z—tt/2j <@/2. Thus we have proved the theorem.

4.5. An extension of the binomial theorem. The equality which will now

be proved is treated in more detail than needed for our purpose, since it can

be regarded as an extension of the binomial theorem.

Lemma 9. Let O^arg z^7r, — » <¿< », O^arg (z+/)=7r; let ra 6e ara in-

teger and 0^ra<rgra + l. Then, uniformly with respect to z,

(4.51) (Z + ty  -   E Cr.iVz'-'
)=0

£Ar\t\

where the best possible value of Ar is unity for 0<r — ra^l/2 and for r = ra + l,

while it is not greater than 2n+1~rsin ir(r — n)/2 for 1/2 <r — «<1.

Lemma 9'. The result holds, uniformly with respect to <p, t and z, if arg z,

arg /, arg (z+í) take the values <p and<j>-\-ir only (<j> real).

This follows from (4.51), taking z real and turning the real axis by the

angle —<p.

Proof of Lemma 9. Let 0<r<l. The function h(z)=(z+l)r — zr belongs
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to §«,. Hence, by a maximum-modulus theorem, we have

| (z + *)' - zT\ g | h(x)\a =     u.b.     | (x + t)T - x |

^ u.b. |*i — *f|        (*i = * + 0-
— 0O<Z1<»i   — W<Z<»

When * and *i are both either positive or negative, then we have

\     r r i i ir I     if

I  *1 —   *   I   è |  *1 —   * |     = I < |   .

Let *<0, *i>0. Then |*i-*r| ^xr1 + \x\r^21-r(xi+\x\)T = 2l~rtr. Hence

certainly Ar^21~r. Putting *i*-1= — s, we have

*i — *

(*i — x)r

iwr i

;   ,g     ' = Vr(s) (0<s< oo).
(s + l)r

Taking FPr(s) =5-'(s4-l)2r{ l-(Vr(s))2}, we have IFr(l) = 22r+2 cos 7tr-2.

Now we need some inequalities.

> 1 - 2r 0 < r < 1/2,
(4.52) cos 7rr for

< 1 - 2r 1/2 < r < 1.

> 0 0 < r < 1/2,
(4.53) 4r - 4r for

< 0 1/2 < r < 1.

(4.54) (1 - s°)(l - s)-1 á (1 + s)"-1 (0 < a á 1; 0 < 5 < «o).

Possibly (4.54) is known, while (4.52) and (4.53) are obvious.

First we suppose that 0 <r ^ 1/2. We have

dWr(s)      r(s - 1)

ds sr

I) I 1 - s2')

By (4.54), the term in braces is not negative. Hence TFr(l) =22r4-2 cos wr — 2

is the minimum value of Wr(s) in (0, oo). By (4.52) and (4.53), we have

Wr(i) è4r — 4r^0. Hence Vr(s) Jal, and so Ar^\. Taking xi—>oo we see that

¿r-l.

If l/2<r<l, then W,(t) <4r-4r <0, therefore Fr(l)>l, and so Ar>l.

Since 5r(s + l)-2r^4-r, wè have { Vr(s)} 2-l á4-'| JFr(l)|, and so 4r = Fr(l)

= 21-rsin 7rr/2. Hence the lemma is true for 0 <r < 1, even in a slightly sharper

form than stated above. For «<r^re4-l, we deduce that the left side of

(4.51) is equal to

r(r - 1) ■ ■ • (r - n 4- 1)     f  dtx f   A, • • •  f    "' {(z 4- /„)'""
I •/ o        «To «To

dt„
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Since 0<r — ra=T, the modulus of the term in braces is not greater than

-í4r~n|¿n|r~n- Thus the required result follows at once.

4.6. Application to the function zr. We suppose that — ir/2<arg z<3w/2.

Theorem 11. When 0<®<ir and p=ir(2ir — @)~1 then, uniformly for

| arg z—k/2 \ < 0/2, the function zT (0 < r < » ) cara 6e approximated by integral

functions of finite types of the order p, the types tending to infinity.

First we take 7r = 0<27r. For 0<rgl, the theorem is an immediate con-

sequence of (4.51), with ra=0, and of Theorem 9. Suppose that it holds for

0<r:ara, where ra is a positive integer. Then, by (4.51) and Theorem 10, it

holds for raO^ra + 1, which completes the proof.

The case 0<@<7r is treated in a similar way as the corresponding one

in §2.5, but using some result corresponding to Theorem 10 and the first

part of

Lemma 9". Let 0gra<2r^ra + l, — » <t, u< ». Then, for even or odd

values of ra, respectively,

{(u + t)2] ' - £ CViO sgn u)>(u2y-i'2 ^ 02)'    or    2"+l-2r(t2y

and

{(u + t)2] ' sgn (u + t) - £ CW(sgn u)'+\u2y-''2
J-0

^ 2^-2'(t2Y or (t2Y.

We observe that, with a suitable choice of n(t), f-„K(t)t>dt = 0 for

.7 = 1, 3, 5, • • •   (j = ra).

It can be shown that the theorem holds in the limiting case 0=0:

Theorem 11'. The function xr can, uniformly in (0, »), 6e approximated

by integral functions of finite types of the order 1/2.

§5. The strip

5.1. Approximation in the mean in a strip. Let a and 6 be finite real num-

bers (a <6) and 0 <p ^ ». Let S be the region — » <x < » , a <y <6, and let

Sp(a, 6) be the set of functions which are analytic in 5 and satisfy the condi-

tion

(5.11) \F(x + iy)\p SAP (a<y<b),

where Ap does not depend on y. We shall prove

Theorem 12. (a) Let 0<p< » araa" F(z)£Sp(a, b). Then there are func-

tions ga(z)(EGa (0<a<») such that, uniformly for a<y<b, \F(x+iy)

—ga(x+iy)\P—>0 as a—>».

(b) Let F(z) GSœ(a, b), that is to say, let F(z) be analytic and bounded in S,
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and let F(x+ia) and F(x+ib) be its limit-functions. Then F(z) can be approxi-

mated, uniformly in S, by functions ga(z)EGa (0<a< oo) if and only if the

limit-functions F(x-\-ia) and F(x-{-ib) are uniformly continuous in (— <x>, oo).

We note that the ga(z) can be replaced by integral functions of any higher order,

but not of any smaller one.

The proof is based upon a theorem which corresponds to results of Hille-

Tamarkin on the class ^>p. Its proof will be given in the appendix to the pres-

ent paper.

5.2. The factorization theorem.

Theorem 13. Let 0<p^ oo and F(z)ESp(a, b).

(a) Then F(z) is represented in the form F(z) =G(z)H(z) where G(z) has no

zeros in the interior of the strip and belongs to Sp(a, b), while H(z) belongs to

SK(a, b) and |7T(x-H'a)| = |77(*4-jè)| =1 for almost all x in (— oo, oo).

(b) For almost all t in (— oo, co), F(z) tends to limit-functions F(t+ia) or

F(t+ib), respectively, as z tends to t+ia or t+ib from the interior of S along

any path not touching the lines bounding S.

(c) WhenO<p<«> then

F(x 4- id) y i a
(5.21) F(x + iy) - -0   as

F(x + ib)  p y\b.

(c1) When p= <x> then \ F(x+iy) \ „—*\ F(x+ia) | „ as y J, a and | F(x+iy) | «,

—>| F(x-j-ib) | a as y î b, while (5.21) holds for p— oo if and only if the limit-

functions F(x+ia) and F(x-\-ib) are uniformly continuous in (— *>, oo). When

this condition is satisfied, or when the limit-functions are merely continuous in

( — oo, oo ), then F(z) is uniformly continuous or is merely continuous, respec-

tively,for — oo <x< =o, a^y^b.

(d) WhenO<p^*> then, for a<y<b,

(5.22) | F(x + iy) \p ¿ | P(x + ia) \^<^ | F{x + ib) | <—>/<*->

(e) When \Sp<x, then, for a<y<b, F(z) is represented by its proper

Cauchy integral

1    r°°F(t+ia)dt        1     r°°F(t+ib)dt
(5.23) F(z)=^ ■—-— ——-

2-7TÎ J _oo  t + ia — z       2-ki J _M   t + to — z

(f) When l^p^ » then, for a<y<b, F(z) is represented by its proper

Poisson integral

1   c
F(z) = -

T  J -,

(5.24)

1   f x    (y - a)F(t + ia)dt

(t - x)2 4- (y - a)2

1   r°°

T  J_„     (t  -

(y - a)F(t 4- ib)dt

-„   (I — x + ib — ia)2 + (y — a)2
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and by the corresponding formula resulting by interchanging a and 6, and the

signs of the integrals.

5.3. Proof of Theorem 12. We need

Lemma 10. Let 0<a<», let i^pS » araà" F(z)Ç:Sp(a, b). Let k(z)GGi

and k(x)(E.Lí(— », »). Then the function

/oo+ia

k(oct - az)F(r)dr
-oo+ia

belongs to Sp(a, 6).

The proof is similar to that of Theorem 4'(a, b), using Lemma 12 (§7.1)

and Theorem 13(c).

To prove the theorem for 1 Sp^ », we suppose that k(z) satisfies the con-

ditions of the lemma and that f-„n(t)dt = 1. By Theorems 13(c) and (c'), we

have

ga(x+ ia) f F(t+ x+ia)
= a I     K{at)dt

ga(x+ib) J-oo F(t+X+ib)

Using a result due to E. Hille (Lemma 7F), we deduce that, for 1 SpS »,

| ga(x + ia) — F(x + ia) |p —> 0, | g„(x'+ ib) — F(x + ib) \p —» 0,

/F(t + x + ia)
K(ai)dt (— »  < x <  »).

h. Fit + x + ib)

as a—*». Now we apply Theorem 13(d) to the function ga(z) — F(z), and so,

uniformly for a<y<b, ga(z)—>F(z) as a—>». The necessity of the uniform

continuity of the limit-functions for p= » is deduced as in Theorem 3(b)F.

This completes the proof for 1 SpS ». For 0<p<l, the proof follows lines

of §3.2, but using the Theorems 13(a) and 13(d).

§6. Some applications

6.1. The Weierstrass approximation theorem. Let/0) be continuous for

0=^ = 1. Given e>0, we take F(t) =/(0) or/0) or/(l) for /<0 or 0=^1 or

i>l, respectively; by Theorem 3(b)F, we can find an integral function g(z)

of exponential type such that | F(t) — g(t)\ „ is e/2. Expanding g(z) into a

power series, we can find a polynomial T(z) such that \g(t) — T(t)\ ^e/2 for

Ogi^l. Hence \f(t)-T(t)\ =ein (0, 1).
6.2. A property of the Dirichlet singular integral. Let F(z) £.Ga (0 <a < » )

and F(t)ELp(-«>, ») (0<;/><«). Then F(z)=Dß(F; z) (see (3.41)) when-

ever » >j82ta.

This result is known(16). Here we give another proof. Let 0<p^2. By

Lemma 2'(a)F, the function F(x) belongs to Lz(— », »). Among all ele-

ments of Gß, the function Dp(F; z) is that of best approximation to F(x) in

7,2(-oo, ») (Theorem 5'F). But certainly F(z)QGß and \F(x)-F(x)\2 = 0,

(16) H. Kober, Quart. J. Math. Oxford Ser. vol. 11 (1940) pp. 66-80, Theorem 6.
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which yields the required result for 0<p^2. When 2<p< oo, we apply the

preceding result to the function («z)_1 sin ezF(z) and take e—»0; thus we prove

the assertion for ß>a and, by continuity, for ß=a.

6.3. Approximation by rational functions. We use the notation of §5.

Theorem 14. Let 0<p<°° and F(z)ESp(a, b), and let Zi = ux-\-ivi,

z2 = u2+iv2 be any two fixed points outside the strip S, lying in the lower or upper

half-plane, respectively. Then there are rational functions f„(z) (re = l, 2, • • • ),

with their only poles at Zi and z2 and such that, uniformly for a <y <b,

(6.31) I /„(* + iy) — F(x 4- iy) \p —* 0    as    re—>oo.

It is known(16) that the result is true for p = co under the additional con-

dition that the two limit-functions are continuous in (— oo , co ), and that the

four limits, as x—> + °o in F(x-{-ia) and F(x-\-ib), exist and are finite and

equal. To deal with the case 0<p< oo, we need

Lemma 11. Let F(z) be analytic and bounded for y <0 and F(x) be its limit-

function as y—»0, and let zo be any fixed point in the upper half-plane. Then

there are rational functions r„(z) (re = l, 2, • • • ) with the following properties:

(I) They have no singularity except at z=zo.

(II) rn(x)—*F(x) at almost all x in ( — oo, co), as re—>oo.

(III) rn(z)—>F(z), as re—>oo, uniformly in any finite domain of the half-

plane y<0.

(IV) \rn(z)\^\F(x)\afory^0.
If F(x) is continuous in (— oo, oo), then (II) holds uniformly in any finite

interval.

The proof of the lemma is given in the appendix to the present paper,

but that of its last assertion is omitted.

By Theorem 12(a), there are functions ga(z)EGa (0<a< oo) such that,

uniformly for a<y<b, \ F(x-\-iy) — ga(x-\-iy) |P—>0 as a—>oo. Hence, uni-

formly for a<y<b,

(6.32) \F(x 4- iy) - e-ia<-x+iy)Ha(x + iy — ia) \p—>0    as    a —> oo ,

where Ha(z — ia) =eiazga(z). By Lemma 2'(b)F, with P(z) = 1, 77a(z) belongs

to ¡Qp. Now we fix a. By a known result(17), there are rational functions

7?„(z) (re = l, 2, ■ • ■ ), with their only singularity at the point z' = Zi — ia, and

such that \Ha(x-T-iy)— 7?n(x-Hy)|p—>0 as re—>cc uniformly for y>0. Hence

(6.33) | e~ia^+iy)[Ha(x + iy - ia) - Rn(x + iy - ia)} \p —» 0   as   re —>■ oo

uniformly in the strip a<y<b.

The function exp {— ia(z-\-ib)\ satisfies the condition of Lemma 11.

Hence there are rational functions, rm(z) (m = l, 2, ■ • ■ ) say, with a single

('«) J. L. Walsh, loc. cit.
(17) H. Kober, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 437-443, Theorem 2(b).
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singularity at z2 — ib and such that |rm(z)| Seab for y^O and that rm(z — ib)

—->exp (—iaz) as m—>» at almost all (even at all) points of the two lines

y=a, y = 6. Fixing w and applying the Lebesgue convergence theorem, we

have

(6.34)      | {e-*«<*+<»> - rm(x + iy - ib)\Rn(x + iy — ia) |„ —* 0   as   m -» »

for y=a and y = 6 and, by Theorem 13(d), therefore, uniformly for a<y<b.

Combining (6.32), (6.33) and (6.34), we can construct a sequence fn(z)

(ra = 1, 2, ■ • ■ ) of the kind required in the theorem. This completes the proof.

For 1 <p< » the result can also be deduced from (5.23). Denoting the

terms on the right of (5.23) by 7\(z) and F2(z), it can be shown that both

Fi(z-\-ia) and 2^06 — z) belong to §p. The proof is completed by employing

a known result(n) on the approximation to elements of §p by rational func-

tions. This method, however, fails for p = l and 0<p<l.

§7. Appendix

7.1. Estimates in the strip. For p = 2, the assertions (b), (c), (e) of Theo-

rem 13 have been proved by E. C. Titchmarsh(18). For p= », (b) is well

known, so is probably (d). The proof follows the lines of a classical proof due

to F. Riesz(19), using a result due to G. H. Hardy, A. E. Ingham and

G. Pólya, and the Titchmarsh theorem. Without loss of generality, we take

6= —a=ir/2. We need some lemmas.

Lemma 12. Let 0<£< » and F(z)£SP (—w/2, tt/2), and let 0<5<tt/2.

Then, for \y\ Sir/2 —8, F(z) tends uniformly to zero as |z|—>» and |7"(z)|

SAp8~2lp, where Apis defined by (5.11).

Using results due to Hardy and an argument due to Plancherel and

Pólya(20), we have

|F(z) \p S- I      |    \F(z + s+ it) \pdsdt =- I       dt |       \F(s+ it) \pds

J        /» t/2 nx+i

S- I       dt I       | F(s + it)\pds = I.
irá2 J-t/2     J 1-5

By (5.11), the inner integral is uniformly bounded in 5 and tends, for any t

in (—tt/2, tt/2), to zero as x—►+ ». Since 7 is independent of y, we arrive

at the required result by means of the Lebesgue theorem.

Using the lemma and applying the Cauchy integral theorem, we have

(l8) Introduction to the theory of Fourier integrals, Oxford, 1937, Theorem 97. The proof

can, however, be based entirely on the Riesz theory for 0 <p < oo.

(") F. Riesz, Math. Zeit. vol. 18 (1923) pp. 87-95.
(20) Comment. Math. Helv. vol. 10 (1937/1938) pp. 110-163, inequality (73).
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Lemma 12'. Let 0</>^», 0<5<tt/2 araá* F(z)£.Sp(—w/2, tt/2); then

dnF(z)/dzn (ra = 0, 1, 2, • • • ) is bounded for \x\ < », \y\ ^v/2 — 8.

7.2. Proof of Theorem 13(a). The conformai transformation

(7.21) w= (e* - l)/(e2 + 1) = tanh (z/2)

maps the interior of the unit circle V of the w-plane on the strip 5 in the

z-plane(21). Let F(z)=f(w), then f(w) is regular in T. Let «i, a2, ■ ■ • be the

zeros oí f(w) in T, in order of increasing \ctk\, multiple zeros being written

multiply. Let a* = tanh (ßk/2), | 3/3*| <tt/2, then the ßk's are the zeros of F(z)

in 5. First we suppose that 2^(0) =/(0) is different from zero. We set

»   sinh 08* - z)/2 / sinh ßk \ »'«
(7.22) 27„(z) = TI -_-( - )     ,

*_i cosh (ßk-z)/2\sinh ßj

(7.23) hn(w) = H J-- (ra = 1, 2, • • • ),
*_i     ak      1 — wäk

where the square roots are defined so that the factors of the product in (7.22)

are positive at z = 0. Then 27„(z) =hn(w), and the function H„(z) has the fol-

lowing properties:

(7.24) | 27„(z) | -» 1    as   z -> x ± ir/2.

(7.25) | 77„(z) | —» 1,     as     |z|—>»,    uniformly for    \ y\ < ir/2.

Any rectangle \x\ ^A, \y\ ^B, where B<w/2, is mapped on a part of the

circle \w\ ^2?, where 2?<1. For

| w |2 = (cosh x — cos y) (cosh x + cos y)_1

^ 1 — cos y (cosh #)-1 = 1 — cos 23/cosh A.

If, therefore, we can show that, uniformly in any circle \w\ 2s2?<l, hn(w)

(n—> » ) converges to a function h(w) which is analytic in T, then 27„(z) (ra—> » )

converges, uniformly in any rectangle |a;| ^A, \y\ ^B <ir/2, to a function

27(z) which is analytic in S. It is well known that the convergence of the

infinite product PI | a* | is a necessary and sufficient condition for the above

property of hn(w). Now we have

(7.26) n | a* | = hn(0) = 7/„(0).
A-l

Therefore we have only to show that 27„(0) 2t23o, where 250 is independent

of ra. Let F(z)=Gn(z)Hn(z). Given e>0, by (7.24) and (7.25) we have

|27„(z)| 2;1—e for ir/2 — 8^\y\ ^ir/2, where 8 depends on e and ra. Hence,

for 0<piï », we have

(21) Compare Hardy, Ingham, Pólya, loe. cit., Theorem 1.
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(7.27) \Gn(x+iy)\p^ (1 - *)-> | F(x + iy) \p ^ (1 - <jr\A,

(,/2-iá|y| <*/2)

where Ap is defined by (5.11). In consequence of Lemma 12, the function

Gn(z) = F(z)/H„(z) is bounded for \y\ ^ir/2 — 5. Applying the Hardy-Ingham-

Pólya theorem(22) to Gn(z) in the closed strip \y\ ^w/2 — o and using (7.27),

with y= ±(7r/2-5), we deduce that \Gn(x+iy)\p^Ap(i-e)~l for

\y\ ^ir/2 — ô. Hence, for \y\ <ir/2, we have

(7.28) \Gn(x+ iy)\p^Ap(\ - ¿)-l->Ap    as    e -* 0.

Using Lemma 12, we have |G„(z)| ^Apo~2Ip for \y\ "è.ir/2 — 5. Hence the

Gn(0) (n = l, 2, • • • ) are bounded; hence there is a positive constant B0 such

that Hn(0)^B0, since 77n(0) = | F(0)\ \ G^O)!"1. Thus we have proved the

existence of the Blaschke function 77(z) in S. Taking G(z) = F(z)/H(z), the

proof for the case /*"(0)^0 can be completed exactly as the Riesz proof. Let

now F(z) have a zero of order m at the origin. Taking 77(z) =H0(z) {tanh (z/2) }m,

where 770(z) is the Blaschke function belonging to F(z)(tanh (z/2))~m, we have

proved the theorem except for its last assertion. Now we have to anticipate

(b) and (d). We replace F(z) by Fa(z) = F(z) exp (icz) and G(z) by G0(z)

= G(z) exp (icz), fixing c so that | Fo(x—ítt/2)\p = ] F0(x+iw/2)\p, while 77(z)

is not altered. Using (5.11) and (7.28) and the inequality |c70(z)| è | F0(z)\

(|y| <tt/2), we deduce that, for almost all x in (— oo, oo), |77(x±îV/2)| =1,

which completes the proof.

7.3. Proof of (b)-(f). The function \p(z) = {G(z)}pl2 (0<p< oo) can be de-

fined uniquely in S; it belongs to S2(—ir/2, ir/2). Therefore, by the Titch-

march theorem, its limit-functions (y J, a, y î b) exist. The corresponding re-

sult holds for the function 77(z) which belongs to SK (—ir/2, tt/2). Thus we

have proved the existence of the limit-functions of F(z) for normal approach

to the lines z=x + mt/2. We omit the proof of the more general assertion of

the theorem.

Proof of (c). Let £ be a measurable set in (— °o, oo) of finite or infinite

measure; let 0<p< oo. Following the Riesz method, we can show that:

(7.31) \   \F(x+iy)\»dx-y Ç \F(x± iT/2)\'dx      (0 < p < »)
J B J B

as y i —tt/2 or y | 7t/2, respectively, and can then deduce (c) from (7.31) by

means of the Egoroff theorem, taking some care as the interval is infinite.

To prove (d) we apply the Hardy-Ingham-Pólya theorem to the function

T^z) in the closed strip \y\ ^t)=ir/2 — o; we have, for 0<p< oo,

| Fis + iy) \P S¡ | F(x - «,) |r,/<2,) I F(x + in) V™'™'■

(ö) Loe. cit. (4.13).
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Taking r¡—>tt/2 and using (5.21) we deduce (d). The assertion (e) is proved by

a customary argument, using (5.11), Lemma 12 and (c). By a similar argu-

ment it can be shown that the right side of (5.23) vanishes identically for

y< —7r/2 and y>ir/2. This, together with (e), gives (f) for 1 ̂ p< » ; when

p = » then we apply (f) to the function F(z) exp ( — 8z2) and take 8—»0. The

first part of (c') is deduced by means of the conformai transformation (7.21)

and the Egoroff theorem, the second and third part of (c') are deduced by

Lemma 12', taking ra = l, and by the Poisson integral. Thus we have proved

the theorem.

7.4. Consequences of Theorem 13. The following results can be deduced

from Theorem 13.

Theorem 14(23). Let F(z)£Sp(a, 6) and F(x+ia)£Lq(- », »), F(x+ib)

G7r(—», »). If 0<q^r^p^ », then F(z) belongs to Ss(a, b) whenever

rús^kp. If 0<p^q^r^ », /¿era F(z) belongs to S,(a, b) whenever p^s^q.

The corresponding results hold for r^q^p and pSr^q.

Theorem 15(24). Let the function (1 — w2)~llp be defined so that it is analytic

for \w\ <1, and let F(z)=f(w) where w = tanh (z/2). Then F(z) belongs to

Sp(—ir/2, tt/2) if and only if (l—w2)~r,pf(w) belongs to the Riesz class Hp
(0<p£<x>).

Theorem 13'. 7,e¿ (i) F(z) be analytic in S(a, 6), (ii) 0<k<ir(b— a)-1,

0<£<» and JZx\F(Ç+iy)\pdÇ<A exp (e*i*i) for -»<x<», a<y<6.
7Aera Theorem 13(a, b) holds, replacing the assertion G(z)G.Sp(a, b) by the

weaker one: G(z) is analytic in S.

Theorem 13". If F(z) satisfies (i) araa" (ii), and if (iii) its limit functions

F(x+ia) and F(x-\-ib) belong to Lp(— », »), then F(z)(E.Sp(a, 6).

The latter result has been proved by Hardy, Ingham and Pólya(25),

replacing (ii) by the slightly stronger condition (2x)~1flx\ F(^+iy)\pd^

<A exp (e*1*1) and adding the condition that |i"(z)| should be continuous

in any finite part of the closed strip a^y^b.

To prove Theorem 13' we show that the function Q(z) = F(z) exp

{-?? cosh k'(z-(a+b)/2)\ (r¡<0, k<k'<Tv(b-a)~l) belongs to Sp(a, 6),

using integration by parts, and apply Theorem 13(a, b).

Therefore F(x+ia) and F(x-\-ib) exist. Now we apply (5.22) to Q(z) and

take »?—>0, which proves Theorem 13".

7.5. Proof of Lemma 11. Without loss of generality, we may takez0=¿6

where 6>0. The linear transformation

(23) Compare V. Smirnoff, C. R. Acad. Sei. Paris vol. 188 (1929) pp. 131-133.
(M) Compare Hille-Tamarkin, loe. cit., Lemma 2.5, and H. Kober, Bull. Amer. Math. Soc.

vol. 49 (1943) pp. 437—143, Lemma 2. The proof of the present result is similar, but more diffi-

cult.

(M) Loc. cit., see Theorems 1, 7, 9 and 10.
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(7.51) w = (z + ib)/(ib - z),       z = ib(w - í)/(w + 1)

maps the lower half-plane on the interior of the unit circle V and the point Zo

on w= oo, the point z=oo on w= — 1, the real axis on r. The function

k(w) = F(z) =F{ib(w — l)(w + l)-1} is analytic and bounded in the interior

of T. Let E be the set on which the limit function h(em) of h(w) (w—»eie,

— 7T<0<7r) exists, let

oo 1 m       j

(7.52) h(w) = 2Z akwk, sm(w) =-X) ¿ ^wk
fc—O m +  1   j=0 4=0

(I »I < l,w = 0, 1,2,- ••),

and letO<7?o<7?1<7?2< • • • <1 and 7?„->l asre-»oo.

To any m (m = 0, 1, 2, ■ • ■ ) we can find an integer km such that, uni-

formly for \w\ Sil,-

(7V.53) | Ä(7?mw) - ^„(7?mw) | ^ l/(« 4- 1).

Thus we have a sequence of polynomials

Hm(w) = skm(Rmw) (m = 0, 1, 2, ■ • • ).

At any point of E, Hm(eiB) tends to h(ei@) as »2—»oo. For, given e>0, at this

point we have \h(RmeiB)-h(eie)\ ^e/2iorm^M and, using (7.53), \Hm(ei&)

— h(RmeiB)\ ;§e/2 for all sufficiently large values of m (m'^2e~1 — l). Given

^4<1, we have h(Rmw)—h(w)—>0, as rez—>oo, uniformly for \w\ ^A. There-

fore, by (7.53), Hm(w)^>h(w), as w—>oo , uniformly for \w\ £A.

Finally we show that [77m(w)| ^ | F(x) \x for | wj <1. The sm(w) are the

Cesàro means of the partial sums of the power series of h(w). This function is

bounded in T; therefore(26), for \w\ <1, we have [^„(«Ol ^ess.u.b. |Ä(eie)|

= | Fix) | „ and, a fortiori, | Hm(w) | ^ | F(x) \ „ for \w\ g 1.

Hence the rational functions r„(z) =77n{ (ib-j-z)(ib— z)-1} possess all the

properties required in the lemma.

(a) By a result due to J. F. Steffensen. See, for instance, E. Landau, Darstellung und

Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin, 1916, first theorem.
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