
SETS OF UNIQUENESS AND SETS OF MULTIPLICITY. II

BY

R. SALEM

1. Introduction. In a recent paper we have investigated the properties of

symmetrical perfect sets of constant ratio of dissection from the point of view

of their classification in sets of uniqueness and sets of multiplicity for trigo-

nometrical series. (See Salem [l]0), where we refer the reader for the defini-

tions and the terminology used.) We have shown the connection between

this problem and the properties of a class of algebraic integers which we

have called "Pisot-Vijayaraghavan numbers," or briefly, "P.V. numbers,"

and which are defined by the condition that all their conjugates have their

moduli inferior to the unity. We have proved that a symmetrical perfect set

of constant ratio of dissection £ is a set of uniqueness if and only if £ is the

reciprocal of a P.V. number. For all other values of £ the set is a set of multi-

plicity.

The main purpose of this paper is to study, from the same point of view,

sets of constant ratio of dissection, but unsymmetric, and to find the neces-

sary and sufficient conditions for these sets to be sets of uniqueness (§2-8).

The solution of this problem will lead us to a particular result in the classi-

fication of symmetrical perfect sets of the Cantor type and of variable ratio

of dissection (§9). The general problem for such sets remains unsolved, but

we shall give results showing some of the features of the problem (§10-13).

2. Definition of unsymmetric perfect sets of constant ratio of dissection.

Let AB be an interval of length L, let a* be an integer not less than 1, and

let us mark, on AB, d + l "white intervals," nonoverlapping, of the same

length L£ (0<£<l/(d + l)), the origin of the first interval being A and the

extremity of the last interval being B. We then remove the d open "black

intervals" lying between two consecutive white intervals (some black in-

tervals may be empty if two successive white intervals are abutting). Let

7,ao = 0, Lai, Lct2, ■ ■ ■ , Lad be the distances from A to the origins of the a" + l

white intervals. (We have a<¡ = l—£ and ay+i — ay2;£.)

Such a dissection will be called a (d, £, «i, a2, ■ • ■ , ad) dissection of the

given interval.

Let us now start with a (d, £, ai, a2, ■ ■ ■ , ad) dissection of the interval

(0, 2tt) and let us remove the black intervals.

In a second step we make a (d, £, au • • • , ad) dissection of each of the

d + 1 white intervals left after the first dissection, and we remove the black

intervals.
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We proceed in the same way indefinitely and we get thus a perfect set P

of measure zero, which we shall call an unsymmetric perfect set of constant

ratio of dissection (d, £, ait ■ ■ • , a«¡).

It is easily seen that after p dissections we get (d-\-V)p white intervals,

each of length 2-n"£p, whose left-hand end points have their abscissae given by

the sum of p terms

(1) 2* [«(ii) + «(«,){ + a(t3)e +■■■ + «(e,)^1],

whereaij) stands foray (a (0) =0) and where the e* take all values 0,1, 2, • • ■ ,d.

Also the points of the perfect set P have their abscissae given by the in-

finite series

* = 2ir[a(ti) + a(t2)t + «(e3)£2 + ■ • • + «(«p)^1 + •••]•

3. Construction of a continuous non-decreasing function constant in each

interval contiguous to P. To each integer k we associate a set of ¿ + 1 numbers

X*(0), X*(l), ■ • • , A*(d) satisfying the following conditions:

(1) they are non-negative,

(2) they are all less than or equal to \ik, ¡ik being inferior to 1,

(3) they are such that X»(0)+X*(1) + • • • +X*(¿) = 1.

Our function F will be the limit, for p = oo, of the function ^(x) defined

in the following manner: 7^(0)= 0, 7?p(27r) = l; T^x) is continuous and in-

creases linearly by Xi(ei)X2(t2) ■ ■ ■ Xp(ep) in the white interval whose left-hand

end point is given by (1); finally Fp(x) is constant in each black interval.

Obviously
I Fp+i(x) - Fpix) | g mi^2 • • • Aip.

Hence if the series ^TmiMî •••/*? converges, which we shall assume, FPix)

tends uniformly to a function 7r(x) continuous, non-decreasing, constant in

every interval contiguous to P.

4. Fourier-Stieltjes coefficients of 7*". Taking as points of subdivision the

ordinates corresponding to the black intervals removed after the pth step of

the dissection we obtain for approximate expression of the integral J0'enixdF:

£ Xi(«0x*(«i)... xp(ip)e2"ii"«.>+«<«.>«+-••+»<<>>«*"']

= ÏÏ [Xt(0)+Xfc(l)e2"'i°<1>^14-Xt(2)e2"i-«(2>£t"1-l-hX*(d)e,""-««,><*^],
fc=i

so that

f    enixdF = f[ [X*(0) + \k(l)e2r"iam^~l + • • • + X*(á)«,*"ia(<'>|M].
»Jo fc-l

5. Choice of a particular function F. In what follows we shall make use

of a particular type of function 7^ obtained by taking, for each integer k,
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X*(0) = 1/2, X*0*) = 1/2,

/* being a function of k taking only the values 1, 2, •

5^0, Sr*h.

In this case we have

, d, and X*(s) = 0 for

and

/■ 2t m
e""dF = Il [1/2 + (l/2)e2"<<"('t'f*"1]

0 h=l

J 0

enixdF =  LTI cos irra-a0*)£*_1|

6. Outline of some previous results. For the classification of our sets we

shall make use of the following results which are all proved in Salem [l] and

which we summarize here for the convenience of the reader.

If the infinite product
oo

y(u) — IIcos tw£*-1

does not tend to zero as u—» », then £ is the reciprocal of a P. V. number.

This is proved by showing first that if y(u)^o(i), there then exists a

number X different from zero such that if £ = 1/0 the series

00

X) sin2 xX0n
0

converges.

Denoting by an the integer nearest to X0n and putting X0n=a„+/¿„ it is

then proved, following Pisot, that the convergence of the last series involves

that the determinant

oo    ai     • • • a„

Dn =

ai    a2 in+l

«n+1 «2n

is equal to zero for all ra larger than a certain fixed integer. This, by a well

known theorem of Kronecker, involves that ^2^anzn represents a rational

function, and by a theorem of Fatou, since the a„ are integers, that this ra-

tional function is of the form P(z)/Q(z), P and Q being polynomials with

integral coefficients and Q(0) being equal to 1.

From this the result follows quite easily by writing

(2) S M«2"   =    Z M"2"   -    Z anZn = _X_£W
1 - 6z      Q(z)

and by comparing the singularities of the two members of the equality. It is
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found that I/o is a root of Q(z) —0, all the other roots having moduli larger

than 1 ; hence 6 is an algebraic integer whose conjugates all lie inside the unit

circle, the equation determining 6 being zkQ(l/z)=0 (¿=degree of Q).

7. Lemma. We shall need the following lemma which is an easy deduction

from the results summarized in the preceding paragraph:

Lemma. 6 being a P. V. number, then, given any m numbers oti, a2, ■ ■ ■ , am

in the field K(6), there are m numbers Xi, X2, • • • , X„ proportional to

ai, «2, • • • , ctm, such that the series ^ô° sin2 ttXÖ" converges when X is equal to

any of the numbers Xi, X2, • • • , Xra.

In fact it follows from the results of the preceding paragraph that if

£„°° sin2 irX0n< 00, 0 is a P.V. number and that, by (2),

X =   lim  (1 - 6z)P(z)/Q(z).
2—1/9

Let 4>(z) =zkQ(l/z). <£(z)=0 is the equation determining d. We have Q(z)

= zkcp(l/z). We can write P(z) =zhif/(\/z) (h= degree of P) and we have

zV(l/z)
X =  lim (1 - 6z)

*->i/e zk4>(l/z)

=   hm  (1/z - 6) -= -,
z-i/s <*>(l/z) 6*4>'(d)

where <p'(z) is the derivative of <p(z), ip(z) is a polynomial with integral co-

efficients, and g is a positive integer. (If q<0 we replace the polynomial \p(6)

by 6-^(6).)
Conversely, suppose that 6 is a P.V. number, root of (p(z) =0; let X be an

algebraic number of the field K(6), having the form ip(d)/d"<p'(d), where \¡/, q

and <p' have the above signification. Then the series 2^," sin2 ttXÖ" is conver-

gent. In fact, we have

Hft)                                         z«t(l/z)                                          -A(l/z)
X = =   lim   (1/z - 6) =   lim  (1 - dz)-z"-^-

e"<p'(e)      t-*m <t>(i/z)      »-.i/» *(i/z)

Putting ^(1/z) =z~kP(z), (p(\/z) =z~kQ(z), where h and k are the degrees

of \f/ and <p, we have

X =   lim  (1 - ez)z"-hk-hP(z)/Q(z),
Z-.1/A

where P and Q are polynomials with integral coefficients, and Q(0) = 1. We

remark that, 6 being an algebraic integer of degree k, we can always suppose

that the degree hoîipis less than k. Hence k — h — 1 2:0 and since q è 0,

X =   lim  (1 - 6z)Pi(z)/Q(z),
l-*l/$
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Pi(z) being a polynomial with integral coefficients. Now the roots of Q(z) =0

are 1/0 and k — 1 roots of moduli greater than 1. Hence the function

X/(l - 0s) - Pi(z)/Q(z)

is regular in a circle \z\ ^1+a, where a is essentially positive. We have

X
£ M"2"

1  - 02
and

Pito        A
T^TT = ¿- anZ"'
6to       o

where the a„ are integers, since Q(0) = 1, and the coefficients of P and Q are

integers. Hence the series ^¡°(X9"-íi„)2 is convergent (and converges like a

geometric progression). This proves the convergence of 7." sin2 irX0n.

Now, to prove our lemma, let

«i = pi(e)/q(d), cx2 = p2(8)/q(6), •••,«. = pm(6)/q(B)

be the rat given numbers of the field K(B), where the pi(0) and g(0) are poly-

nomials with integral coefficients. We can take

Xi = pi(e)/<t>'(6), x2 = p2(e)/<t>'(6), ■■• ,\m = pm(e)/4>'(6),

which proves the lemma.

We add two remarks, which will be useful later:

Remark 1. We can take for the X¿, instead of the preceding values,

\i=pi(6)/6q<p'(d) (t = l, 2, • • • , m), q being any positive integer. Hence we

can choose the Xi such that | X<| <a (i = 1, 2, ■ • • ,m),a being any fixed num-

ber.

Remark 2. Since each of the series ]>3" sin2 7rX,0" (t = l, 2, • ■ • , m) con-

verges like a geometric progression, there is a convergent geometric progres-

sion dominating the m series JZ" sin2 7rX,-0". In other words, there exists a

positive S<1, and a positive constant A such that | {X,-0"} | <A8n

(ra = l, 2, • • • ) for ¿ = 1, 2, • • ■ , m, where {u\ denotes, as usual, the differ-

ence between u and the nearest integer.

8. The main theorem. We can now prove our main theorem.

Theorem I. If the unsymmetric perfect set P of constant ratio of dissection

(d, £, «i, • • • , ad) is a set of uniqueness then

1. 0 = l/£ t'î a P. V. number,

2. «i, «2, • • • , ad are algebraic numbers ofthe field K(6).

Conversely, if these two conditions are satisfied, P is a set of uniqueness.

Suppose first that P is a set of uniqueness. Let us choose our function F

defined in §5 by taking /* independent of k and always equal to d. Then
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IX
2ir

enixdF

o
II cos irre(l - Oí*-1
k-1

If this expression does not tend to zero as re—>oo, it follows from §6 that 1/|

is a P.V. number. This is a trivial consequence of the results of §6, which

can also be obtained by observing that P contains a symmetrical perfect set

of constant ratio of dissection £, and that a subset of a set of uniqueness is

also a set of uniqueness.

Let us now choose our function F by taking /*, for every k, such that

k — tk m 0 (mod d).

In other words a(tk) is cti when ¿ = 1 (mod d), a(tk) is ct2 when k = 2 (mod d)

■ ■ ■  and a(tk) is ad when k =d (mod d). From

!/.
enixdF

o
=  III cos Trna^í*-11

fc-1

we deduce that if P is a set of uniqueness, then for an infinite sequence of

values oi n'.ni, n2, ■ ■ ■ , n„ ■ ■ ■ , the d inequalities

| cos 7rreai'C0S irreaií"* ■ cos irreaiij" • ■ •   | > a,

I cos ir»«2Í;C0S ir«o¡2Í<i+l-cos irna2£2d+1 • • •   I > a,

| cos irnadíd-1-cos 7rre«<íí2<í-1-cos Tre«,^-1 • • •  | > a,

c being a positive constant, hold together.

Let us write

«4*-1 - ft (i - 1, 2,.... d)
and let

j = i/o,       ôd = 0.

We have when « belongs to the sequence {re,} :

| cos irw&'Cos irnß£d-cos irnß&2i • • •  \ > a (i — Í, 2, • • • , d).

Let

0-»-1 < n, ¿ 0m,

the integer m=m, being a function of s. We can write n, = ¿u,0m where

1/0</i,^1. Let us take an infinite subsequence {mq\ of [m,\ such that ju,

tends to a limit ¿i as q—* oo. Taking re =¿ia0m« we have

| cos irp.qßi cos irMsiS.© • • • cos irtiqß&m« \ > a (t = 1, 2, • • • , d).

From this we deduce easily (the details of the calculations, which are ob-

vious, can be found in Salem [l, p. 222])
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sin2 vpqßi + sin2 vptß& + • • • + sin2 irpqßi<em* ̂  log (1/a2)

(t = 1, 2, • • • , d).

In the same way, taking n=pr<dmr (r>q) and mT belonging to the sequence

{mq}, we have

sin2 rprßi + sin2 irprßi® + • • • + sin2 irprßi®mr ^ log (1/a2)

(i = 1, 2, • • • , d),

and since r > q, we have a fortiori

sin2 irpTßi + sin2 irprßi® + • • • + sin2 Trp,ßi®m" á log (1/a2)

(t = 1, 2, • • • , a).

Keeping g fixed and letting r—> » we have, as Pr—*p,

sin2 irpßi + sin2 TM&G + • ■ • + sin2 ttm|3,@ m' g log (1/a2)

(» = 1, 2, • • • , d)
and, since mq is arbitrarily large,

00

X) sin2 TTM/Sie"" < » (i = 1, 2, • • • , ¿).
o

We know (see §§6 and 7) that this involves that the numbers pßi are all alge-

braic numbers of the field K(Q), hence also of the field K(6). The same is

true for the numbers pa¡. Hence «i, «2, • • • , a¿ are proportional to algebraic

numbers of the field K(9). But since a«j = l —£ = 1 — 1/0, the numbers

ai, a2, ■ ■ ■ , ad belong to the field K(6). This proves the first part of the

theorem.

To prove the second part we suppose that 0 = l/£ is a P.V. number and

that «i, at, • • • ,a¿ belong to the field K(6).

Then by the lemma we can find d numbers X¿ (t = l, 2, ■ • • , d) propor-

tional to the ai and such that

00

X sin2 7rX,-0n < < for * = 1, 2, • • • , d.
o

Let \i=\ai (X>0). Then

00

J3 sin2 TXa¿0" < » for t = 1, 2, • • • , d.
o

By the first remark of §7, we can suppose X<0 and by the second remark we

can find a positive number 5<1 and a constant A such that, for all ra,

(3) | {Xai0"} | <Aô", i = 1, 2, ■ • • , d,

where [u\ denotes the difference between u and the nearest integer.
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We can now prove that the set P is a set of uniqueness. The argument,

although a little less simple, is in essentials the same as in Salem [l].

The points of P are given by

* = 2x[a(íi) + «(«Oí + • • • + «(ep)í^1 + • • • ]

= 2ri[a(t0/0 + «(e2)/02 + • - • 4- a(tp)/ep +■■■],

where the e, take the values 0, 1, • • • , d. Let

y = (x/0)*.

Since X < 6 the set G of the points y lies in (0, 2ir) like the set P of the points *.

We have
y = 2xX[«(ei)/9 + <*ie2)/62 +■■■].

Let A be a fixed integer to be chosen later and consider the (d + l)A possible

combinations of €162 • • ■ «a where €, = 0, 1, • ■ • , d. Let C1C2 • • • C«¡+i)* de-

note the combinations. Writing

(4) y=2ir\[(a(ei)/6+ - - - +a(eh)/dk) + (a(eh+i)/d^+ ■ ■ ■ +a(e2h)/62h)+ ■ ■ ■ ],

consider the sequence of the e¿ belonging to one same group of terms in paren-

thesis. They form one of the (d4-l)A combinations C1C2 • • • C«¡+i)\

Denote by G, (s = l, 2, • ■ ■ , (¿4-1)*) the subset of G such that if y be-

longs to G. the combination C¡ occurs in infinitely many groups of terms in

parenthesis when y is written in the form (4). Then

G = Gi + G2 + • • • + G(d+i>*.

G being closed we have also

G = (Gi + G'i) + (G2 + Gi) + • • • + (G(<¡+d* + G'(<M-i)*),

where GJ denotes the derived set of G,.

Considering now G, for a fixed 5 let jrei, ?W2, • • ■ , mn, • • • be the infinite

sequence of the ranks of the groups of terms in parenthesis where the com-

bination C, occurs. Let z be any point belonging to G,. We have

zdkm- = 2Tr\[a(ehmJ 4- öa(eÄm„_i) -\-+ ^'«(«»«»-JH-i)]

+ 2ir\[dha(thmn-h) + • • • 4- fl*--ia(ei)]

r«(íAm„+l) «(e*mn+2)
+ 2irX-h • • •     ,

le e2 J

and denoting the three successive brackets by ß(s), y(z), y(z) respectively we

have
zô*™» = ß(s) + y(z) + y(z),

where y(z) and y(z) depend on the particular point z, but ß(s) depends on s

only but not on z.
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Let us put

\a(ehmn-k)9k = ak + pk (k = h, h + 1, • • • , hmn — 1),

where a* is the integer nearest to the first member of the equality. We have

y(z) = 2ir[ah + ah+i + • • • + ahm„-i] + 2w[ph + Ph+i + • • • + Phmn-i]

= 2tN(z) + yxto,

say, N(z) being an integer. But by (3)

\pk\ <A5k

hence

(5) | 7i(z) | < 2wA(Sh + S*+l H-) = 2t¿8V(1 - «).

Also, since 0 is a P.V. number, we have, 6Am„ being the integer nearest to 0*m",

0Am" = 6*m„ + {0*»»}

and, for mn large enough,

| {0*"'»} | < 5'A"">,

where 5'<1. Hence

zQkmn = z6AmB + z{0fcm»}_,

where

(6) | z{eh"">\ | < 2tt5'*.

Finally, we remark that y(z) is a point belonging to G„ hence to G.

Let / be the length of the greatest interval contiguous to G, and let us

suppose that h has been chosen such that the second members of (5) and (6)

be both less than 1/8. Then we have

z6Am„ = 2tN(z) + ß(s) + y 0») + 72(z),

where

y2(z) = yito - z{0**"»},        | 7s(z) | < 1/4.

This is equivalent to

zbhmn m ß(s) + y(z) + y,(») (mod 2ir).

From now on, the proof follows exactly the argument given in Salem [l]

for symmetrical perfect sets of constant ratio. We repeat it briefly: the last

equality proves that the set G" deduced from G, by multiplication of z by

the integer 6/,m„ and reduction modulo 2ir has a contiguous interval of length

not less than 1 — 21/4 = 1/2. The same is true for the closed set G" + (G?)',
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which proves that the set G,+G,' is of the type 27. Hence the set

W+D*

G=   Z  (G. + G,'),
i

being the sum of closed sets of the type 77, is a set of uniqueness.

Finally P being homothetic of G, and both sets lying in (0, 2ir), is also a

set of uniqueness, which achieves the proof of our theorem.

9. Application to some symmetrical perfect sets of the Cantor type and

variable ratio of dissection. We denote by this expression a perfect set ob-

tained by a trisection of the fundamental interval (0, 2ir) in three parts of

lengths proportional to £i, 1 — 2£i, £i, respectively, and the removal of the cen-

tral "black" interval. Each "white interval" left is trisected in parts propor-

tional to £2, 1 — 2£2, £2, and the two central intervals are removed. The process

is continued indefinitely, the sequence £1, £2, • • ■ , £P, ■ • • being such that

0<£p<l/2. If 2"£i£2 • • • £?—»0, the perfect set obtained has measure zero.

The points of the set are given by the formula

x = 2x[ei(l - fi) + É2£i(l - £2) + ■ ■ • + íp£i • • • £p_i(l - £,) + • • • ],

where the e< are 0 or 1.

The problem of finding the necessary and sufficient conditions which must

be satisfied by the sequence {£p} in order that the set be a set of uniqueness

is unsolved. We shall deal here with a particular case as an application of the

theory previously developed for unsymmetric perfect sets of constant ratio.

We shall suppose henceforth that we are given g numbers £1, £2, • • • , £B

and that
£p = £¿   if   p = i (mod g) (i = 1, 2, • • • , g),

in other words, we have a periodicity of the ratios of dissection, the first g

ratios being arbitrary.

Let
£¿2 •••£«,= X

and let

(7) n = 1 - £1, r2 = £i(l - £2), • • • , r„ = £1 • • • £„-i(l - {.).

Thus

x = 2ir[(€ir! + e2r2 + • • • + eers) + X(ei+1ri + • • • + t2arg)

+  X2(€2„+1>"1 +   •  •  •   + «3^)   +   •  •  •   ].

Now let us observe that

«ifi + €2»-2 + • ■ • + (srB,

where €¿ = 0 or 1, takes 2° = d + l values which we can denote in ascending
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order of magnitude by a(0),a(l), • • • ,a(d) (a(0) =0, aid) = fi+r2+ • • • +r„

= l-X).Thus

* = 2t[«(ij0 + afàX + aiV3)X2 +■■■],

where 77, = 0, 1, • ■ • , d. We have X<l/2» = l/(¿ + l). We see that we have

here a particular case of an unsymmetric perfect set of constant ratio of dis-

section and of the type id, X, cti<x2 ■ ■ ■ a¿).

Thus if the set is a set of uniqueness:

1. X — ̂ 2 •••£(, must be the reciprocal of a P.V. number 6 = 1/X.

2. The 2« — 1 numbers 2~li€'ri ithe combination ei = e2 = • • • =e„ = 0 ex-

cluded) must be algebraic numbers of the field K(9).

Conversely, if these two conditions are satisfied the set is a set of unique-

ness.

Now it is obvious that we can replace the condition 2 by the following one :

The numbers rit r2, ■ ■ ■ , r„ given by (7) must be algebraic numbers of the field

K(6). (This gives explicitly the admissible values for £1, £2, • • • , £B, keeping in

mind that ri+r2+ • • • +r„ must be equal to 1— X.)

10. A theorem on general symmetrical perfect sets of the Cantor type.

The problem of the general symmetrical perfect sets of the Cantor type when

the sequence £i£2 •••£»••• is arbitrary seems difficult. We shall prove the

following theorem :

Theorem. If £ p has a limit £ ̂  0 as £—> 00 and if the set is a set of uniqueness,

then l/£ is necessarily a P. V. number.

Let us consider the function F(x), continuous, non-decreasing, constant

in each interval contiguous to the set, and equal to

ei/2 + €2/22 4- • • • 4- e„/2» 4- . . .

when x belongs to the set and is given by

x = 2»[«i(l - íi) + „k(l - fc) + . . . 4- ep^ ■ ■ ■ k_t(l - {,) + - - • ]

(«,- = 0 or 1). Then it is easily seen that

!/.

2»

e"ixdF

0

=   LI I COS 7TMÍ1 • • • Í*_i(l - ?*) 1 •
i=l

We suppose £i = £(l+«t) where uk—»0 as k—*«. Then

ii • • • b-i(l - £*) = CM(1 + «0 • • • (1 + «fc_i)(l - £ - £«*)
= {*-!*(* - 1),

say.

Then

1/:xdF = II j cos irre<í)(¿)£* I
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We observe that £1 • • • £*-i(l— £*)>£i ■ • • £*(1—£*+0 as a result of 1 — £*

>£*(1 — £*+i) which is true since £* < 1/2. Hence <p(k)ík is decreasing and tend-

ing to zero as k—» ».

If the set is a set of uniqueness the Fourier-Stieltjes coefficient of F does

not tend to zero. Hence we can find an infinite sequence {w,} such that for

«=«,
00

III cosirnd>(k)tk\ > a,
*=o

a being a positive constant.

Let £ = 1/0; since 6k/<b(k) increases infinitely with k, we can associate to

every ra, an integer m=m, such that

0m-y</>Ow - 1) < ». á 6m/d>(m).

We write
ra. = \ßm'/4>(ms)

and we have X, ̂  1. On the other hand

x. > (0""-7<¿>O». - i))-r>(f».)/0-) = (\/e)(<p(m.)/<p(me - l))

and since <f>(m)/4>(m — i) approaches 1 as rat—»-» we have for í large enough

X, > 1/20,

hence the sequence (X,} has at least one limiting point X^O. Let us consider

a subsequence \mq\ of the sequence \m,} such that X3—>X. We have, taking

ra = ra5,
fnq

a2 < HI cos (ir\(e^/<t>(mq))-(<p(k)/ek)) \2
*=o

< cos2 7rX,-cos2 ir\q(<b(mq — \)/<p(mq))d

•cos2 v\(<p(mq - 2)/<t>(mq))62 ■ ■ • cos2 Tr\q(d>(mq - p)/4>(mq))6p

for any integer p¿mq. From this we deduce easily

sin2 xX„ + sin2 ir\q(4>(mq — \)/<p(mq))6 + • • •
(8)

+ sin2 ir\q(4>(mq - p)/<i>(mq))dp = log (1/a2).

Now

| sin2 Tr\q(<t>(mq - k)/d>(mq))dk - sin2 tX„0* |

< xX,0* | <t>(mq - k)/<p(mt) - 1 |.

Since 4>(m)/<t>(m — l)—>l as m—»», we can write

<p(m) = (1 + vm)<b(m - 1)

where vm—>0 as m—-> ». Then
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<b(m) = (1 + »m)(l + e«_i)(l + »m-s) ' * * (1 + vm-k+i)d>im — k).

Suppose that

niax ( I »„ |, I ím-i |, • • • . I »m-*+i I ) = wim, k) = w

then

(1 - »)» £ d>(m)/<b(m - k) g (1 + w)*.

Let now u(m) be an integer, function of m, increasing infinitely with m, and

such that o)(m) = o(m). We have, if & ̂ co(w),

w(w, ¿) ^ w(f», wim)) ^ h/(j», [w/2])

say, for m large enough, [m/2] being the integral part of m/2. This last num-

ber tends to zero as m—> « ; hence taking w(w) such that

co(w) ■ m>(t», [w/2]) —» 0

as »z—>oo, we see that

| <p(m)/4>(m — k) — 11

tends uniformly to zero with m for all ¿ such that 1 ̂ k^u(m). We write, in

these conditions,

| <p(m — k)/d>(m) — 1 | < t(m)

and we can assume that t(m) tends to zero monotonically. We take in (8)

p<u(mq) and we have, by (9),

<p(mq — k)
sin2 7TX,-0* — sin2 7rX40*

<p(mq)
< w\qeke(mq) g irdkt(mq)

for \£k£p.

Now choose p<oi(mq) such that p is the largest integer such that

(10) Trpept(mq) < 1.

Since e(mq)—»0 steadily, ¿> is a function of mq increasing infinitely with mq.

We denote it by pq.

Comparing (8), (9), and (10), we have

sin2 7rXg + sin2 irX,0 + sin2 ir\q62 + • • • + sin2 r\q6p" ^ log (1/a2) 4- 1.

In the same way, taking instead of mq an integer mT of the sequence \mq\

with mT>mq, we have

sin2 T\r + sin2 7rX,0 + • • • + sin2 tc\B*t ^ log (1/a2) 4- 1

and, since pr^pq,

sin2 ttX, + sin2 irXr0 -)-+ sin2 ttX^"« g log (1/a2) + 1



1944] SETS OF UNIQUENESS AND SETS OF MULTIPLICITY 45

Keeping now q fixed, we let r—>», and we get

sin2 irX + sin2 irX0 + • • • + sin2 rXfl« ^ log (1/a2) + 1.

Since pq is arbitrarily large, this is equivalent to

00

X) sin2 7tX0" < »,
0

which proves that 0 is a P.V. number.

11. Questions of stability. The conclusion of the preceding theorem is

that if £* = £(1+»*), «*—>0, then the set is a set of multiplicity whatever the

sequence {uk\, if £ is not the reciprocal of a P.V. number (£?¿0).

On the other hand if l/£ = 0 is a P.V. number, a set for which

£* = £(1 + «*), »*-»0,

is not necessarily a set of uniqueness. As a matter of fact, it is, in general, a

set of multiplicity. It has been proved, in fact (in Sâlem [2]), that, given a

positive decreasing sequence {«*}, if we consider all sets such that

(11) (1 - «*)£ < É* < (1 + «*)* (£ ̂  0)

"almost all" of them are sets of multiplicity, provided that «* does not tend

to zero too rapidly, more precisely, provided that log (1/ra*) =o(k).

A symmetrical perfect set Q such that its £*'s satisfy (11) with »*—>0 can

be said to be "in the neighborhood" of the set P for which £* is constant and

equal to £. Thus if P is a set of multiplicity, all sets in the neighborhood are

also sets of multiplicity; while if P is a set of uniqueness there are sets Q in

the neighborhood of P which are sets of multiplicity. This suggests, to use an

expression of A. Zygmund, a "stability" of sets of multiplicity, and an "un-

stability" of sets of uniqueness thus considered.

It would be interesting to investigate if the "stability" of sets of multi-

plicity is true in more general cases. Let £j, ££, • • • , £ï, • • • define a set of

multiplicity. Let a positive uk—»0. Is it true that all sets such that

(1 - «*)£* < £* < (1 + «*)£*

are sets of multiplicity ? We have proved this to be true if £2 = £ (& = 1, 2, • • •)

but I have not succeeded in proving it in the general case.

Another interesting aspect of the problem of stability is supplied by the

symmetrical perfect sets S of Cantor type and of constant ratio of dissection

£, which are sets of uniqueness if and only if £ is the reciprocal of a P.V.

number. It has been proved (Salem [3]) that the set of P.V. numbers is

closed, and thus that small variations of £ will change the character of a

set S if it is a set of uniqueness, but not if it is a set of multiplicity. No simple

general result, however, can be expected in this direction, for certain sets of

multiplicity can also be, in this last sense, unstable.  Consider the sym-
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metrical perfect set of Cantor type where £v is equal to £ or to 77 according

as i is odd or even. Let £77 = 1/0, where 0 is a P.V. number, but suppose

that £ (and so 77) are transcendental. Then the set is of multiplicity but can

be transformed into a set of uniqueness by changing £ and 77 as little as we

please if we make them equal to algebraic numbers of the field K(8). (See §9.)

12. Example of a set of uniqueness with transcendental ratios of dis-

section. We have mentioned that the problem of classification of general sym-

metrical perfect sets of the Cantor type seems difficult. We shall give an ex-

ample to illustrate the complication of the cases which may arise.

Let, according to §9, £i£2 •■•£*••• (£p<l/2) be the sequence defining

the set P. We write

ri= 1 - £1, r2 = £j(l - £2), • • • , rk = £i • • • £t_i(l - £*),

It is easy to see that the rk>0 are arbitrary, except for the following condi-

tions,
ri 4- r2 4- • • • 4- rk + ■ ■ ■ = 1,

(12)
rk > rk+i -f- rk+2 t ■ • • >

the last one corresponding to £*<l/2.

The points of the set are given by

x = 2w[eiri + e2r2 + • • • + e*r* + .•••] (e< = 0 or 1).

Now choose the rk's in the following way: let m\m2 ■ • ■ m„ ■ ■ ■ be an in-

creasing sequence of positive integers and let

1/3"" 4- 1/3"" + • • • + l/3m» + • • • = y.

We have 7<l/3 + l/32+ • • • =1/2. Take

rk= (l/7)-(1/3-*).

Thus the first condition (12) is satisfied. The second also, since

l/3m* > (l/3m*)[l/3 + 1/32 + • • • ] è l/3m*+I + 1/3""+» + ■ • • .

Thus we have a set P for which

* ■= (2x/7) [«i/3»> + íí/3"» + • • • + €„/3™" +■•■].

This set is contained in (0, 2ir) and is homothetic to the set E of the points y

such that

y = 4ir[ei/3™ + i2/3m* H-+ e„/3"*" H-],

which is also contained in (0, 27r). Now £ is a subset of the Cantor ternary

set whose points are given by

4t[4i/3 + «2/32 + • • • 4- e,/3« +•••];

hence Tí is a set of uniqueness, and P is a set of uniqueness by homothety.
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Now in this case we have

£*/(l - £*) = (rk+i + rh+2 + ■■■ )/rk = 3>»*(l/3m™ + 1/3»*« + • • • )

which is a transcendental number if y is transcendental. Thus the £* can all

be transcendental.

Besides, we have

r      fr /- \1/k       i-        1/k       i-_ -Tmklk
hm (£i • • • £*)      = hm rk    = Irm 3

and we can choose mk such that this limit be any number we like (less than

1/3). We can take, for example, raz*=[&a], a being an irrational greater

than 1. This shows that in the theorem of §10, the hypothesis lim £p = £ can

not be replaced by lim (£i£2 • ■ • £P)1/,, = £.

We observe that we can have y transcendental with a sequence {rat*} of

arbitrary positive density. For if y were not transcendental we can add to it

a Liouville number of the form ^3~n!, which does not alter the density of

the sequence {?»*}.

13. A sufficient condition for a symmetrical perfect set to be a set of

uniqueness. In the preceding example we have constructed a symmetrical

perfect set of uniqueness for which the arithmetic nature of the £* was arbi-

trary but the £* were all connected in a simple way with the same number y.

In the following theorem, we shall get a set of uniqueness by imposing

on the £* conditions related only with their order of magnitude, but in no

way with their arithmetical properties.

Theorem. If there exists an infinite sequence S of integers q such that

(£l£s • • • £5)l/a ^ ct/q (a < 1/4)

and if for the same sequence of integers q we have, for a positive 8,

£í+i á 1/2 - 2a - &

then the set is of the type 27, hence a set of uniqueness.

The numbers r* having the same signification as above, we have for every

x belonging to the set

x = 2ir[eifi + €2r2 + • • • + «*r» + ■ • • ] («< = 0 or 1).

Let g be a number of the sequence 5. By Dirichlet's theorem we can find an

integer ra = ra(g) 5¡(a/a)«, increasing infinitely with q, and such that:

| [nri] | ^ ct/q,  | {nr2} \ ^ ct/q, • • • ,  | \nrq\ | ^ a/q.

We have

nx = 2ir[ei^i + «2^2 + ■ • • + eqAt] + 27r[ei{rari} + • • • + i0{rar„}]
(13)

+ 2ir[tq+inrq+i + tq+2nrq+2 + • • • ]
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or
nx = Nix) 4- a(x) 4- y(x),

say, where 7V(x), <*(*), y(x) denote the three successive terms in the second

member of (13). The Ai are integers, and we can write

(14) re* = a(x) 4- y(x) (mod 2-k).

We have

(15) | «(*) | á 2irqa/q = 2ira.

We have also
«£l • • • £, á «(«/?)' á 1

and

yix) = «£!••• £a-2ír[e,+l(l - £í+1) 4- e,+2£î+i(l - £î+2) + • • • J

= «£i • • • £s-z(*),

say, where z(x) denotes a point belonging to the symmetrical perfect set con-

structed on (0, 2x) with the sequence (£s+i, £g+2, ■ • • ). This symmetrical

perfect set has a contiguous interval of length 27r(l — 2£5+i). Thus the set of

points y, which lies entirely in (0, 2ir), has a contiguous interval of length

27tm£i • • • £,(1 —2£a+i). But the set of points y has also, in (0, 27r), a contigu-

ous interval of length 27r —27rre£i • • • £, since

yix) ¿ 2ir«£i •••£,.

Hence the set of points y has a contiguous interval of length X not less than

max {27r»£i • • • £?(1 - 2£5+1), 2tt(1 - «fc • • • £„)}

hence not less than

27rre£i ■ • • £g(l - 2£g+i) + 2t(1 - re£t • ■ • £g)(l - 2fq+Q

2 - 2£9+i

that is to say not less than

r(l - 2£3+1)/(l - £s+1) > x(l - 2£3+1).

Now we have by our hypothesis

1 - 2£s+i è 4a + 25

hence
X è 4tt« + 2ir5.

Now by (15) |a(x)| ^2Tra. Hence by (14) we see that the set of points nx,

reduced modulo 2w, has a contiguous interval of length not less than

X - 2 max | «(*) | è X - 4jra ^ 27r5.
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Thus the set of points x is of the type 77, which proves the theorem.

In particular we see that the set is a set of uniqueness if

lim inf a(£i • • • &)1'« = 0    and    lim sup £„ < 1/2,

more particularly if

£s = o(l/q).
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