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Introduction

The important Hurewicz theory of homotopy groups(2) is applicable only

to arc-wise connected spaces. If these groups are defined for a space which is

not arc-wise connected, their significance is limited to the arc-component in

which the base-point is chosen.

One of the most interesting features of the homotopy group theory is its

relation to homology groups. This relationship is expressed sharply in this

theorem of Hurewicz : the n-dimensional integral homology group and the n-dimen-

sional homotopy group of an arc-wise connected space are isomorphic if the

homotopy groups of lower dimensions vanish. In this theorem the homology

groups are, appropriately, the continuous.or singular groups. More familiar

homology theories for spaces are those of Cech or of Vietoris. The theorem of

Hurewicz holds for these homology groups only if the space is assumed to

have certain local properties such as local contractibility.

The purpose of this paper is to define homotopy groups which are signifi-

cant for non-arc-wise connected spaces, and which are suitably related to the

Cech homology groups for spaces which are not locally connected. These new

groups are defined in terms of nets(3). The theory of nets and of their homol-

ogy groups is abstracted from the Cech theory. The nets which we consider

here are derived from the nerves of finite coverings of, compact metric spaces.

By limiting the discussion to compacta we can consider simultaneously the

equivalent but more intuitive theory of neighborhood homotopy. Moreover

we give examples of connected compacta which have satisfactory net-ho-

motopy groups, yet which are beyond the range of the classical theory.

The basic ingredients of any such theory are the concepts of mapping and

of homotopy. In section II the standard concept of mapping is retained, but

new definitions of homotopy are studied. One of these is based on nets, the

other on neighborhoods. By means of machinery introduced in section I, these

two homotopies are compared. In section III both basic concepts (mapping,
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homotopy) are replaced by new net and neighborhood analogues. The net

theory has intrinsically broader scope than the neighborhood theory; but for

compacta the two are equivalent. Consequently for compacta the neighbor-

hood results are independent of the embedding and have topological signifi-

cance. In both section II and section III two distinct grades of net-homotopy,

labeled weak and strong, are considered.

The new types of mappings and of homotopies can be used to define groups

analogous to the Hurewicz homotopy groups. This is accomplished in sec-

tion IV. As is pointed out in section VI, all the homotopy groups investigated

agree for a compactum which is an absolute neighborhood retract (ANR).

In section V the range of usefulness and the relation to homology of these

new groups is indicated. In the first place a property designated by C°* is

introduced to replace arc-wise connectedness. This property is best described

in terms of nets and hence is a more complicated notion than arc-wise con-

nectedness. It is however decidedly weaker as is shown by examples in sec-

tion VI. The groups are shown to be independent of the base-point for a space

which is C°*. Finally an analogue to the Hurewicz theorem relating homotopy

and homology is proved.

Section VI is devoted to examples. Examples are given of simple spaces

which have no Hurewicz homotopy-groups, but do have informative net

groups. The groups proceeding from the five types of homotopy situations

studied are shown to be distinguishable.

In section VII the possibility of homotopy considerations for nets without

underlying space is considered. A definition for net to net mappings is intro-

duced. Such a mapping behaves in a reasonable way with respect to net

homology groups. Moreover a space to space mapping induces a net to net

mapping which in turn induces a homomorphism on weak net-homotopy

groups.

Section I. Preliminaries

1. Open coverings. Throughout this study we shall be concerned with a

compact metric space R. R will always be considered as a closed subset of a

parallelotope P" or P". (Pn denotes the euclidean cube or parallelotope de-

fined by the equations 0^x;^l, i=i, • ■ ■ , n. P" is the "Hubert" cube or

parallelotope(4). A convenient definition is by the equations 0^x¿^l/2*_1.)

It will be useful to consider finite coverings of both R and neighborhoods of R,

and the corresponding we/s(3). In this-first section we shall choose a special

subfamily of the possible finite coverings, and we shall point out some of the

properties which justify this choice. As an introduction, we discuss some gen-

eral properties of coverings of a compactum M.

The families of all finite open and of all finite closed coverings of a space M

have been used extensively in deducing properties of M. Such coverings are

(*) For a discussion of these spaces, see Lefschetz [9, chap. 1, (12.8-12.10)].
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ordered in a familiar way by the notion of refinement. Thus a covering UM

is said to refine a covering Ux (or It,, ■< Ux) provided that every set of U„ is

contained in some set of Ux- When M is a compactum, this matter of refine-

ment assumes a particularly simple form for open coverings. If Ux and U„ are

finite open coverings, then the condition

diameter of U„ < Lebesgue number of Ux

is sufficient to insure the ordering U^-sUx- This means that if we pick any

sequence of coverings {U,j of mesh €,, where the e.'s approach 0, we can

choose a subsequence \\Xi¡\ such that Ui^U,^ • ■ ■ >Uin> • • • . More-

over, this subsequence is cofinal in the family of all open coverings. For refer-

ence this well known fact is stated formally:

(1.1) A ny sequence {U,} of finite open coverings of M whose meshes u tend

to zero contains a linearly ordered subsequence cofinal in the family of all open

coverings of M.

With each finite covering we consider the nerve. This concept, due to

Alexandroff, is well known. If Ux is a covering of M, its nerve will be desig-

nated by <i>x or ^x- Moreover, we shall use a natural realization of €>x, defined

thus:

(1.2) Definition. f>x is said to be realized naturally provided that the

0-simplex Û\ associated with the set U* of the covering is taken as a point

of U\. The simplexes of higher dimension are filled in linearly. (Whenever

possible, Û) will be chosen as a point in [/* but no other Uf of Ux- This is

always possible for irreducible coverings(5).)

2. Projections. The relation of refinement U^ ■< Ux induces simplicial map-

pings called projections tt^: $„—»$x. These projections are defined as vertex

transformations: tt^: Û*-*U\d for some j(i) such that U}wZ)Uf. Any such

vertex transformation leads to a projection since the vertices of a simplex

of <£„ are carried onto the vertices of a simplex of 3>x- Unfortunately, since

j(i) is not necessarily unique, various choices of tt^ may be eligible. In connec-

nection with later considerations, the following compensating proposition is

of interest:

(1.3) Suppose that ir^ and #£ are two projections of $^ into i>x- Then for

every point x of $„, tt\(x) and irl(x) lie in the same closed simplex of 3>x. That is,

k*- — *x- (We shall use this notation frequently. Two mappings t, t' of a

space 5 into a geometric complex K will be said to satisfy the relation / • —t'

if for every point x of 5, t(x) and t'(x) lie in the same closed simplex of K.

This agrees with the use made of the same symbol by Alexandroff(6).)

Proof. Pick any x of $M. It lies in a simplex Âo • • • A¡ — <t of $M. Then

ir^cr is a simplex Bo • ■ • Bi of $x, lúj, and 7fxa is a simplex Co • • • Cm of $>x,

m i%j. But we know A0C\ ■ ■ ■ r\Aj9^0,Bor\ ■ • • HBi^O, Cvr\ ■ ■ •HC^O.

(5) See Lefschetz [9, chap. 7, pp. 247-248].

(«) Cf. Alexandroff [l, II, 8].



278 D. E. CHRISTIE [September

Furthermore, every B contains an A and every C contains an A, while every

A is contained in at least one B and at least one C. Thus a point y of

A0n ■ ■ ■ nAj must be in B0n ■ ■ ■ nBtnCon • ■ ■ nCm. This means that

Bo ■ ■ ■ BiCo • ■ • Cm is a simplex of i>x- Thus both 7Tx(x) and #x(x)'Iie in

faces of one simplex of <f>x. q.e.d.

An obvious but useful corollary to this is the fact that for any mapping

a of a space 5 into <£„, -¡fta ■ — ■ ifta.

Since the relation • — • implies homotopy, the non-uniqueness of projec-

tions is not significant as long as one is dealing only with homotopy classes.

Certain results about projective cycles(7) are based on the employment of

projections which are both unique and onto. The special coverings which we

shall use have both these properties.

3. Regular coverings. In the following, 3 and (^ denote interior and co?w-

plement: An upper bar denotes closure.

(1.4) Definition. Regular closed covering. % — {P,} is a regular closed cov-

ering if

(1) 3(P.) n 3(P,) = 0, i 9* j,

<2) 3(P.) = P,-.

Such a covering may be described as a covering by closures of disjoint open

sets.

Example. Let K be a geometric simplicial complex. Let {A,■,} be the ver-

tices of the ith regular subdivision K{i). Let St4< be the star of A, as a vertex

in 7£(i+1). Then the collection {St4,-} is a regular covering of K.

In connection with these coverings, the following propositions are useful.

The proofs are omitted.

(1.5) If P=3(P) and Uis open, then PH U9*0 implies that 3(P)P\ U9*0.
(1.6) FiCFiimplies 3(Pi)C3(P2).
An important known property of finite regular closed coverings (f.r.c.c.)

is the following:

(1.7) If gx and $„ are f.r.c.c. and %ß<%\, then the induced projection d£

is unique.

For by (1.6), P"CP4X implies 3(P")C3(P,X) ; and by definition dF})ndFJ)

= 0 if Í9*j.

We are now ready to introduce the useful theorem:

(1.8) Theorem(8). If gx and ÍJM are f.r.c.c. and $¡»<t5\ then the projection

7Tx maps <PM onto "Sx.

This is easily deduced from

(1.9) Under the conditions of (1.8), each set Px is the exact union of those

F"'s which lie in Px.

f ) Cf. Lefschetz [9, chap. 6, (19.1), p. 231].
{») Cf. Steenrod [12, pp. 679-680].
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The proof of (1.9), depending on (1.5), is omitted.

4. Fringed closed coverings. The property (1.1) of open coverings and also

properties (1.7) and (1.8) of regular closed coverings are distinctly useful. For

this reason, we introduce a class of open coverings enjoying properties (1.7)

and (1.8) under proper circumstances. Suppose we consider any f.r.c.c.

5= {P,}. Denote by vi%) the minimum positive distance piFi, F¡). Now for

any b<r\/2 we consider the ô-fringed sets defined by Uf,= í/j(P<). iU¡iFi)

is the set of points whose distances from P, are less than 5.) For every such Ô,

Us = { U[s)} is an open covering of R whose nerve is identical with that of %.

(1.10) Definition. We shall call Us the h-fringing of g.

Suppose now that we have a sequence {%i} linearly ordered by refinement

and with mesh «, approaching zero. For each i we consider the ó+fringing of

5« subject to the restriction that S,+i<o¿/2.

(1.10.1) The sequence {ill*} will be called a tapered fringing of the se-

quence {Oí.}.

Clearly the diameters in the tapered open covering still tend to zero.

Hence by (1.1) the sequence is cofinal in the family of all open coverings.

We should now consider the connection between the ordering of {g,-}

and that of {it?*}. By the tapering restriction Fj+nCF} implies [/ji<+n>i+™

Ç UjS<)i. Since the process of fringing does not alter nerves of regular cover-

ings, this means the ordering of {U^} induced by that of {$ji} is a proper

ordering by refinement for {Uj'} considered just as a sequence of open cover-

ings. These results are summarized in

(1.11) Let {gt} be a linearly ordered sequence of f.r.c.c. with diameter

tending to 0 of M, and let {Uf''} be a tapered refinement of this sequence. Then

(a) {Uf*}, ordered by the linear ordering of {gi}, is cofinal in the family of

all finite open coverings of M.

(b) The nerves of {Uj'} and their projections are the same as those of { g,-} ;

hence projections are unique and onto.

5. Induced coverings. At this stage it is necessary to examine the cover-

ings of subsets of M induced by a covering of M.

(1.12) Definition. If TV is a closed subset of M, and g = {P¿} a finite

covering of M by closed sets, then g' = {Fl }, Fl — F,nN, will be called the

covering of N induced by g.

We denote the nerve of g' by <£'. <$' is isomorphic to a closed subcomplex

of $, the nerve of g.

Now consider two f.r.c.c.'s of M, g,<-<gx, and the induced g„' <%\. In

this case ir^ is unique and onto. What can be said for 7Tx" ? Certainly ttx" can

be considered as uniquely defined since we can appropriate for it the behavior

of 7tx in case of ambiguity. Thus P"CPX implies P"'CPX'. We can accept this

projection and ignore any new possibilities. That 7Tx" is onto follows easily.

By (1.9) each Px is an exact union of P"'s. Consequently, FxnN is an exact

union of F^nN's. The rest of the argument is identical with the proof of (1.8).

We have then
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(1.13) If %y is a f.r.c.c. of M and %i the induced covering of NC.M, then

%n<%\ implies that g/ < fÇx' arad further that the projection tt^': í»/1—><l?x' is

onto.

The corresponding steps may be repeated for J'ringings of the %\ .

(1.14) Definition. The o-fringing of %/ on N is called the open covering

induced by the h-fringing of gx on M. We denote it by Ux'.

Since we can take sequences with diameters tending to zero as cofinal in

the family of coverings on TV, we get, corresponding to (1.11),

(1.15) Under the hypothesis of (1.11) we have:

(a) {Uj*} ordered by the linear ordering of {g¿} is cofinal in the family of

all open coverings of N.

(b) 2"Ae corresponding nerve projections are uniquely defined and onto.

6. Nerves of coverings of neighborhoods. Let TV be a compactum em-

bedded in a parallelotope P. Let {g,} be a sequence of f.r.c.c.'s of P with

mesh €¿ tending to zero. For each i we consider the covering of N induced

by rîi- We write its nerve as i>i(7V). Likewise we consider for any 77 >0 the

7j-neighborhood Í7,(7V). Let $i(Uv(N)) be the nerve of the induced covering

of its closure.

The following lemma will be useful.

(1.16) For each e< there is an 77,- 5WcA that if UVi(N) is written Ui(N), then

#f(ÏÏ,-(7V))=<ï\(7V).

This is similar to a lemma of A. D. Wallace for a more general situation(9).

The proof for this case is simple. The nerves of Ui(N) and N differ, if at

all, either because of sets of the covering meeting the neighborhood but not N,

or because of intersections outside of TV of sets which do meet N. Hence if 77,

is picked less than the minimum distance from N to any such closed set or

intersection, the nerves will be the same.

By the definition (1.14), it follows that

(1.16.1). (1.16) holds for any tapered fringing of the sequence {fÇ«-} -
The following obvious modification will be used.

(1.17) Jra (1.16) we can pick {r¡i\ so that 7ji+i<77».

7. Kuratowski mappings. We shall frequently make use of a familiar tool,

the Kuratowski mapping(10). The Kuratowski mapping is one of a class of

mappings called barycentric by Hurewicz-Wallman(n). Let U= { ¿7,-j be a

finite open covering of M. We shall denote by k the particular barycentric

mapping known as the Kuratowski mapping and defined by

(1.18) Definition of k. k(x) = (x0, • • • , x,, • • • , x„) where ¡x,}, the

barycentric coordinates of k(x) in the simplex of €> whose vertices stem from

all the Ui containing x, are given by x,=p(x, Q(UÎ)).

(9) See Lefschetz [9, chap. 7, (14.4), p. 263].

(") See Alexandroff-Hopf [2, chap. 9, §3, N.4.]

(") Cf. Hurewicz-Wallman [7].
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It will be convenient to make available certain simple propositions about

k. When several coverings of M are involved k will be given the index of the

covering generating it. One obvious property is the following.

(1.19) If $ is embedded naturally with respect to MCP, then p(x, k(x)) <3e

for every point x in M, where e is the mesh of the covering. (That is, k is a 3e-

deformation in a neighborhood of M.)

Now suppose UM ■< Ux- We prove

(1.20) (tx— -JfxV
Proof. Pick any point x of M. x belongs to certain sets, say U^n • • ■ nu„

of UM and hence k,,(x) is a point of the simplex Üq • • ■ Ü„. Likewise x is in

U\n ■ ■ ■ n Z7X of Ux and kx(x) is a point in Û\ ■ ■ ■ Ûm. But each ÛÏ pro-

jects into one of these i?x's; hence «5(0$ • • < ¿?„) is a face óf Üq • • • Üm.

q.e.d.
Again we take M, N, g, g', «3?, <!>', U, It', as in (1.14). $' is a subcomplex

of 4?, so for a point x of N, both k(x) and k'(x) are points of <£>. k\ N will de-

note k as a mapping of N, ignoring M — N. These are related by

(1.21) k|JV---k'.
Proof. Select any x of N. x belongs to a certain number of sets of U, say

U0n • ■ ■ nUn. This means that F6n ■ ■ ■ nFn9*0 and Po ■ • ■ P„ is a sim-

plex of $. But x also is in Uón • • ■ nUm , m^n. Fó • • • Fm is a simplex

of <!>', hence of <!>. Considered as a simplex of <$, Po • • • Fm is a face of

Po • • • Pn. q.e.d.

8. Special coverings. When the nerve $ of a covering U of a parallelotope

P is embedded naturally, the barycentric mapping k gives a mapping of <£

into itself. We shall limit ourselves to coverings for which k is homotopic to

the identity ore $. To do this we slice P" successively into smaller cubes.

Such cubes form a covering of P" by regular closed sets. For instance gm(P")

is obtained by hyper-planes x,-=k/2m for j = i, • ■ • , n and for & = 0, +1,

+ 2, • • • , +2m— 1. gm(P") is obtained by the equations on xi, • • • , xm, used

in defining the rath covering of Pm. The remaining coordinates are free except

that they range only in P": 0^x¡^l/2i_1. This sequence of coverings is re-

placed by a tapered fringing {U,}. Clearly mesh Ui—>0.

(1.22) Definition. Such a sequence of open coverings we shall call special.

Note that $m(P") = $m(Pm). Hence we demonstrate the desired property

of k for $m(Pn). By the construction it is apparent for any ra that every set of

gm(P") meets 2n —1 other such sets at a "corner." Thus every vertex of

$„(?") is incident on a 2n —1 dimensional simplex. Moreover 4>m(P") is a

2n —1 dimensional complex. Every such cluster of 2" cubes forms a larger

«-dimensional cube. By taking the vertices of the nerve as the midpoints of

the corresponding cubes, we get the (2n— l)-simplex of the cluster well inside

the larger cube. This means that every point of $ lies in one of the 2" sets

defining the (2n — l)-simplex in which it lies. Consequently for these special

coverings of P, we get
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(1.23) For special coverings of P

k(x) ■ — • x for every x in 4>.

Now let us consider a subset M(ZP. The special covering of P induces a cover-

ing of M. By (1.21) we have at once

(1.24) For a covering of M induced by a special covering of P

k(x) • — ■ x for every x in <f> í~\ M.

For later reference, we point out that the properties of (1.16) hold for the

coverings induced by a sequence of special coverings.

(1.25) 7"Ae sequence of coverings of R induced by the special coverings of P:

(a) is cofinal in the family of all open coverings of R ;

(b) Aa5 unique nerve-projections which are onto.

Section II. Neighborhood and net homotopies

In this section we define and compare two new kinds of homotopy. (For

a discussion of ordinary homotopy see §10.) The first of these, neighborhood

homotopy, is the more intuitive geometrically. The other, net homotopy, uses

the technique of nets(3). The comparison of the two concepts will be carried

o,ut by means of the methods of section I. These notions can be described for

more general situations. But for the present we deal with a compactum R

embedded in a parallelotope P.

9. Neighborhood homotopy. Let 5 be a topological space and t, t' two

mappings of S into R.

(2.1) Definition, t, t' will be called neighborhood homotopic, written

í «t/î', if / and /' are homotopic 0 "t') m every open set containing 7?.

Clearly t~t' implies t^vt'■

(2.2) Example. We take 7? as the subset of P2 defined by: (a) x = 0,

\y\ jjl; (b)y = sin (1/x), 0<x^2/V; and (c)y=l, 2/Vá*á(2+ír)/ir. 5 is to
be taken as the unit interval I. t, t' are the homeomorphic mappings 7—>(a),

7—>(c) respectively. Here we have / is not homotopic to t' yet /«[//'.

(2.3) Example. With the preceding space, we can take t as the identity

and /' as a constant mapping sending 7? into the point 0. The relation t*svt'

here means that 7? is neighborhood-contractible ; yet it clearly is not contract-

ée.

(2.4) When R is an ANR, t^vt' is equivalent to t^t'.

Under our assumptions, the following is obvious.

(2.5) í«í/í' if ts*t' in Uti(R) for a sequence of e/s approaching zero.

10. Digression on ordinary homotopies. We shall be dealing at length

with ordinary homotopies; so it will be worth while to establish certain con-

ventions for their treatment.

Let us consider mappings ti'.M—*N.
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(2.6) DEFINITION OF HOMOTOPY. To say that to ~tl means that there exists 
a mapping h~: M X I ~N such that 

o 
hl(m, 0) = to(m), 

o 
hl(m, 1) = tl(m). 

Clearly to ~ tl implies tl ~ to by the homotopy h~ = h~ (m, 1 - t). 
Suppose we have given three spaces M, N, R and mappings t, t':M~N 

and s, s':N~R. The following simple facts will be useful. (The symbol -+-
denotes "implies.") 

(2.6.1) t~t'+st~st', 
(2.6.2) s",=,s'+st~s't, 

(2.6.3) t",=,t', s"'='s'+st"'='s't'. 
To prove (2.6.3) we need merely exhibit a suitable mapping of MXI~R. 

By the hypothesis we have mappings of MXI-'>N and NXI into R. Let these 
bef(m, u) :MXI~N, g(n, u'):NXI~R wheref(m, 0) =t(m),f(m, 1) =t'(m), 
g(n, O)=s(n), g(n, 1)=s'(n). We define hem, w):MXI~R as follows: 

g(t(m), 2w), 
hem, w) = 

s'(J(m, 2w - 1», 

Obviously (2.6.1) and (2.6.2) are corollaries of (2.6.3). 

o ~ w ~ 1/2. 
1/2 ~ w ~ 1. 

We point out also a parallel statement involving the stricter relation· - . 
for the case where R is a geometric complex 

(2.6.2)' s· - ·s'-+-st· - ·s't. 
Now suppose to~tl, tl~t2 by homotopies h~ and hi respectively. Then 

to"'=' t2 by a homotopy hg = (h~, hi) defined by 
o 0 

hl(m, 2u) = h2(m, u), for 0 ~ u ~ 1/2, 
and 

for 1/2 ~ u ~ 1. 

(2.7) Such it homotopy (h~, h~) will be called a combined homotopy. The 
extension to a combination of n homotopies (hl , h2 • ••• , h,,) is obvious. 

Suppose we have four mappings to, tl, tJ , t{ of S~R. We assume that the 
pairs to, tJ and tl, t{ are related by homotopies fo and h. Now let h~ be a 
homotopy to"'=' tl. Clearly (fo, h~, h) give a corresponding homotopy for tJ 
and t{. We write (fo, h~, h) =h~'. Now h~ and h~' are both mappings of SXI 
into R. It is important to point out that these two mappings are homotopic 
in a special way. We consider then SXIXI. SXIXO is mapped by M. 
SXIX 1 is mapped by h~'. SXOXI is mapped by fo, while SX1 XIis mapped 
by h. We wish to extend these four mappings to a mapping on the whole of 
SXIXI. The equations of the extended homotopy H(x, u, u') may be given 
by 
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Í/o(x, u' — 3u) tor u'^3u, u^i/3,
h\ix, u-u'/3)ioru'^min (3«,3(l-«)),0g«ál,

/i(x, w'-3w-3) for«'è3(l-«).

Now suppose we have given four mappings h, t2, t¡, U of S^R and homo-

topies f\,f\,f\. Clearly the combined homotopies ifl,ft) and if\,fl) relate the

pairs U, t2 and t3, h respectively. It is now pointed out that

(2.8.2) (Jl,ft) « (/1./2) ^n su°h a way that this homotopy agrees with ff and fj.
Equations for such a homotopy are given by:

77'(x, u, u') =ftix, u' — 2m) for u' ^ 2m,

77'(x, m, «') =/I(x, m - u') for 2m ̂  m' à 2m -1,

H'ix, u, u')=fiix, m'-2m-2) for m'^2m-1.

11. Net homotopy. The second new kind of homotopy depends on the no-

tion of nets • • • as mentioned above. The particular net of P which we con-

sider is that derived from the family of all open coverings of R and the

associated projections. We denote this net by So(P) = { i>x; ttx} .

(2.9) Definition. Mapping of a space into a net. A collection of mappings

{tx}, h'S—>$x, is called a mapping of 5 into So provided that

t\ ~ irxtit.

In practice we shall wish to replace S0 by the S defined by coverings in-

duced by the special coverings of (1.22). By (1.15) and the discussion of spe-

cial coverings, we know that

(2.10) S, the net of special coverings of R, is a sequential spectrum, cofinal

in S0 with projections onto.

Clearly a mapping of 5 into S0 gives a mapping of 5 into S. On the other

hand, if we have a mapping of 5 into S it can be filled out to be a mapping

of 5 into S0. For every <i>x not in S we pick the smallest Xi such that Xi>X

and write t\ = irxt\.. That the resulting system is a mapping of 5 into S0

follows readily from (1.3) and (2.6.2)'.

(2.11) Definition. Homotopy of space-net mappings. If {tx} and {tx } are

space-net mappings, they are called homotopic if

tx « t\   on $x, every X.

This equivalence is written {t\} ~ {tx }.

Obviously {tx} « {tx } on S0 implies the same on the subnet S. Moreover,

{tx} «* {tx } on S is sufficient to ensure the equivalence on S0. This is proved

directly by use of the cofinality of S. For each X pick the smallest Xi of S

which exceedsX. By assumption there is a homotopy tx¡~tx'¡. This homotopy

projects into a homotopy connecting tt^/x; with jr^x/ • But these are respec-

tively homotopic to tx and tx ■

This result justifies
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(2.12) The homotopy classes of mappings of a space into a net are in 1-1

correspondence with those of any cofinal sequential subnet.

By applying (2.12) twice it is seen that the word "sequential" may be

omitted.

(2.13) Definition. Induced space-net mappings. Given 5, P, S0, t as before,

we consider the space-net mapping {tx}, ¿x = «xt. (kx is the Kuratowski map-

ping of R onto <t>x-) This will be called the space-net mapping induced by t.

That {n\t} is a space-net mapping follows from (1.20). First we have di-

rectly

(2.14) { kx} is a space-net mapping of R into S0.

In addition we point out

(2.15) If {tx} is a space-net mapping 5—>S0 and tis a mapping of M into S,

then {t\t} is a space-net mapping of M into S0.

The proof depends only on (2.6.1). By this

M A*
tx   ~   Txtn ■+" txt  ~  TTxtpt.

(2.16) Definition. Two mappings /, t' of 5 into R are called net-homo-

topic, written t^Nt', if their induced space-net mappings are homotopic.

(2.17) Definition. Special nets. By (2.12) we see that it is only necessary

to use a cofinal sequential subnet. By (1.25) we see that we need consider

only coverings induced by special coverings of P. The corresponding net will

be called a special net of P.

12. Comparison. We now give a comparison of neighborhood-homotopy

and net-homotopy.

(2.18) Theorem. Net- and neighborhood-homotopy are equivalent.

Proof that t^ut'-*-t^Nt''. By assumption t*=>t' in every neighborhood of R-

By (1.16) for every nerve of R there is a neighborhood whose corresponding

induced covering has precisely the same nerve. For each such neighborhood

Í/¡(P) and nerve $iiUiiR)) = $iiR) we have a mapping k(¿)¡ which carries

the homotopy onto 3>i(P), giving «(*)<*«*«{♦)<*' on '$,-(P). But by (1.21),

kH)í\R- — ■ Ki. By an application of (2.6.2) this gives at once k(í)í/«k¡í on

3>;(P). Thus our conclusion is Kit ~ Kit' on $iiR), every i. q.e.d.

(2.19) Proof that t~Nt'-*-t~vt'. For every x of 5, p(í(x), **(*))< 3«, by

(1.19). But tix) is a point of R and can be joined by a segment to /Ci(/(x)),

the segment lying entirely within Uu¡(R)- Thus our assumption that Kit « Kit'

on $iiR) leads at once to t~t' in UitiiR). (Clearly $,(P) is contained in this

neighborhood of P.) Since «,—»0, this gives the required t^xjt'. q.e.d.

13. Strong net homotopy. The equivalent notions of net- and neighbor-

hood-homotopies discussed thus far sometimes do not give as much informa-

tion as might be desired. Let us look again at the example of (2.2). We now

take 5 as a single point and map it by ¿ onto (0, 0) and by t' onto (2/rr, 1).
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Here we certainly have t~ut'. The homotopy for each e-neighborhood of R

is the mapping of a segment into a tube of radius e around R. For successive

neighborhoods, the homotopies may be taken as arcs with successively more

wiggles. But here it is clear that any two of these arcs are homotopic in the

larger neighborhood, the homotopy leaving the end points fixed.

As a contrasting example we look at the dyadic solenoid (to b'; discussed

more extensively later) (12). This too is not arc-wise conn ued. We .et t and t'

map a point 5 into each of two non-arc-wise connected pc ints of th? solenoid.

Every e-neighborhood is approximately torus-shaped; so again we get t<=¡ut'.

But in this case small neighborhoods are coiled several times inside the larger

ones. Here we find that in general the homotopy arcs are not the .selves

homotopic because of this multiplicity.

We wish now to strengthen our criteria for neighborhood (<ind net) equiva-

lence of mappings so as to distinguish between such situations as these. The

strong homotopy we need imposes a slight restriction on the families oí map-

pings which shall be recognized as space-net mappings, so this concept will

be redefined.

(2.20) Definition. Strong space-net mappings. A collection of mappings

\h\, t\:S—>$\, is a strong space-net mapping of 5—->20 if besides

(1) ix—T""^^ by a homotopy/x, we have

(2) (tr\fy,f\) ~/x (cf. (2.7)). (This homotopy is fixed on t\ and agrees with

the homotopy between 7^% and jTp„ implied by (1.3) and (2.6.2).) Restric-

tion (2) merely guarantees that different methods of getting a permanence

relation (1) do not differ as far as homotopy is concerned.

(2.20.1) Note that when S is a sequential net with unique projections, (2)

may be taken as an equality.

(2.21) Definition. Strong homotopy of strong space-net mappings. Two

strong space-net mappings j/x, /£} and {t\ , /{¡'} are strongly homotopic if

for every X there is a homotopy h\:t\~t\ on f>x, with the set of all such

homotopies {Ax} forming a mapping of 5X7 into 20". {Ax, 4>\} ■ It is moreover

assumed that the homotopies 4>\ agree on 5X0 and 5X1 with /£ and /£' re-

spectively.

The equivalence just defined will be written {t\} ~N*{t\ ] .

Again we must try to replace 20 by 2. It is still clear that a mapping inco

So induces a mapping into 2. The procedure used before for extending a map-

ping into 2 to one into 20 is still valid since projection preserves homotopv

(2.6.1). The real problem lies in this question: does {¿x} »jv'jíx' } with r

spect to 2 imply the same for 20? To prove this affirmatively, we must find

a scheme for assigning homotopies to all nerves not in 2. As before to each

such X we associate the smallest index from 2 which exceeds X, say X;. For

X,- there is by assumption a suitable homotopy Ax¡. Its projection into <ï>x

gives a homotopy between x$ft\t and ttx'/x,'.  These are homotopic to h and

(») See (6.6).
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tx by /x* and fi? respectively. We denote by hx this combined homotopy

ifx, *vAj¿, fx')- Thus far we have followed the method used for ordinary

space-net mappings. It remains to ascertain whether the whole collection

{hx} satisfies the restrictions of (2.21). This means first that we must assign

permanence homotopies (p^ agreeing with fx and fx'. ifx, fx are given since

the whole strong mapping is taken as given.) The construction of <p£* is given

in (2.8). It remains to fill the gaps between pairs of <E>'s both of which are

outside of S. Suppose we have p>X. Then ftM =(/£*', ir^hßi, /£*') and

hx=(f\, Tx'hxi, /x'O- A first obvious step toward such a <px is the combined

homotopy 4>x=(K'Ki, Vxiß, X,), ir^., <7>x<), where V\ÍP, X.) denotes the

homot iy between Trx'^h^ and irx^hßi given by (1.3) combined with

(2.6.2)! This is indeed a mapping of 5X7X7 onto i>x mapping (5X7X0)

by TTxhp and (5X-^XI) by hx- But in the form given, the final requirement of

(2.21) is not expressly satisfied. This fault is easily surmountable by use of

restriction (2) of (2.20) as applied to the/x's. Our mapping of 5X7X7 is a

double homotopy, giving a homotopy also between the induced mappings

of 5X0X7 and 5X1X7. But each of these mappings is in turn homotopic

to/x and/x' by application of this requirement (2) to the mappings from p,- to

X. By these homotopies the homotopy <px is altered so that (2.21) is fully

satisfied. The result is the desired <px-

The conclusion of this is the following analogue of (2.12) :

(2.22) The strong homotopy classes of strong mappings of a space into a net

are in 1-1 correspondence with those of any cofinal sequential subnet.

(2.23) {kx} is a strong space-net mapping of R into S0.

This follows at once from the extremely strict conclusions of (1.20) and

(1.3).
An immediate corollary is

-> (2.24) If t maps S into R, then {k\í} is a strong space-net mapping of S

into S0.

Analogous to (2.16) we make the

,    (2.25) Definition. Two mappings t, t' of 5 into R are strongly net-homo-

topic (written t^N*t') if their induced space-net mappings are strongly homo-

topic.

14. Strong neighborhood homotopy. The net and neighborhood tech-

niques are still parallel. This is shown in the following concept.

(2.26) Definition. / and t' are strongly neighborhood homotopic (written

t~u*t') if t^t' in every neighborhood Ux of R, and if moreover we add the

restriction that these homotopies {hx} are themselves homotopic; that is,

hx~hp (keeping / and t' fixed) in Ux when i/MC Ux-

In other words, t~u*t' if there is a family of mappings {hx} such that hx
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maps 5X7 into U\, and in addition if there is a family of mappings {fâ} send-

ing SXIXI into Z7x satisfying

(1) 0x(5 X I X 0) = hß(S X I),

(2) 4>"(S X I X 1) = Ax(5 X 7),

(3) <&(S X 0 X 7) = t(S)

for every value of the second parameter,

(4) <¡>Í(S X 1 X 7) = t'(S)

for every value of the second parameter.

If we have a sequence of neighborhoods getting arbitrarily close to 7?, it

is clear that every neighborhood of 7? has one out of the sequence inside it.

Hence strong neighborhood homotopy with respect to such a cofinal sequence

implies strong neighborhood homotopy as defined above. Thus we have a new

version of (2.5).

(2.27) 2«[/*£' if there is a sequence {hi} of homotopies satisfying the condi-

tions imposed in (2.26) for the Uti(R) generated by a sequence of «, approaching

zero.

The results (2.22) and (2.27) enable us to consider net- and neighborhood-

homotopies in the strong sense with reference only to sequences of nets or

neighborhoods.

The following theorem will be a corollary of a more general result of a later

section.

(2.28) Theorem. t~u*t'*=>t~N*t'. (See (3.10).)

(2.29) Theorem on simplicial approximation. If K is a geometric com-

plex, {t},} a mapping of K into 20, and 2 a cofinal sequential subnet of 20,

iAera there is a space-net mapping {¿x*} strongly homotopic to {t\} so that the

mappings {¿x*} into 2 are simplicial.

By (2.22) it suffices to prove

(2.30) If {ti} is a strong space-net mapping of K into a special sequential

net 2, then there is a strongly homotopic simplicial space-net mapping {¿»*|.

Proof. We define t* inductively on sufficiently fine regular subdivisions

of K. Assume that ¿¡*, t? ~ti, has been defined simplicial on K(i{i)). Now define

tf+i — ti+i on a subdivision of K sufficiently fine and so that j(i + \),^j(i).

For each i, we know that í¡* • — • í¿.

{ti*} is a mapping but not yet a strong space-net mapping. To get this

we must assign permanence homotopies {/,*'+*}. By (2.20.1) we consider only

permanences of the form/,*m, defined as (A,-,/í+1, 7rí+1A¿+i). A direct applica-
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tion of the method of (2.8) shows that (2.21) is satisfied if we take as A,- the

linear homotopy indicated by i<* • — • /,.

As an example of the manner in which the strong homotopy conditions

may be fitted together, we give the following lemma. It is of course implied

by the stronger (2.22).

(2.31) Let {u} be a strong space-net mapping, and then consider {ttI^H^^}

where r¡(i) is a monotone increasing function changing indices. Then {u} and

{-7TjC1>/,(¿)} are strongly homotopic.

Proof. We show merely that/?'1' given by the following combined homo-

topy Or?^-1/;^!, • • • , Tt\+1flt¡,fl+l) will serve as in A,-. This follows directly
by the construction given in (2.9). The four mappings in this lemma are

replaced for every i by ttj(<+1,î,(,+i), 7f<(i,/„(o> ir\+1ti+i, £,. The lemma yields

•7t5+1A,+i«í hi with the proper restrictions specified in (2.21).

Thus far in this section we have introduced four principal kinds of homo-

topy. These homotopies have been shown to fall into pairs which turn out

to be equivalent. The two sets of pairs are distinct, as was shown by the ex-

ample involving the Vietoris or dyadic solenoid.

Section III. A generalization of the notion of mapping

15. Mappings towards a space. In dealing with nets we began with space-

net mappings induced by space-space mappings (2.13). Yet most of the dis-

cussion of such space-net mappings has been independent of. any space-space

mappingO3). The neighborhood point of view has until now been focused on

particular mappings of a space 5 into 2?. It is to be remarked that the collec-

tion of homotopies {Ax} of (2.26) is of a different character if we think of it

as a function relating 5X7 and R. Neighborhood concepts parallel to space-

net and strong space-net mappings will now be defined.

(3.1) Definition. Let { U\} be the set of all neighborhoods of R and

{t\} a set of mappings such that for each X, h(S)(ZU\. {t\} is a mapping

of S towards R if p>\ implies that t„^t\ in U\; that is, provided that there

is a collection {/x}, M>^> of homotopies satisfying

(1) fr.S X I-> Ux,

(2) fx(S-X 0) = t,(S),

(3) ft(s x i) = h(s).

(3.2) Definition. If {h} and {t\ } are two mappings of 5 towards 7?,

then {t\} ^u{t\ } means that there exists a set {Ax} where Ax is a homotopy

in U\ of t\ with t{.
(3.3) For any set of u approaching zero it is sufficient to consider only the

sequence of neighborhoods (Ue<(R)).

(») Note for instance (2.21) and (2.29).
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This statement involves the following facts, similar to those discussed be-

fore:

(i) the sequence of neighborhoods mentioned is cofinal, and hence

(ii) there is a 1-1 correspondence between homotopy classes as defined in

(3.2) and homotopy classes defined with respect to the subsequence specified.

The proof of (i) is obvious. To demonstrate (ii) it is necessary only to show

that {tx} ~u{t\ } with respect to the subsequence implies the result for the

whole family of neighborhoods. This is clearly a result of the transitivity of

the homotopy relation.

As an analogue of strong space-net mappings we now state

(3.4) Definition. Strong mapping towards a space. A mapping towards R

is said to be strong if its homotopies f£ satisfy

ifrfl) «y?,
this homotopy leaving /M, tx fixed. (The notation if, /') for combined homo-

topy was explained in (2.7).)

To relate these stricter mappings we use a slight extension of (2.26)

namely

(3.5) Definition. Strong homotopy of strong mappings towards a space.

We write {tx} «sü*{íx' } if there are homotopies {hx} as in (3.2) which form

themselves a mapping of 5X7 towards R with permanence relations <px agree-

ing with fx and fx'. This last stipulation replaces conditions (3) and (4) of

(2.26) by

(3)' 0x(5X 0 X 7) =y^(5X7),■

(4)' 0x(5 X 1 X 7) = fx'iS X 7).

The proof that we can limit our study to strong mappings defined with

respect to a cofinal sequence of neighborhoods follows precisely the lines of

the proof of (2.22). It is slightly simplified by the absence of projections and

of the function 77. We state the equivalence in

(3.6) The strong homotopy classes of strong mappings towards a space R

are in 1-1 correspondence with those defined with respect to any cofinal sequence of

neighborhoods.

(3.6.1) Any strong mapping towards a space considered with respect to a

cofinal sequence is strongly equivalent to a similar mapping where //+2

= (//ífV/+1)-andsoon.
This is obvious if we take h¡ as the identity.

(3.7) Examples. The following items will illustrate the scope and use of

the concepts just introduced.

(3.7.1) Any mapping of 5 onto R is a strong mapping towards P.

(3.7.2) The mappings t and t' of the two examples mentioned on pages 285

and 286 are mappings towards which are homotopic. But for the second of



1944] NET HOMOTOPY FOR COMPACTA 291

these examples the mappings are not strongly homotopic.

We may restate (2.26) in

(3.8) Two neighborhood-homotopic mappings are strongly neighborhood-

homotopic if their homotopies are a mapping towards.

16. Net mappings and mappings towards. We wish now to prove the equiv-

alence of the concepts of net mappings and mappings towards in both the

weak and strong senses. A fact which we have used before, that the nerves

of our special sequential subnet get arbitrarily close to R, serves to point out

that every nerve lies in a neighborhood and every neighborhood contains a

nerve. We limit ourselves to the sequential case since its equivalence to the

general situation has been proved. The mere fact that every neighborhood

contains a nerve tells us at once that any space-net mapping is a mapping

towards when the nerves are imbedded naturally. For by connecting every

point of <l?i+i with its image under 7rJ+1 in <!>,•, we get segments in the neigh-

borhood containing $i along which a homotopy may be defined. Another

way of saying this is that the projections 7rí+1 are the result of deformations

on the "fundamental complex" (14) of R, imbedded naturally. We now need a

correspondence going in the other direction. Let {ti} be a mapping towards

P defined with reference to our cofinal sequence of neighborhoods i/(i(P).

Referring to (1.16) and (1.17), we now consider the collection ¡k(í)íÍí}. As

before (in proof of (2.18)) k(î),- is the Kuratowski mapping of UiiR) onto

<£,(£7i(P)) which by (1.16) is the same as $iiR). Thus for every i, ic(¿)<¿< is

a mapping of 5 into «^(P). It remains to show that condition (1) of (2.20)

is satisfied, since by (2.20.1) restriction (2) is trivial for the sequential case.

Since {h} is a (strong) mapping towards P, we have the homotopy i,+i«/i

on UiiR). As a consequence of (2.6.1), this yields

(a) kÍ%)íÍí+i ~ KÍi)it{

on <I\(P). The general result of (1.20) may be applied thus:

08') *•(* + l)?\(i + l)i+r -•*(»+ l)i

which by (2.6.2)' becomes

iß) di + l^V» + i)i+xti+v - •«(* + i)iti+i-

Now $i(ÏÏi+i(P)) = $i(?7i(P)) = <ï>i(P); so we may apply (1.21) which here

gives

(V) «(»+   l),---K(i)i|Fi+l(P),

or by (2.6.2)'

(7) »t(í +   l)i¿i+l-KÍÍ)iti+l,

(") Cf. Lefschetz [10, p. 325].
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since ti+i maps 5 into the smaller neighborhood. Combining a, ß, y we have

t+i
(5') %(i + \)i   k(í + Y)i+iti+i « K(i)iti.

Now since 4><+i(F,+i(2?)) = $,+i(7?) and <bi(Vi+i(R)) = $i(R), we know that

ir(i+l)\+1=irti+1. Thus we have finally the desired permanence homotopy

(8) Ti    n(i + l)i+i/i+i « K(i)ik.

This completes the proof of:

(3.9) {jc(*)ii,-} is a strong space-net mapping.

We wish now to prove the following:

(3.10) (Strong) homotopy classes of (strong) space-net mappings are in one-

one correspondence with (strong) classes of (strong) mappings towards.

We have set up a method of going from one family to another. It is clear

that the step of passing from nets to neighborhoods carries homotopies, since

the transition is merely in point of view. It should be noted that any class

of mappings towards can be derived from a space-net mapping. Let {ti} be

a mapping towards. From it we get {k0)¿í¿}, a space-net mapping. Let us

now consider ti as a mapping into Uu{(R) = Ul ■ The set of neighborhoods U'

is cofinal, and {<,} considered in this way is strongly homotopic to the origi-

nal. Moreover Uí is large enough so that k(í)í is a 3e¿-deformation along seg-

ments in UÍ. It follows that {k(í)íÍí} considered as a mapping towards is

strongly homotopic to {ti}.

In the other direction k(í)Jií gives a homotopy on <!>; between k(í)¿í¿ and

n(i)iti. In fact, if we use (3.9) with hi in place of ti, we get the desired ho-

motopies directly for the strong case. We have then :

(3.11) If {ti} ~v*{t¡ } then it follows that {«(*)<*<} ~N*{n(i)it' }. Like-

wise {/,•} «t/{¿/ } implies {k(í)íIí} ~N{n(i)it' }.

To prove (3.10) we need show now only that every class of mappings in

the net sense can be derived from a neighborhood class by the procedure of

(3.9). We suppose now that {ti} is a strong space-net mapping. Following the

procedure used before, we consider for each <$< a neighborhood (£7,-,.) of 7?

containing it • • • this choice being made monotone and cofinal in the se-

quence of neighborhoods of 7? given by (1.16)—(1.17). Since our sequence of

nerves is assumed special, we can apply (1.24) which yields *(/<)<£< ' — ti

on <S>i(R) = $i(Vi(R))C$i(VJi(R)) and hence »<(/«)*«(*)*• —»0'*&fe on
QjiiUjJR)) = <S>j,(R). But by (1.20)

Tï(ji)iAji)iti-K(ji)jiti.
Therefore

K(ji)i¿i-HjÙiJi  -  ""//i.

By (2.31), we know that {ir^i,} ~N*{ti}. It remains to point out that the

permanence relations//"1"1 are affected in exactly the same way: that is,
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K(ji)iifi-*lji      ■

Since this • — ■ relation holds for both the mappings and their permanences,

we get

{«■(ji)ifi}    **N*{vj¿i)    ~N'{tj,}    ~N'{ti}.

This completes the proof of (3.10).

Section IV. Homotopy groups

In this section we shall introduce groups associated with the mappings and

homotopies presented in sections II and III. These groups will be patterned

after the homotopy groups of Hurewicz. The ¿th homotopy group (in the

sense of Hurewicz) of a space P at a point p has as elements restricted homo-

topy classes of admissible mappings(15). A very brief review of admissible

mappings and restricted equivalence follows. An admissible mapping is either

a mapping of an oriented ¿-sphere (on which a base-point q has been selected)

into R in such a way that q goes into p, or a mapping of a closed oriented

¿-cell into P in such a way that the boundary of the closed cell is mapped into

p. There is a one-one correspondence between admissible mappings of the

¿-sphere with base-point q and admissible mappings of the closed cell. This is

a consequence of the fact that a punctured ¿-sphere is homeomorphic to a

¿-cell without its boundary. Since this correspondence exists, it is convenient

to think of elements of the ¿th homotopy group as classes of admissible

sphere-mappings (that is, mappings of spheres) or admissible cell-mappings,

quite interchangeably.

Two admissible mappings of a ¿-sphere into P are restrictedly homotopic

if they are homotopic in such a way that q goes into p throughout the homo-

topy. A similar rule applies for admissible cell-mappings. Two admissible

mappings belong to the same restricted homotopy class if they are related by

a finite chain of equivalences such as these just given: between two cell-

mappings, two sphere-mappings, or between a cell-mapping and a sphere-

mapping.

The restricted homotopy classes of admissible mappings are elements of

the ¿th homotopy group 7rt(P, p). Later in this section, a brief summary of

the procedure for combining these elements is given. In the following section

certain well known properties are reviewed.

We proceed now to a description of the analogous concepts for net- and

neighborhood-homotopies.

17. Admissible space-net mappings and admissible mappings towards. If

T is a closed subset of 5, and M a closed subset of P, we can consider the net

of M (a subnet of that of P) and space-net mappings of T into this net.

Then it makes sense to deal with those space-net mappings of 5 into the net

(16) The term "admissible" is taken from Eilenberg who uses it in this sense in some un-

published notes on homotopy.
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of P which are extensions of the T to M mappings. Furthermore we can de-

fine a restricted homotopy among the 5 to P mappings by insisting that T

be sent into the subnet of M throughout all homotopies. Similarly we can

limit our study to mappings of 5 towards P which send T towards M. This

possibility will not be developed in detail since in this paper we shall not use

the relative homotopy groups which require such machinery. Throughout

our discussions we shall need only two types of restricted mappings. In par-

ticular the subset M will always be a single base-point p. Hence we can re-

place the phrase "T towards M" by "T towards p." We shall moreover be

considering only two main choices for 5 and T. When 5 is a sphere 5", T will

be a fixed base-point g of 5. When 5 is a cell En, T will be the boundary of £",

<B(E") = 5"-1. For 5=5nX7, P will be qXl, and so on.

(4.1.1) Definition. We apply the term basic simplex to the ax in each <bx

whose sets in the corresponding covering contain p, the base-point of P.

Clearly ir^OxCo,,.

(4.1) Definition, {tx} is an admissible strong space-net mapping if

txiT)=pxCo~\ and fx(TXl)Ca\- t^(T)Co^ suffices for a weak admissible

mapping.

(4.2) Definition. Two admissible mappings {t\}, {t{ } are restrictedly

homotopic if all the homotopies needed for unrestricted homotopy leave the

image of T in the basic simplex at every level ; that is, for every X.

For example, two strongly homotopic admissible strong space-net map-

pings {tx} and {tx } are strongly restrictedly homotopic if hx(TXl)Cax, and

moreover ^(PX7X7)Co-x.

Since projections of basic simplexes lie in basic simplexes, and since the

function 77 used for (2.22) is a homotopy carrying no point out of its closed

simplex, the proof of (2.22) goes through step by step for restricted homot-

opies. We have then

(4.3) The strong (weak) restricted homotopy classes of space-net mappings

are in one-one correspondence with those defined with respect to any cofinal se-

quential subnet.

Similarly (3.6) becomes at once

(4.4) The strong (weak) restricted homotopy classes of mappings towards are

in one-one correspondence with those defined for cofinal sequences of neighbor-

hoods.

This means that we pick a suitable sequence of e —>0 and consider homo-

topies which send PX7 into Uti(p), and so on.

We need now to show that the theorem of equivalence of the net and

neighborhood (3.10) notions is valid when admissible mappings and restricted

homotopies are substituted. In the first place, it was pointed out that a strong

(weak) space-net mapping may be considered as a strong (weak) mapping

towards.

By the cofinality assumptions we have nerves and basic simplexes getting
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arbitrarily close to 2? and p respectively. Moreover every set UU(R) must

contain a nerve whose basic simplex lies in Uti(p). This situation maintains

the desired easy passage from net to neighborhood. In the other direction,

we point out that k(í)í maps a neighborhood of p (in fact the intersection of

the open sets of U¿ which include p) into the ith basic simplex. Thus we have

the transfer from admitted mappings towards to admitted space-net mappings.

The rest of the argument for equivalence is unchanged by the new assump-

tions; so we conclude that

(4.5) Strong (weak) restricted classes of admissible space-net mappings are

in one-one correspondence with strong (weak) restricted classes of admissible

mappings towards.

We might point out that when 5 is a polyhedron, T a subpolyhedron, and

M is an ANR the restriction "T towards M" may be replaced by "T into

717." For, for a cofinal sequence of neighborhoods, every mapping into a neigh-

borhood is homotopic to a mapping into M, and since 5 is a polyhedron the

homotopy on T may be extended to 5. That this modification is not possible

in general is shown by the following example. We take the space given in (2.2)

plus its reflection in the y-axis. Let R be the whole space thus defined between

— (2+7r)/7r and (2-|-7r)/ir. M is the closed subset given by —2/w^x^2/ir.

S is again a unit interval .473 while the end point 73 is taken as T. We consider

two mappings of .473, one, /, into the segment 2/7rgxâ(2-f-7r)/7r and t', the

reflected mapping. Then t(B) = (2/7t, 1) and t'(B) = ( —2/tt, 1). Since these are

both mappings into R, they may be considered as mappings towards. We have

the restricted homotopies in the sense defined, but there is no homotopy be-

tween them sending 73 actually into M at all stages.

18. Strong and weak homotopy groups. The study of restricted homot-

opies makes it possible to introduce the corresponding homotopy groups. As

in the Hurewicz homotopy group theory, we can pass freely from admissible

mappings of a sphere to admissible mappings of a cell. Henceforth this will

be done without mention.

In order to make our classes of admissible mappings into a group, we must

introduce an operation and an inverse. These steps again follow well known

procedures in the theory of the Hurewicz homotopy groupsO8).

Let t and /' be two admissible mappings of the closed cell Ek into 7?. We

define a third such mapping as follows. Let E\ and E\ be two disjoint closed

A-cells in the interior of Ek. Now let t" be the mapping of E\ as if by t and

E\ as if by /', the rest of Ek being mapped into p, the base-point in 7?. We

denote the class of t" by t+t', where t is the class of t and r' that of t'. We

may even write t+t' = t" • ■ • but of course it must be remembered that such

(16) The particular presentation which we review follows some lectures given by Ralph H.

Fox at Princeton in 1940. A similar method for the case k = 2 is given by H. Robbins, Trans.

Amer. Math. Soc. vol. 49 (1941) p. 310.
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a sum is unique only within homotopy. It is easily shown that this method

of combination is a real class operation, giving a unique sum for the classes

t and t'. The inverse of an element r= {t} is merely the class of admissible

mappings {t1} where /' is the mapping / defined on Ek alter its orientation

has been reversed. These definitions of sum and inverse lead readily to the

group 7Tjt(P, p). The construction of t+t' (written tt' for ¿ = 1) shows that

7r¡b(P, p) is abelian for ¿>1. In general, as is well known, the group 7Ti(P, p)

is not abelian.

Let {tx, fx} and {tx , fx'} be two strong admissible mappings of E" to-

wards P. The sum of two such mappings will be defined by means of the sum

just described for each X. tx+tx is to be a (not unique) mapping which agrees

with tx on one interior re-cell E" of En, with tx on another ££ and sends the

rest of E" into Uxip). The existence of such a mapping of E" follows from

the fact that all ordinary homotopy groups of U,xip) vanish with the result

that any mapping defined on a subpolyhedron (£"WPa) can be extended to

the whole polyhedron (E")(17). We must now consider what sort of perma-

nence relations may be used to make {tx+tx } a mapping towards. Consider

the two mappings tx+tx and tix(/„+<„') as mapping £"—((3£?)U(3p2)) into

U^ip). By the fact that TTkiUt^ip)) = 0, all ¿, homotopies/£ and/x" already

defined for ©(£?) and ©(£2) respectively can be extended to the rest of

£"-((3£?)U(3£^)). We denote this extension by fl+*. So we write

{/x;/x"} + k;/x"} = {h+t¿,fl+)*}.

We should next show that any sums of two strongly homotopic pairs of map-

pings yield strongly homotopic sums.

Assume then that {<£»; /x(1)"} «,*.{#>; /<2)*} and {/x3);/f *} ~wi#*; fl*»}
by suitable homotopies {hx;(px} and {hx;<Px} respectively. First we define

a new homotopy Äx+) simply by extending the homotopies hx and hx in the

manner just indicated for f[+). Finally the extension of <j>x on E"XIXI,

<px" on 1^X7X7, «x+), A_l+) on £"X7X0 and £"X7X1 respectively, and fl+)",
fx{+)"' on £" XO X7and £" XIX7respectively to<px+)" on the whole of £" X7X7

is again just a matter of extending the induced mapping to (£"— ((3£?)

W(3£^))X7X7.
The discussion of — {tx} = {—tx} follows the same pattern, and likewise

for associativity.

For weak homotopies the machinery is simplified but follows similar lines.

For net homotopies the discussion is identical except for notation. Without

further ado, then, we consider the groups formed by these various homotopy

classes. The theorems on equivalence of net- and neighborhood-restricted

homotopies guarantee that we have essentially only two kinds of groups—-

weak and strong. For any dimension k we denote them by IL(P) and IIfc*(P).

(17) For this theorem see Eilenberg [3, (6.2)].
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(4.6) Definition. Uk(R, p), the weak homotopy group of 2? at p, is the

group of weak restricted classes of admissible mappings of Ek or 5* towards 7?

(or, equivalently, the group of corresponding weak classes of space-net map-

pings into the net of 7?).

(4.7) Definition. II**(7?, p), the strong homotopy group of 7? at p, will

denote the group of strong restricted classes of admissible mappings of Sk or

Ek towards R (or, equivalently, the group of corresponding space-net classes).

Section V. A hurewicz theorem for nn(2?, p)

19. Standard results for geometric complexes. In the theory of homotopy

groups as developed by Hurewicz, one finds the following basic theorems:

(5.1) If R is arc-wise connected, then irh(R, p) is independent of p.

(5.2) If R is arc-wise connected, and ifTh(R)—0, k<n, then Trn(R)^3C"(R).

(In this conclusion, irn is taken modulo its commutator subgroup. This is

significant only for ra = 1.)

Theorem (5.2) holds when certain hypotheses are made about R. These

hypotheses depend on the type of homology groups being used. That is,

whether Vietoris-Cech or continuous cycles are under consideration. The as-

sumption about vanishing homotopy groups can be replaced by an equiva-

lent one about the nullhomotopy of any continuous (ra—l)-dimensional

complex on R. This equivalent property is actually the one ordinarily used

in the proof of the theorem. We shall need this notion in a generalized form;

so we give it a name "(ra —l)-contractibility," denoted by cn_i.

(5.3) Definition. R is said to be k-contractible, or ch, if every finite con-

tinuous A-dimensional complex on 2? is homotopic to a point. The following

remark is obvious.

(5.4) O-contractibility is equivalent to arc-wise connectedness.

The Hurewicz Theorem may now be restated :

(5.5) If R is c"-i, ¿Aera irn(R)=3Cn(R) (irn mod commutator for ra = l).

Since our generalized situation will deal with a net of geometric complexes,

we point out the following.

(5.6) If K is a geometric complex, then these statements are equivalent:

(5.6.1) Kn can be deformed to a point.

(5.6.2) Kisc».

(Kn is the «-section of K.)

Proof. (1) (5.6.1)->-(5.6.2). Let (Ln, t) be any continuous complex on K.

We take a simplicial approximation (£,'", t'). Since t' is simplicial, t'(Ln) (ZKn.

When K" is deformed to a point, the continuous complex (L'n, t') is deformed

into a new one (L'n, t") where t"(L'n) is a point. Combining this deformation

with the one connecting (Ln, t) and (L'n, t'), the result is attained.
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(2) (5.6.2)->-(5.6.1). For K" itself is a continuous complex, namely (Kn, 1)

onK.

20. Net contractibility. We now state the corresponding notions in terms

of nets.

(5.7) Definition. R is weakly k-contractible or Ck if every finite open cov-

ering has a refinement whose nerve is ck.

By (5.6) this definition can be weakened to a statement about the con-

tractibility of <£*.

The analogous strong notion can most easily be defined in terms of regular

closed coverings, since they lead to projections onto for the A-sections of

nerves. That is, Xx $* = i^ when the 4>'s are nerves of finite closed regular

coverings.

(5.8) Definition. R is strongly k-contractible or C* if in the family of

finite regular closed coverings of R there is a cofinal subsequence ,{%i} such

that

(i) each nerve $; is ch,

(ii) for any contraction 77¿ deforming $f to a point pi there is a contrac-

tion 77<+i deforming $*+! to a point pi+i (where Tr\+1pi+i = pi) in such a way

that projection and contraction commute within homotopy, this homotopy

leaving í>¿+i and pi+i fixed. Symbolically, this relation may be written

By (1.11) this implies a similar situation for a cofinal sequence in the fam-

ily of all open coverings.

As an analogue of (5.1) we have

(5.9) Uk*(R, p)^Uk*(R, p') when R is C°*.

(5.10) Uk(R, p)5¿Yik(R, p') when R is C°*.

It is convenient here to select a projective sequence of vertices from the

protective sequence of basic simplexes corresponding to p. That is, we pick

vertices pi from a,- such that ir\+1pi+i = pi. Likewise we pick pi from cri, the

¿th basic simplex corresponding to the base-point p'. By the C°* assumption,

there is an arc pipí in each <$¿ such that pipí is homotopic to ^^(pi+ipi+i),

the homotopy leaving the end points fixed.

Let now {/<} be a mapping admissible with respect to p. Then U(q)=pi

£<Ti. For each i we take the segment pipi and the arc pipi as the means of

getting a mapping admissible with respect to p'. The procedure of setting

up the correspondence between elements of Uk*(R, p) and of Uk*(R, p') or

between those of Hk(R, p) and YLk(R, p') is identical with the standard proof

of (5.1).
Since strong contractibility is unwieldy, the following result is stated:

(5.11) 7ra (5.9), (5.10) C°* may 6e replaced by C1.
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This is trivial, since Cl^-Ca and C1-»-iri(f>,-) = 0. By C° we can pick arcs

pipi as above. The fact that 7Ti(4>i) = 0 guarantees that the two arcs pipi and

7r}+1(75i+ip7+i) are properly homotopic.

The following remark is a consequence of (5.4) or of the preceding argu-

ments.

(5.11.1) If R is Ck, then for any point p of R we can assume that the

¿-deformations are onto points pi in dip), the basic simp .exes.

(5.11.1) enables us to use any fixed point of R as a reference point for Ck

properties as well as for homotopy groups.

21. Weak contractibility, weak homotopy, and homology. Now we com-

pare net homotopy and net homology for a space subject to assumptions

parallel to those of (5.5). We assume that R is Cn_1. Moreover we assume

«>1. The modifications for w = l are the same as in the classical theorem.

This means that we can pick from the family of finite open coverings of R

a cofinal subsequence with c"_1 nerves. Then for this subsequence we can

choose (by (2.29)) a simplicial representative {ti} out of any element r in

II„(P). For every i, ti(Sn) induces an w-cycle of 4>, (image of fundamental

cycle of the subdivision of 5" on which ti is defined) which we denote by

ytit,). The collection {y"itt)} is a cycle since 7r<+17?+i(¿.+i)~7i(A)- This fol-

lows from the stronger homotopy relation, 7t*+1¿í+i~/í, which gives a mapping

fi+l oí S"XI into $i. /1i+1(5"X0) is continuously homologous to 7?(0~

where 5"X0 is thought of as the fundamental cycle of 5"X0—and likewise

/t<+1(5"Xl) is continuously homologous to ?rí+17"+i(¿i+i)- Hence yliti) and

■""i+1Y"+i(ii+i) are continuously homologous, which assures ordinary homol-

ogy(18).

Suppose that two simplicial representatives of the same class were se-

lected. For every i we should then have two mappings tit tl of subdivisions

of 5" into 4>,-. These are related by a homotopy hi. The {h,} may be taken

as simplicial for proper subdivisions. This transfer to a simplicial hi replaces

ti and U by slightly different mappings. But different simplicial approxima-

tions of the same continuous cycle are homologous; so the desired homology

obtains.

Clearly this correspondence carries sums of homotopy elements into sums

of cycles, and so on. Thus we have at first a homomorphism

nn(P) ~» 3c»(P).

The homomorphism which we have described is based upon the one which

ordinarily would be used in proving the corresponding theorem (5.5), for each

separate complex $,-. So we review briefly the course which such a proof would

follow(19). We have assumed that 4>¡ is cn~l. By (5.5) we then have 7r„(<ï>i)

=Xn(í>i). This isomorphism is reached by means of the homomorphism as-

(18) See for instance Alexandroff-Hopf [2, p. 338, Satz la].

(19) For more detail see Hurewicz [6, §7].
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signing the homology class of y"(tt) to the mapping-class of U. That this

homomorphism is univalent is demonstrated by showing that y"(ti) can bound

only when /,- is homotopic to zero. In proving that the isomorphism into

3C" (<£>,-) is actually onto 3C™(<Pi), the assumption cn~i is employed. By it each

cycle y" can be deformed into a continuous "spherical cycle" 7" which de-

termines an element of 7r „($>,-), t,(y").

The method of passing from "spherical cycle" to admissible mapping-

class is as follows. Let y" be the continuous cycle (K, 7", 5,). Then the spheri-

cal cycle y" is the continuous cycle (K, yn, si) where 5/ (K"~1)=pi. 5/ is

homotopic to Si, so t7~y". Let 7" in K be given by a'a". The mapping 5/ | a]

is an admissible mapping of class t,-. We assign to 7" the class t,-(7?) =ahj.

Actually we might assign a specific mapping li(y'¡)=aísi\a". But since this

sum of mappings is not unique, the other assignment is preferable. Now it

is shown that homology relations for "spherical cycles" are transmitted into

homotopy relations for the corresponding elements of wn($i). Moreover, the

reciprocal nature of the two correspondences (from homotopy to homology

and vice versa) is proved by showing that 7?0i) for any í¿£r¿(7") satisfies

7?0i)~7"- Since no significant ambiguity is involved in this context we use

the same symbol ~ for both singular homology and ordinary homology.

These relationships and notations will now be applied to the net case. We

have established a homomorphism of II„(7?) into 3C"(7?). First we show that

it is univalent. For every i we have 7"04)~0->-/,«0. Hence if the space-net

mapping {/¿} induces a cycle {7?0t)} which is a bounding cycle, we have

{/,•} «0.
Now take any cycle {y"} and consider the collection {7"} of spherical

cycles formed with respect to points pi in basic simplexes as indicated in

(5.11.1), and any corresponding collection of mappings 2,- where ¿,£rt(77).

We need show merely that this collection is a space-net mapping: that is

7t'+17,+i « ti. By the very nature of the method of assigning homotopy elements

to cycles we have the relationship 7ri+V,+i(7"+i)=ri(7r'+17"+i). 7r"+17"+i is ho-

mologous (continuously) to 7". Hence both determine the same homotopy ele-

ment, that is, t,(7t*+17?+i)=t((7?). But the relationship ir^Ti+idî+i) =Ti(y1)

implies Tv\+1ti+i^ti. This proves that the isomorphism is onto, so the following

theorem has been established :

(5.12) Theorem. If R is C"_1, »>1, then the weak net homotopy group

Yln(R) and the integral net homology group 3C"(7c) are isomorphic.

As in the classical theory, the following special theorem holds.

(5.13) Theorem. If R is C°, then Yli(R) modulo its commutator group is

isomorphic with the integral net homology group 3Cl(7?).

It seems not unlikely that an assumption that 7? is C** might lead to an

analogous relationship between II„*(2c) and a suitably defined homology

group.
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Section VI. Examples

In the foregoing sections, five types of homotopy have been discussed.

The first of these is ordinary homotopy or absolute homotopy. This is the basic

concept which is generalized in the others. In section II neighborhood and

net homotopies of actual mappings into a compactum were introduced. These

notions were shown to be equivalent. Two distinct types of net-neighborhood

homotopies were discussed—the weak and the strong homotopies. Thus for

ordinary mappings we now have weak, strong, and absolute homotopies. Be-

sides these equivalences for mappings into a space, strong and weak homo-

topy relations were defined for mappings towards a space and for space-net

mappings. For compacta these generalized mappings were shown to lead to

equivalent theories.

22. Five homotopy groups. A suitable basis for comparison of the homo-

topy concepts is found in the homotopy groups to which they lead. Absolute

homotopy leads to the classical Hurewicz homotopy groups. Weak and strong

equivalence classes of space-net mappings and mappings towards a space have

been made into groups in section IV. The groups of weak and strong classes

of mappings into a space have not been explicitly defined; but their formula-

tion lies exactly between the absolute and net groups already discussed at

length ; so no detail will be given. It is clear that we can arrive at such groups

by considering the subgroup of 11* or of IIK* stemming from mappings towards

a compactum R which actually are into P, or correspondingly considering

space-net mappings which are induced by mappings into.

We shall denote the five groups as follows: for

(i) mappings into, homotopies absolute. 7Tfc(P),

(ii) mappings into, homotopies strong.. irk[N*]iR),

(iii) mappings into, homotopies weak. irk[N]iR),

(iv) mappings towards, homotopies strong. II ¿"(P),

(v) mappings towards, homotopies weak. II*(P).

23. Specific spaces. We consider first the circle.

(6.1) The one-sphere 51. tti = in [N] = in [N* ] = II * = Iii = the infinite cyclic

group.

It is well known that the fundamental group of a circle is the infinite cyclic

group. Since 51 is an ANR it follows trivially that no new classes or equiva-

lences are introduced by the neighborhood procedure.

It should be emphasized that these groups are identical for any compactum

which is an A NR.

(6.2) Consider the subspace of the Euclidean plane consisting of thefour

sets (a)x = 0, -3^y^l; (b)y = sin (1/x), 0<xg2/ir; (c)x = 2/tt, -3^y^l;

(d) y=—3, 0^x^2/tt. For it iri = -iri[N]=iri[N*]=0. These groups vanish

trivially since although the space is arc-wise connected there can be only

uninteresting mappings of 51 into it. This is a consequence of the break in

local connectivity.
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On the other hand, every e-neighborhood for small e is annulus-like, and

every such annulus will receive essential mappings of the one-sphere. (By

annulus we mean a homeomorph of the open plane set between two concentric

circles.) The homotopy properties of an annulus are those of a circle, since the

latter may be considered as a deformation-retract of the annulus. Moreover

for successively smaller e each new and smaller e-neighborhood is a deforma-

tion retract of the larger ones. Thus every mapping into one such neighbor-

hood can be deformed into the smaller ones. In this way mappings towards

the space are generated, and their classes are in one-one correspondence with

the classes of mappings for any one of the neighborhoods. We have then

Iii = II* = infinite cyclic group.

In this example real information is given by the II-groups while the

7T-groups reveal nothing. Their failure is due to their basic dependence on

local connectedness.

(6.3) Next we take the space defined by (a)x = 0, \y\ i£ 1 ; (b)y = sin (l/|x| ),

0< |x| ^2/rr; (c) |x| =2/t, — 3^y^l ; (d) y= — 3, |x| ^2/jt. This again is a

one-dimensional space. It is not arc-wise connected, so the standard homotopy

group theory does not apply significantly. In this case, however, each of the

two arc-components has the first three groups, tti, 7Ti [N], and tti [A7*], all zero.

Hence the groups do have accidental significance for the space as a whole.

As in the preceding example, IL = II * = infinite cyclic group.

This space is not c°, that is, not arc-wise connected, but it is C°*. This again

is a consequence of the possibility of a cofinal sequence of neighborhoods

which are constructed by successive deformation-retractions.

Since the property C°* has a role in the net theory parallel to that of arc-

wise connectedness in the Hurewicz theory, this is a simple example of the

type of space to which the new theory applies but the old does not.

This important distinction is brought out more sharply in the following

related examples.

(6.4) Consider the one-dimensional subset of Euclidean two-space defined

by (a)x = 0, 2^|y| ^4; (b) \y\ =3 + sin (1/| x| ), 0< |x| ^2/tt;(c) |x| =2/tt,

\y\ ^4. The space is a connected compactum.

It is an example of a space which is C°* but not arc-wise connected. Thus

here the net theory applies perfectly while the standard theory is useless.

(6.5) We now rotate the space of (6.4) about the x-axis. The classical

homotopy groups clearly do not apply for this space. They can be defined

for each of the arc-components but they are not attributes of the space as a

whole. This space is 2-sphere-like, and its only irregularity is the equatorial

band of non-local-connectedness. The central arc-component is a closed an-

nulus, and hence has an infinite cyclic first homotopy group. The other two

arc-components are two-cells, and hence have vanishing groups. All four of

the remaining groups: m [A7], 7Ti [N*], IL, IL* vanish.

When we consider two-dimensional groups, we see again that the II-groups
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are the ones which are consistently informative. All the 7T-groups vanish by

default because of the break in local connectedness. But this space, like the

preceding ones, has a cofinal sequence of neighborhoods each of which is a

deformation retract of the preceding one in the sequence. It follows that the

net-groups of the space are identical with ir2 for each such neighborhood.

We have then II2 = II2* = the infinite cyclic group; while 7T2 [N] =tt2 [N*] = 0.

(6.6) The dyadic solenoid.

We have previously cited the dyadic solenoid as a space which distin-

guishes between the concepts of weak and strong net-homotopy. Since the

solenoid is one-dimensional, it shows this difference for mappings of the

0-sphere. Thus the solenoid stands out as an example of a space which is

C but neither c° nor C°*. That it is not c° is well known. One can easily desig-

nate points which are not joined by an arc in the solenoid. To do this we re-

place the torus construction(20) by a sequential inverse-mapping system(2i).

In this mapping system the coordinate spaces are all circles, Si, and the pro-

jections t\+1 are mappings of degree two. We may define these mappings by

representing each of the circles by the real numbers mod 1 and by taking

each projection as ordinary multiplication by two. We designate a particu-

lar point by a sequence of coordinates (xi, x2, • • • ), each x¿ being a positive

real number less than 1. Then, for example, the points given by (0, 0, 0, • • • )

and (1/2, 3/4, 3/8, 11/16, 11/32, 43/64, 43/128,.- • • ) are not arc-wise con-
nected.

On the other hand, any two points of the solenoid can be joined by an arc

in any neighborhood: For consider merely the cofinal sequence of neighbor-

hoods given by the solid torus construction—each torus being regarded as a

neighborhood of the space. This neighborhood property is reflected in the C°

net property. For suitably chosen subdivisions we can regard the circles of

the inverse mapping system as simplicial complexes, with the projections as

simplicial mappings. Each covering of one of these circles induces a covering

of the limit space. We use the coverings of the circles by the stars of vertices.

The nerve of such a covering of a complex is isomorphic to the complex itself.

So it turns out that each subdivision of an Si may be taken as the nerve of a

covering of the solenoid, and each projection as a true projection in the net.

This sequence of coverings is cofinal (for consider the parallel case for the

torus construction), and each nerve is c°. Hence the space is C°.

Now let us suppose that the solenoid is C°*. We consider in each nerve of

the sequential net the coordinate-points of the two non-arc-wise-connected

points just specified. If the space is C°* it must be possible to join the corre-

sponding pair of points on the ith nerve by a homotopy A, such that the se-

quence {A,} is a space-net mapping of E°Xl into the net. We assign a degree

77(At) to each A¿. This is defined to be the number of times the arc A, wraps

(20) Referred to in section II.

(S1) See Lefschetz [9, chap. 1, pp. 31 ft.].



304 D. E. CHRISTIE [September

around the ith circle. It may be defined more specifically as the degree of a

circle-to-circle mapping induced by the arc-mapping. We shall be satisfied

here, however, with a rapid description which avoids unnecessary complica-

tions. Since Tr!"1"" is of degree 2", we have the relation

ti(tí   â,+„) ^ 2 r¡(hi+n).

If {hi} is a suitable space-net mapping, we must have irii+nhi+n~hi with the

end points fixed during the homotopy. This implies that we must have

77 Or,-   Ai+n) = 77 (A,).

Consequently for every ra, r\(hi+n)Oir](hi)/2n. This is possible only for all

n(hi) =0. But consider the possible arcs joining 0 to 3/8 in S\. ir\ sends them

into arcs of degree greater than 0. So the choice 77 = 0 throughout is impossible.

The argument sketched here serves to show incidentally that there is no

essential (that is, degree nonzero) mapping of 5X into the net of the solenoid.

The degree 77 above may be regarded without essential alteration as the de-

gree of a circle-mapping. Thus we have IIi = 0, 11* = 0.

(6.7) A space of dimension two for which IL and IIi* do not agree may be

constructed by taking the join of the solenoid and two points. Each of the

coordinate spaces in the inverse mapping system is a two-sphere. The argu-

ments used above go through with dimensions raised. We "get IIi = 0 but

ILJVO, n2 = 0 and II2* = 0.

Section VII. Net homotopy and net-net mappings

24. General remarks. In the previous sections we have dealt with nets

of simplicial complexes associated with coverings of spaces. But several of the

topics discussed have only incidental connection with these underlying spaces.

Many directions for generalization are possible. Our discussion was limited to

compacta in order to maintain an easy parallel between net and neighborhood

concepts. The transfer to nets connected with more general spaces or to nets

divorced from spaces is often quite simple. Another direction of generalization

is from nets to inverse mapping systems in general.

In the present section a few almost purely net concepts will be discussed

cursorily. To maintain the previous point of view, however, applications will

be made to nets of coverings of compacta.

In dealing with nets aside from nets related to spaces and their coverings,

we shall wish to assume certain properties which actually have been realized

in the examples we have used. The following is a modification of the definition

of Lefschetz(22).

Definition. A net 2 is a system of finite simplicial complexes { $x} in-

dexed by a directed set A= {X; > } and with the following properties:

(M) See Lefschetz [9, chap. 6, (2.1), p. 214].
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N.l. When X>p, there exists one or more simplicial mappings or projec-

tions, 7TX:$x—>$,i-

N.2. When ~K>p>v and ?rx, tt? are projections so is 7r?irx.

N.3. Any two projections irx, irx', X>p, are homotopic.

Thus our net will be a simplicial net with N.3 strengthened.

The term spectrum will apply to a net where irx is unique.

25. Homotopy groups for spectra.

(7.1) IL(S,px,0-
In our discussion of net groups for P, we used a point p in P as a point

of reference from which our "basic simplexes" and "base points" on the vari-

ous nerves were obtained. Now we wish to speak of nets quite apart from

the spaces they may represent. We could choose as base points selected points

in a projective set of simplexes. But for the moment it will be convenient to

become more general in this regard, even though counter-restrictions will be

necessary elsewhere. In the spectrum S= { $>x; tt*} we now pick base-points

p\C$\ quite at random. We do assume that each 3>x is connected. Now when

X>p we consider an arc /x joining the points pß and ir\p\. We shall always

assume that our choice of arcs can be made homotopically consistent: for

example when v>p>\ we have two arcs, namely /£ and tt^+Ix joining the

points px and "dp,. We shall assume that these arcs have been chosen so as

to be homotopic with the end points fixed throughout the homotopy. A suffi-

cient condition for making a random choice of such arcs behave in this

way is that all complexes <3?x of the spectrum are c\ or in other words that the

spectrum is C1. It is clear also that the use of a projective collection of basic

simplexes makes it possible to elect as arcs the segments joining the points in

question. Thus, as far as base points are concerned, the present discussion is

a generalization of the previous one (section IV).

Now consider the classical homotopy group of $x at px'-^ki^x, p\)- Let

px be any other point of i>x- By the assumption that i>x is a connected sim-

plicial complex it follows (by (5.1)) that the groups irki$x, px) and xt($x, p\)

are isomorphic. There may however be several distinct isomorphisms. A par-

ticular isomorphism is determined by every choice of an arc from px to px' ■

But two homotopic paths determine the same isomorphism.

A projection it* determines a homomorphism of Vki&x, p\) into Tki^n, ""i^x).

The arc /£ determines a unique isomorphism between it*,(<!>,„ ir^px) and

iTki^^p^). Thus for each pair of indices X>p there is a unique homomorphism

0X of irki$x, px) into iTki^n, pf). The collection of groups irt($x, px) and

homomorphisms 4% forms an inverse homomorphism system. The limit group

may be called a ¿th homotopy group of the spectrum. It depends on the choice

of base-points and on the arcs. Thus we write it as n¡fc(S, px, /£)• This is a gen-

eralization of TlkiR) for each admissible space-net mapping {tx}, where

<x»fji\, determines a set of elements {tx} where hCTxC^ki^x) and such

that 7txtx = tm. We have already mentioned sufficient conditions for making
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IL(2, p\, /£) independent of the arcs I*. Moreover we have shown in section V

sufficient conditions for making a group of this sort independent of base

points.

The main purpose of this sub-section is to point out that 134(7?) may be

considered as an inverse homomorphism system, and that immediate methods

of generalization are available. It should be added that the type of machinery

indicated here applies equally well for any inverse mapping system. This

point of view is mentioned by Freudenthal(23) and for A = l is used by

Komatu(24).

26. Net to net mappings. Let 2= { 3>x; 7^} and 2'= { $a' ; tt£'} be two

nets. Consider a collection of simplicial mappings {it} where T* maps <i>x

into <$„'.

(7.2) Definition. {T^} is a net-net mapping of 2 into 2' provided that

(i) for every pair of indices X', a' there is in the collection {T*} a T* with

X>X',a>a',

(ii) for every pair of mappings T«, T£ with X, p and a, ß ordered, perma-

nence relations such as

¡1     \ Of       \

TßtTy. « iTß Ta, for X > p, a > ß,

hold.
Essentially a net-net mapping is a cofinal collection of nerve to nerve

simplicial mappings which obey permanence relations.

Simplicial net-net mappings for spectra of a more strict sort (the « re-

placed by • —) have been considered by Nakasawa(25).

(7.2.1) Definition. Such a net-net mapping will be called a strict net-net

mapping.

(7.3) Definition. Two net-net mappings {7^}, {T¡¡'} are homotopic if

all permanence relations such as

fi   X of/     X/

Tß-Ky. « 7T0 7"a for X > p, a > ß

hold.
This may be shown directly to be a true equivalence relation.

These mappings are essentially "weak" in the sense of the weak homotopy

of previous sections. The possibility of "strong" net-net mappings will be

ignored here.

(7.4) If {t\} is a space-net mapping of S into 2, then { T*tx} is a space-net

mapping of S into 2' for any net-net mapping { T„}.

Proof. We must show that a>ß implies ■K^'T^ — Tßt^. Since our nets are

ordered by directed sets, we can pick a v'>\ or p. Then there is a Ty where

v>v' and y>a. Since {7^} is a net-net mapping, we have:

(23) See Freudenthal [4, pp. 227-228].

(*) See Koma tu [8].

(ffi) SeeNakasawa [ll].
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(l) 1Ta    1  y    ~    1 C.1TX

and
y/      » 14    V

(il) ITß    Ty    «    TßTp

but (i)-»-(iii)

(ill) XJ  IT«  i ,  «  JT{   r„7Tx

and (ii) + (iii)-»-(iv)
.. p   v ar    X    ,

(iv) TßTTßt,   »   7T0   TaTTxt,.

But irlfyGztp and 7rx/„ ~¿*x ; so we get

(v) zfc, « »„"rU.
q.e.d.

27. Induced net-net mappings.

(7.5) If T maps R into R', then T induces a strict net-net mapping of S0

into S0' (P, R' compacta; S0, S0' their nets).

Proof. For every covering U«' of P' and consequently for every induced

covering of TiR), the inverse of T leads to a finite open covering of P, Ux,

whose sets are the inverse image of the sets U'ntiR) for every U'CVLJ. As

has been shown by Lefschetz(26), the nerve of Ux is isomorphic to the corre-

sponding nerve for ¿(P) and hence to a closed subcomplex of the nerve of

Uo . The corresponding simplicial mapping we denote by Px. If U„ is a refine-

ment of Ux we have P£=P«ttx. Consider the collection {Ty} of simplicial

mappings of these types. It is cofinal with respect to the two nets jointly.

Moreover it has the strict permanence relations such as

c  x a,   x

This follows from (1.3).

An easy consequence of (7.5) is the following:

(7.6) The strict net-net mapping of (7.5) induces a homomorphism of the

weak homotopy groups of the net S0 into the groups of S0'.

Since the mapping is strict, basic simplexes for p in R go into basic sim-

plexes for Tip) in R'. By (7.4) then admissible mappings are carried into ad-

missible mappings. That homotopic mappings go into homotopic mappings is

trivial.

Homology properties require less stringent definitions both of nets and of

net-net mappings. It may however be pointed out incidentally that the proof

of (7.4) is formally identical with the proof that { T^y\} is a ¿-cycle of the

net S' if {7*} is a ¿-cycle of S. T„ denotes the chain mapping induced by the

simplicial mapping P£. To change from the homotopy proof to the homology

(26) SeeLefschetz [9, chap. 7, proof of (5.11), p. 251 ].
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analogue one merely replaces t\ by 7* and ~ by the weaker ~. On this basis

it is easy to show that a net-net mapping induces a homomorphism on net

homology groups.
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