TWO  TAUBERIAN THEOREMS IN THE THEORY OF
FOURIER SERIES

BY
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1. Let f(x) be a function which is integrable in the sense of Lebesgue and
periodic with period 2w. We consider the Fourier series of f(x) and write

(1.1) f(=) N% + X (an cos nx + b, sin nz),
n=l
Ao = ao/2, A, = A.(x) = a, cos nx + b, sin nx (n > 0),
«  Sn 1 =
1.2 n = = Cn. a—l;n—vAv -1 y
( ) 7 Cn+a.n Cn+a,n rz-(:l * ' (a > )
6(t) = ¢o(t) = {f(x + &) + f(x — &) — 25} /2,
¢t
(1.3) 60 = 2 [ = wyrs(aan (» > 0).
0

It is a theorem of Paley(!) that if «=0 and o5—s, then ¢i11.45—0 for every
positive 8. The result is best possible of its kind(?). That is to say, we cannot
replace 8 by 0 in the conclusion of the above theorem. We are interested in
such a problem, whether we can replace § by 0, whenever we emphasize the
hypothesis a little. This has been done by Hardy and Littlewood(?) in the
case a=0. They proved that if (i) 4,=0(n"?) for some positive & and
(ii) o9 —s=o0(1/log n), then ¢1(¢)—0. The object of this paper is to investigate
the analogous problems for the case «>0. We prove that for >0 a single
condition corresponding to condition (ii) in Hardy and Littlewood's theorem
is sufficient to deduce ¢14.(t)—0. Our theorem runs as follows.

THEOREM 1. If >0, and

(1.4) On— § = o(1/log n),
then
(1 '5) ¢l+a(t) b 0-
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() G. H. Hardy and J. E. Littlewood, Some new convergence criteria for Fourier series,
Annali Scuola Normale Superiore, Pisa, vol. 3 (1934).
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It is natural to ask whether the more stringent condition ¢5—s=0(n"*)
(1>€>0) combined with an order condition on the coefficients, 4,=0(n?%),
is sufficient to deduce ¢.(t)—0. We prove that this is true when « is any
positive integer, and also require a certain restriction on 4.

THEOREM 2. If a is any positive integer such that

(1.6) on—s=0(n") 1>e>0),
a.n - Ay = O(n~?) 6>1—¢),
then

(1.8) $a(2) — 0.

2. We begin by making the usual standard simplification of data, and dis-
cuss some properties of the function

(2.1) v vo(t) = fol (1 = u)?! cos tu du (p > 0).
~ We suppose throughout this paper that ¢, =0, s=0, then

(2.2) o) = {fx+ )+ fx—0}/2~ gA“ cos nf,

and if p>0,

1 1 ¢ 1
—¢,() = — | C—wrewdu= | (1 — u)*'¢(tu)du
@3 ! o f j:' ]
= Z An f (1 — w)rtcos ntudu = Y, Anyp(nt).

na=1

If j =1, we denote by v(¢) the jth derivative of v,(¢), while v5(¢) is defined
as v,(t). Then we have the following lemma.

LemMaA 1. v5(1)=0(1) (j=0,1,2, - --) for all ¢, and if t 21, then

(2.9) Y5(8) = O(1/8+1+7) (G=012-")
where y=min (1, p—(G+1)).

This is well known(4).

LemMA 2(5). If p>0,¢>p >0, then

*) E.W. Hobson, The theory of functions of a real variable, vol. 2, 2nd ed.

(%) S. Verblunsky, Note on the sum of an oscillating series, Proc. Cambridge Philos. Soc.
vol. 26 (1930).
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o0

Ay, (vt) = Z (= D@IC, 0y o(nt)

(2.5)

- fo " (1 = w712 sin (t1/2))7 cos [(vt + -Z—t) “— -Z— w] du.

We have

L]

E (= D)™ Cqnvyp(nt)
2.6)

1 o
= f (1 - u)”‘l( Z ('— 1) (n—P)Cq’n_’ Ccos ntu) du,
0 n=y

while

i (— 1)C,y ny COs niu
"~ = cosvtu — Cq1cos (v + 1)tu 4 Cyacos v+ Dt — « - - 4 -
= [eivtu — G0t o — L ]/2
+ [ete — CppeitHt .o ... /2
pu— eivtu(l — eitu)q/z + e—ivtu(l — e—itu)q/z
= ¢"t4(2 sin (tu/2))%eie(tv—")12/2
+ e (2 sin (fu/2))%eie(t—")12/2

= (2 sin (tu/2))? cos [(vt + (¢/2)t)u — (g/2)].
Substituting into the right-hand side of (2.6), we get the required result (2.5).
LEMMA 3. If p>0, ¢>5>0, then
(2.7) 3 (= DOy opylat) = 00,00,
We have by Lemma 2,
3 (= DOCqms by, )

n=y

(2.8) = fl(l — w)r? (2 sin —22)’ i (= 1D Cogns
0

n=v

[(re+ 5 )u-5 =]
cos | (n 5 u 21r u,

and using the same method as in the proof of Lemma 2 we can deduce that
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i s s
> (= 1) Cqy,ny cOS [(nt + ——z—t)u - — 7r:|

2
(2. tu)q—' [(t+st+q—-st> s g—s ]
sin 2 cos||» > 5 3 T 5 T
t q—8
=(2 sin _u) cos [(vt-l—it)u——q——u].
2 2 2
E (= 1) IC, n sy, (nt)

fl(l )P 1(2 i tu)q [<t+ qt g :Id
= — - —1} co — - = .
, u sin > s|{» 5 )u 5 w |du

Our result follows from Lemma 2.
3. To prove Theorem 1, we begin by choosing 7 such that

Hence

r>0+a)/e if as1,

r>2 f a>1,
and then write

3.1) =[], B=[tr].
We have by (2.3) that

(3.2) brrall) = 3 Asvira(nt) = 24+ 5 = x(t) + x:00),

14+ a el n=k+1

say. Since the Fourier coefficient of any integrable function tends to zero,

we notice that

O((nt)=1~), 0<a=1,
3.3 Yira(nt) =
( ) Yi+ (”) {0((nt)‘2), a>1,

in virtue of Lemma 1. Hence we have

(.4 x@®=0 (,TII )> n‘l‘“> -0 (

* k1

) = 0(re=1¢) = o(1),

tl+aka

when o =1, and

3.5) 0 =0(5 = w) = 0(57) = 0t = ot
' X = 2 k1 " - rr) o

when a>1.
So it is enough to prove that x:1(£) =o(1). Since



512 . C. T. LOO [November

n

= Z - 1) o= a+Al.n-rS:

ye=(

holds for any o> —1, hence

xi(t) = ZAm+.(nt) = Evl+a(nt)2(— 1) " CatrnaSy

(3.6)
= E S:Z (— l) ("-')C¢+l,n—r')'l+a(nt).

=1 Na=p
In order to establish x1(t) =0(1), we require some further lemmas.

LEMMA 4.

0

Z (— l) ("—')Cc;+l n—r71+a(”t).

Ny 1 1
= gi+e(] 4 g-‘)f (1 — w)ou'*= cos [(,,;4- -: )u - a-; -u-],du

where {—0 as t—0, uniformly in n.

This is an immediate corollary of Lemma 2. From this lemma we easily
see the following result.

- LEMMA §. For all positive ¢,

@3.7) 3 (= DO Cartmrssalnt) = O(+).

Na=y

LemMA 6. If vt>1, then

0 . l
(3.8) 2 (= 1) IC oty sV iral(nt) = 0( v1+«)'

Ne=y

Putting, in Lemma 4, vt=X, (a+1)(ut—w)/2=p, we are going to prove

3.9 fol(l — wu)u'** cos (Xu + B)du = O<X11+a)‘

If o is an integer, we have by successive integration by parts

1 .
f (1 — w)*utte cos (Xu + B)du
o 1 ! Q ‘ ™| i . .
—f;f cos [Xu + B4 (@+:1) ~2—]Z 4;(1 — u)o—igttidy |,
0

=0

where the A’s are numbers which depend on «. Each term can be integrated
by parts again, whence our result follows.
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If « is not an integer, let [a] denote the greatest integer which does not
exceed a. Integrating by parts gives

. f (1 — u)eutte cos (Xu + B)du
0

1 1 ] lel+t
= | e fo cos [Xu + 8+ ([e] + 1) ?] ’g A5(1 = wyeiye—taltidy |,

Each of the first [a]+1 terms can be integrated by parts again and is thus
seen to be numerically less than

K/Xa1+2,

which is the form required, since X>1, and [a]+2>a+1. The numerical
value of the last term, on taking x(1—#) as a new variable under the inte-
grand, is seen to be

A a X IHa
la)+1 f cos [u —X—-8—([a]+1) %:I (1 - l) uo—lal=1gy |,
0 x

Xl+a

which is again of order O(1/X'*<), since the last integral converges.
4. We are in a position to prove xi1(¢) =0(1). First, we shall confine our
proof to the case 0 <a=1. We have by (3.6)

k k
xi®) = 2573 (= 1) " Casrinoryisalnt)

(4. 1) r=1 Ny
ZS Z (— 1)(”_,) ¢+1,n—771+a(nt) - ZS Z
ne=k41
We put
k l k
4.2) 2SS (= D) Cartmrrialnt) =X + 5 = xs(8) + Y 0)
y=1 n=y Y1 41

say. In xs(¢), nt =<1, we have by Lemma 5,

(4.3) xs(t) = ,mi o(r%) = o(f+eli+e) = o(1).

=1

On the other hand, in x4(¢), n2=1, we have by Lemma 6,

. k pa k 1
H=o —_—) =
4.4 x(®) (H.El patl logn> o(g} nlogn)

o( log log > — log log +~1) = o(1).

It remains to prove
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k

.5) 3 ST S (= D) Cartmyivalnt) = o(1).

v=1 n=k+1

We have v14.(nt) =0(1/(nt)1+) for 0 <a =1, hence the left-hand side of (4.5)
is

o(En 5t Yeo(hE $ L)

gite =1 n=k+1 nl+a(n - 1')‘!-’-2 120 1 y=1 n=k+l (” - V)a+2

—O( ! i ! )—0< ! )—O(t"“‘l)— 1)
- frap S (B + 1 — p)ite T \ytep) = o

for r>(a+1)/a=za+1, when 0<a=1.

Collecting our results from (4.1), (4.2), (4.3), (4.4), and (4.5), we get
xi1(8) =0(1).

We notice that (4.3) and (4.4) are established for all >0, while (4.5)
holds in general only for 0 <a=1; this is certainly the sole reason for us to
treat the case 0 <a =1 first. As for a>1, by repeated use of Abel’s trans-
formation [a] times, we have

x LY (a1 (]
x1() = ZAn'Yl+a(nt) = Z Sa A vipa(nt)
(4.6) n:-l[m]_-l ‘ . n=1
+ 2 S yia((k — D2
=0
Also(%),

Alyipa(mt) = vira(mt) — vira((m + 1)1)
= — tyira((m + 6))8) (0 <6, <1),

Ay 1pa(mt) = Alyipa(mt) — Alyipa((m + 1)1)
= Pyiia((m + 61 + 65)8) (0 <6, < 1),

in general,
A'yrpalmt) = (= 1)'Ey1sallm + 01 + 02 + - - - + 0,)2)
4.7 iiid
= (= 1)t y11a((m + O)2)
where 0<60;<1 (¢=1,2, - - -, /).
We have by Lemma 1 that

Yiral(m + ©)) = O(1/(mt)™™) (G=01,2--,[]-1,
(4.8) [a)

Yiealmt) = O(1/(mt)"™*),

i+2

and by (4.7),

(®) Hereafter v/(mt) denotes differentiation with respect to the argument.
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Aiyrya(mt) = O/ (mt) %) = O(1/mi+2?)

(j=0’1’2"",[a]—1),
(4.10) Alalyy, o (mt) = O@t1®)/(mb) <) = O(1/mi+ege—lal+1),

We notice that 4,=0(1), hence S}, =o0(n/*!). Thus

(4.9)

+1 +2 2

Sieibyiea((k = O = Ok — )"/ (k = ™)
= O(l/kt) =0(" ) = 0(1)
(j=0’11""[a]—1)

since >2. That is to say, each term in the second sum of the right-hand side
of (4.6) is o(1). We thus obtain

(4.11)

k—[a]
[e]-1 [a]
(4.12) i) = 3 ST Ay ira(nt) + o(1).
n=1
We notice that if p>¢>—1, Si= D> (= 1)*"C,_, ,-,S?. Hence
k—[a]
[a]l-1 [a]
> ST A ()
" Ld (n— r) a
= Z A 'YH«(”I) E (— 1) Coalal41,n—1Sy
r=1 =1
(4.13) b (a) b a] . ')
= Z S E (-1 Calal+1, n—rA 71+a(nt)
=1 n=y
ke @ (n—») [a]
= Z S’ E (- 1) Cc—[al+l.n—vA ')'1+a(nt) + 0(1).
y=1 n=y
The last formula is justified by
k—[a] ©
n—v [a]
(4.14) Z S Z (_ 1)( ) a—[a]+l.n—vA 7l+a(nt) = 0(1)1
=1 n=k—[al+1

which can be easily deduced by noticing that S;=o0(v*) and (4.10). Hence
the left-hand side of (4.14) is

ot E 7 )

ta—[a]+l nek—[al+1 (n — v)a—-[al+2na+l
1 k—[a) © 1
- o(— ¥ F )
to— [a]+lk =1 nebe[al+1 (n — V)a—[a]+2

1 ke 1
-0 X )
ta—[a]+1k 1 (n — V) a—[al+1

= O(1/t==lel+1E) = Q(p—(a=1a1+D) = (1),
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since 7>2>a— [a]+1. Combined with (4.12) and (4.13) it follows that

k—[a] ©

#19 u®= X S (= 1) CatarrrmaA oy 1ralnt) + o(1).

Nu=y

Moreover, by applying Lemma 3 to the above sum we obtain

k—[a] [
(4.16) XI(t) E S, Z (" 1) o ") a+l n—r‘Yl+a(”t) + 0(1) = 0(1)'
na=1l ne=p

in virtue of (4.2), (4.3) and (4.4). Theorem 1 is thus completely proved.
5. In the proof of Theorem 2, we may suppose 0<d<1. We write

(5.1) —-Mt) = Z Anya(nt) = ): + 3 =) + x0).

n=1 ne=k+1l

Notice that 4,=0(n"?%), and that

1
0( ); 0<a=s2,
(nt)=
'Ya(nt) = 1
0 > 2,
((nt)’)’ *
and write
(5.2) =[], k=[],
where 7 is so chosen that
(5.3) 1/(1 —¢) > r> 1/6.

Thus we have fora=1,
hd 1
0= £ o =0(! Ere)-o()
(5.4) 0 ..E+ 9 f? kS
= 0@+1) = o(D),
and fora=2, 3, + - - we have

59 w0 =05 ) = o)

= 0(t+0r=2) = o(1),

since r>1/6>2/(149).
It is enough to prove xi(¢) =0(1). By repeated use of Abel’s transforma-
tion, we obtain

k—a—

(5 '6) xl(t) Z An‘Ya(nt) = E S A 'Ya(nt) + Zslc- A 'Ya((k - ])t)

nmel j=0



1944]) TWO TAUBERIAN THEOREMS 517

Making use of Lemma: 1, we have
(5.7 ya(mi) = O(1)
for all ¢, and

i fo(/m)*)  (j=10,1,-+,a—2),
(5.8) Ya(mt) = {0(1/("”)2) G=a—1aa+1),

when mt>1.
From (5.7), (5.8) and

(5.9) Alyalmt) = 0| va(mi)| ),
we easily deduce that
(5.10) Aiya(mt) = O(#)

for all positive ¢, and if m¢>1
Adyo(mt) = O(1/mi+%?2) (] =0,1,--+, (a — 2)),

(5.11) Acly (mt) = O(1/m=t), A%y (mt) = O(1/m=), A*tly.(mt) = O(t/m?).

All of the following estimates depend upon (5.10) or (5.11).
Since A,=0(n"?), so that S,=0(n+1-?), we have for j=0, 1, 2, -
(a—z))

512 Si-ia"va((E — )f) = O((k — . 2’*“1/(5;’ 2’“ £)
=001/k t) =0( ) = o(1)
since r>1/6>2/(146); and for j=a—1 we have
=01/kt) =0 )= o(1).
Moreover, since S;=o0(n*"), because of our hypothesis we have

(5.14) Sh—alva((k — )t) = o(k"“ ki> =0(%") = o(1).

It follows that each term in the second sum of the right hand side of (5.6) is
o(1).

Lastly, we write

k—a— k—a—1"
(5.15) 5_‘, SoA o) = }: + X = xst) + x(®
=l na=1 +1

say; we note that in x3(¢), nt <1,
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1 l
xo(f) = 3 ST yum) = 0 (‘ﬁl > "M) = 0@™™
(5 . 16) Nl Nl

e—a—l4+atl

= 0(t ) = 0(") = o(1),

while in x.(2), nt>1,

xu(®) = O(tk—f _— i) - O(t 58 n“) — (k)

N=al n ne=l

(5.17)
= O(tv(e—l)+l) = 0(1)’

since r<1/(1—¢). Collecting our results from (5.6), (5.12), (5.13), (5.14),
(5.15), (5.16), (5.17) we get x1(¢) =0(1). Theorem 2 is thus proved.
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