
THE APPROXIMATION BY PARTIAL SUMS
OF FOURIER SERIES

BY

R. SALEM AND A. ZYGMUND

1. Let/(x) be a continuous function having the period 27r. If this function

satisfies a Lipschitz condition of order a (0 <aá 1), that is to say if

\f(x+h)-f(x)\ =0(|*|-)

uniformly in x as h—»0, we shall say briefly that/ belongs to Lip a. Following

4](1)) we shall say that/ belongs to

a) uniformly as *—>0.

a notation already used (see Zygmund

lipa, 0<a<l, if \f(x+h)-f(x)\=o(\h
It is a classical result of Lebesgue (see Zygmund [5, p. 61 ] ; hereafter this

book will be denoted by T.S.) that if / belongs to Lip a and if sn denotes the

nth partial sum of the Fourier series of/, then, uniformly

(1) | *■(*) - /(*) | = 0(n— log n)

and it is known that the logarithm in the second member cannot be omitted.

The question whether the last relation can be sharpened by the suppres-

sion of the logarithm if, in addition to the hypothesis that/ belongs to Lip a,

we suppose also that/ is of bounded variation seems to have been overlooked

and it is the main purpose of this paper to give the solution of this problem.

It will be sufficient to consider the case 0 <a < 1 since if a = 1 it is well known

that the relation (1) can not be sharpened (see T.S. pp. 61-62, examples 6

and 8).
Let ao/2+^2xx(an cos «x+ôn sin wx) be the Fourier series of a continuous

function of bounded variation,/(x) of period 2ir. It is clear that such a func-

tion can not be monotonie in (0, 2ir) since/(0) =f(2ir); but we shall say that

f(x) belongs to the monotonie type if the Fourier-Stieltjes series

00

d(f + Cx) ~ C + ^ (nbn cos nx — nan sin «x)
i

is, for some C, the Fourier-Stieltjes series of a monotonie function; in other

words if there exists a constant G such that/(x) + Cx is either never decreasing

or never increasing in ( — «, + oo ).

Our results can now be stated in the following two theorems:

Theorem I. If the continuous function f(x) of period 2w belongs to Lip a

(0 <<x<l) and is of monotonie type, then
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|  Sn(x)   - f(x) |   =  Oí,»"«)

uniformly in x, where s„ix) is the nth partial sum of the Fourier series off.

Theorem II. The preceding theorem is no longer true if instead of supposing

that fix) is of monotonie type we suppose that fix) is of bounded variation. More

precisely, for every positive a less than 1 there exists a continuous function <p(x)

of bounded variation belonging to Lip a and such that for arbitrarily large val-

ues of «
i l°g «

max | sn(x) — <f>(x) \ >->
u(n) ■ n"

u(n) being a function increasing infinitely with n, as slowly as we please.

Proof of Theorem I. Suppose, to fix the ideas, that there is a constant C

such that F(x)=f(x) + Cx is increasing. Denoting as usual by Dn(t) the

Dirichlet's kernel sin ((2« + l)¿/2) (2 sin //2)"1 we have

*W(X)  - f(x)]   =    f     [f(x+ t) + fix -t)~ 2f(x)]Dn(t)dt.
J o

Since /£ Lip a, it is obvious that

[/(* + t) + f(x - 0 - 2fix)]Dnit)dt = 0(n~")
/J 0

uniformly in x, if 77 = 0(1/«). To study the integral from 17 to it, we observe

that it is equal to

(2) f   [F(x + t)+ F(x -t)- 2F(x)]Dn(t)dt

and we split it into integrals of the type J'¡2\ where k runs from 1 to the

integral part of log «/log 2. By the second mean value theorem, the integral

in the interval (ir/2k, ir/2*_1) is equal to

1 Ci       r /2»+  1   \
———— I       [F(x + t) + F(x-t)-2F(x)] sin (-—t)dt
2 sin (ir/2k+1)J T/2* \     2       /

and since F(x+t)+F(x — t)—2F(x) is an increasing function of t an applica-

tion of the second mean value theorem shows that this expression is

°[em-°[~\
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uniformly in x. Thus the integral (2) is

L » m       J Liog 2j'

that is to say

o|~— 2(1-^ml =0(n-")

which proves Theorem I. Clearly if we start from the assumption /Glip «

we prove in the same way | sn(x) —f(x)\ =o(n~").

An easy consequence of Theorem I is that we have | sn(x) —f(x) | = 0(n~")

whenever/(x) is continuous, of bounded variation, and its total variation

F(x) belongs to Lip a (0<a<l).

(An elementary example of a continuous function of bounded variation

whose total variation does not admit the same modulus of continuity as the

function itself is provided by the function xß sin 1/x (1 <ß<2) which belongs

to Lip(/3/2) and whose total variation can not belong to Lip a for a>ß — 1.

The proof is left to the reader.)

Proof of Theorem II. Let a be given (0 <a <1). For every positive integer

« we consider the function continuous and of period 27r defined as follows

1 [n°]
fn(x) = — sin «x    for    0 = x ^ ■

IT

I

[na]w

fn(x) = 0 for     ^—- ^ x g IT,
n

U-   X)   = fn(x)

where [na] denotes as usual the integral part of n". We write [na]ir/n =X„.

The total variation of /„(x) in (— w, +ir) is

n
0

x„

2 |      nx~a | cos «x | dx < 2nx-"\n < 2ir.

o

Moreover, /»(x) belongs to Lip a uniformly in «. For, if xi, x2 belong to the

interval (0, X„), we have

1                   X2 — Xi               x2+ X\
fn(x2) — fn(xi) = — 2 sin «-cos n-;

ft ¿é ¿t

thus, if |x2—xi| ^1/«, we have

2
I fn(Xi)   - fn(xx) |   =g — g  2 |  Xi -   Xx |».

«"

On the other hand, if |x2—*i| <!/«, we have
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,        2    n\ x2 — Xi\ x2 — Xi . .
/„(X2)  - fn(xi)     < -—^—Z-L < y-,77 = \X2-Xi   «.

n" 2 I x2 — Xi 11-a

Thus, taking into account that /n(x) is everywhere continuous, even, and

vanishes in (A„, w), we deduce that |/n(x2) —/n(xi) | ^4[x2—Xi| ", for any two

points of the interval (— ir, it).

Finally, let us note that

/"         sin«/          1   /*x» sin2«/           1   f» t«*l» sin2»              log»
fn(t) -dt = — I      -di = — -dv > A-»

o / n"Jo t naJo v na

A being a constant depending on a only, and that

1   f x» sin nt sin qt/'T sm qt 1   r
Mi)—-dt = ~\

o t naJ0

1   Çx» sin2 in + q)t/2 1   Ç

naJo t «aJ0

J      /. X»|n+«|/2 gjn2 j,

= — I -dv > 0.
n*J X„|n-,|/2 v

dt

1   rx» sin2 in - a)t/2
dt

t

1   r x» sin2 in + q)t/2 1   f x» sin2 (« - q)t/2

Let now w(«) be a function increasing infinitely with « as slowly as we

please. Let {«*} be a sequence of integers such that

1
<  oo.

ciink)

Consider the function

<t>(x)  =  2^  -7~\ '
*=1    C0(»tj

(f>(x) is continuous, of period 2x, of bounded variation, and belongs to Lip a.

If Jn(x) denotes the «th partial sum of its Fourier series, we have

1   /"■        sin nt / 1 \
,(0)=—       4>(t)-dt + 0( — ).

t J o t \n/

Hence, by the preceding remarks,

A      log «i / 1 \
*.»(o)>-     *    „ -o(-)

7T    w(nk)-n% \nk/

which is the same as
i i log nt
\Snt(0)-<b(0)\>C * ,

&)(«*)«£

C being a positive constant, and thus proves our theorem.
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2. In this section, which is not connected with the preceding one, we col-

lect some other results concerning mainly the order of magnitude of s„—f and

on the order of sn, as compared with the corresponding expressions for the

conjugate series.

Theorem III. Letf(x) be a continuous function of period 2ir, and s„(x) the

partial sum of order « of its Fourier series. Let f(x) be the function conjugate

to f, and Sn(x) its Fourier series partial sum of order n. If f(x) — sn(x) = 0(n~")

uniformly in x (a>0), then f(x) — sn(x) = 0(n~") uniformly in x.

Suppose first that 0 <ot < 1. Then,by a well known theorem (see de la Vallée

Poussin [3, p. 57]),/(x) being approximable by trigonometric polynomials of

order « with an error of order n~",f(x) belongs to Lip a. Hence, by Privaloff's

theorem (see T.S. p. 156),/(x) belongs also to Lip a.

This implies, by S. Bernstein's theorem (see T.S. p. 62),

(1) cn(x) - f(x) = 0(n-),

(2) Sn(x) - /(*) = O(n-)

uniformly in x, where o-„ and <rn denote Fejér's sums of order « of/(x) and/(x)

respectively.

By (1) and by our hypothesis s„(x)— o-n(x) = 0(n~a). Hence, by S. Bern-

stein's theorem on the maximum of the derivative of a trigonometric poly-

nomial (see T.S. p. 155)

» + 1

the primes denoting derivatives with respect to x.

Writing sn=A0+Ai+ • ■ • +An, where A„=an cos «x+6„ sin «x, and

in=£i+£j+ • • • +£», where £„ = o„ sin «x — i>„ cos «x, we have

Ai + 2A2 + • • • + nA„
sn — <r„ =-

«+ 1

Hence (3) gives

£i + 22£j -|-+ n2Bn
(4) -i-!--—- = 0(n—).

(n+l)2

Denoting now by â„2 the Cesàro mean of the second order of /, we have

nBi +(n- 1)5, + •••+£„
<r„ =-—-»

M + 1

„     m(» + l)£i + (« - l)nB, + • • • + l-2£n
ín  =  -

(« +   1)(« +  2)
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so that
ü      nBi + 2in- l)Bi+ • ■ • + n-l-Bn

ôn — an =-
in+l)in + 2)

and

M + 2    _ _2
Sn —  Ö n-—— (S n ~ ¿n )

(n + l)Bi +(n+ l)2Bi + ...+(» + l)nB„

in+ l)2

nBi+ in - l)2Bi+ • • ■ + n-l-Bn

(n + 1)*

Bi + 2*B2 + • • • + «2F„

(« + l)2
= 0(n~°),

by (4). But on—f=0(n~a) obviously implies an2—f=0(n~a), hence ín — in2

= 0(n~"), and thus 5„ — än = 0(n~"). Comparing this with (2) we see that

Mx) - f(x) = 0(«-°)

uniformly in x, which was to be proved.

Suppose now that a = l. We have, by hypothesis,

Rn= Y,AP = 0(n-°).
n

Let ß=a — e where 0<€<1. We have

E A,p> - ¿ (R, - RP+i)pe = RnnJ> + f) Rp[p» - (p - 1)*] = 0(«-).
n n n+1

Hence, by the above proved result,

Sn - ¿ B,p» = ¿ Bpp» - £ B„^ = 0(«-'),
n 1 1

and this implies

T—% x—*   Sn ¿p+1 On *~, 1    1 1
ZBP= E    ' = -. + E^   77-   7L \=0(n-°),

pß n*       „+i      \_p»       (p - 1)<U

which completes the proof.

Theorem IV. Lçtf(x) and sn(x) have the same meaning as in Theorem III.

If f(x)—sn(x)=0(n~a), 0<a<l, uniformly in x, then the derivative 5„'(x) is

0(nl~") uniformly in x.

We have, as in the proof of Theorem III, and using the same notations:
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sn(x) — <r„(x) = O («-<")

which implies

«.'(*) -*„'(*) -0(»*-).

But
m£i + 2(m - 1)5, +-h w£„

on (x) =-—-
« + 1

=   -   (n + 2) [ân - ¿n2]   =0(m1-«),

since we have seen that ¿f„—/and <r„2— /are 0(n~"). Hence also

i„'(x) =0(m1-«).

A proof analogous to that of Theorem III shows that, if /££, and if

f'\f—s„\dx = 0(n-a), then /'T|/—5n|dx = 0(»_a). Instead of Bernstein's the-

orem on the derivatives of trigonometric polynomials we apply the corre-

sponding result for mean values (T.S. p. 155). It may be added that for p> 1

the inequality {/^*|/-i»| pdx}1'p = 0(n-a) implies {fl*\f-Sn\ pdx}x'p = 0(n-a)

and that this may be obtained by a similar argument. The result, however,

is of no particular interest, being a corollary of the well known inequality

fl'\ g\ pdx = MlfJ\g\ pdx of M. Riesz (T.S. p. 147).
A similar extension applies to Theorem IV.

Theorem V. Let^^A „ be any trigonometric series (A„=an cos mx+bn sin mx) ,

and let^xBn be the conjugate series. Denote by sn and sn the partial sums^ZAk

and ^"Bk respectively. Let a>0. If s„(x) = 0(na) uniformly in x, then Sn(x)

= 0(na) uniformly in x. If Jt | sn\ dx = 0(na), then f0T(sn\ dx = 0(na).

This theorem is analogous to a well known result stating that, if z = reie,

a>0, and if f(z)=u(r, 6) +iv(r, 6) is regular for \z\ <1, then u(r, 6) = 0(1 -r)~a

impliesv(r, 6) =0(1 -r)-«and f'\ u(r, 6) \d6 = 0(l -r)~a implies fl'\v(r, 6) \dt
= 0(1 —r)-" (see Hardy and Littlewood [2], Cartwright [l ], or Zygmund [4]).

Suppose that
| Sn(x) |   g ¿(M)

for all x and n. Then, by S. Bernstein's theorem,

-   ¿ <¡>(n).
n

Denoting by ân the Cesàro means of order 1 of ^î°£>» we have

Sn (x)
(5) | in — Sn |   =

On the other hand,

M+l
^ 4>(n).
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| cn — <r»-i | =

Hence

«(« + 1)

«/»(«)

M+ 1

| i.| á | il| + | ii - âi| + • • • + Un - ?-i| =S ¿ -^7 = 0(»-),
1   y + 1

if $(«) =0(n"). And this, compared with (5), gives sn(x) =0(n"), the required

result.

The second part of Theorem V is proved similarly.

Theorem V is a special case of the following theorem.

Theorem VI. Let a>0, ß> —1. Let cr„"(x) and änß(x) denote respectively

the (C, ß) means of the series Eo°°^t omé E"-^*- U anß(x) = 0(n") uniformly

in x, then änß(x) = 0(na) uniformly in x. If f0T\iXnß(x)\dx = O(na), then

J?\*Six)\dx-Oin«).

Let ynß denote the Cesàro numbers., 7»"= 08+1)03+2) • • •  08+«)/«!.
The Cesàro sums anß for any numerical series «o+Mi+mj+ ■ • •  are defined

by the formula

ß        1   f   ß
¿_, yr-,u,.

%

It is easy to verify that

t£ -0

ß        ß+i r
<r„ — a„     =-

« + ß + 1    yß   ,-0

1      n     ß

— E 7»-»"«fi

ß        ß ß

»(« + ß)   yß~l ,_o

In particular, the (C, /3) means of the seriesEö°^l* and E™-^* satisfy the equa-

tions

O-n(x)  - <Tn      (x)   =- — ff„(x),
« + /3 + 1 ax

ffn(x)   -  <T„_i(x)   =-——■  — <7»      (X).
n(n + ß)  dx

If we use these two equations, the proof of Theorem VI becomes parallel to

that of Theorem V.

It is clear that in all the results the "0" may be replaced by "0."
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