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1. Introduction. The main purpose of the present note is to establish the

equivalence between the Cantor-Lebesgue and the Lusin-Denjoy properties

for linear expansions^). The statement of the sense in which this equivalence

shall be understood requires some definitions.

Let us consider a sequence of real (finite, single-valued) functions of the

real variable x: <pn(x) (ra = 0, 1, 2, • • ■ ) simultaneously defined in a set Q of

real numbers. Such a sequence will be called a base and will be briefly denoted

by <£(ß). Any series of functions having the form Zo^^nOO, where the X„

(ra = 0,1, 2, • ■ • ) are real numbers, will bé called a linear expansion associated

with the base i»(fi). A base c/>(0) is said to be measurable if all the functions

of the base are measurable in the Lebesgue sense in the set ß. All bases con-

sidered here are supposed to be measurable. The extension of our considera-

tions to the general case of non-measurable bases requires certain new details

in the definitions and in the proofs.

We shall say that two given properties P' and P" of a measurable base

are equivalent and write P'~P" provided that any measurable base possess-

ing the property P' also possesses the property P", and conversely. This

equivalence is reflexive, symmetric and transitive. If P is a property of a

measurable base, we shall denote by n(P) the negative of P, that is, the prop-

erty of a measurable base expressed by the fact that the base does not possess

the property P.

We shall say that a measurable base i>(ß) possesses the Cantor-Lebesgue

property if the following condition is satisfied:

CL. Any linear expansion associated with the base is almost everywhere

nonconvergent in the set S2 if the condition X„—->0 as ra—» oo is not satisfied.

We shall also say that the measurable base possesses the Lusin-Denjoy

property if the following condition is satisfied :

LD. Any linear expansion associated with the base is almost everywhere

absolutely divergent in the set fl if 230° | Xn | = + °o.
We are now in a position to state the announced equivalence and in fact

we shall prove that for any measurable base we have CL~LD. This equiva-
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(J) For the statements of these properties in the trigonometric case see [5, pp. 267 and

131]. Numbers in brackets refer to the bibliography at the end of the paper.
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lence was first pointed out by Stone [4, Theorems 2 and 4](2).

2. The equivalence theorem. Throughout this section we shall sup-

pose that the base 3>(ß) is measurable and that ß is a positive set (the case

where jm(0)=0 is trivial) (3). Now we define the following properties of a

measurable base:

Pi. A sub-sequence of the sequence \pn(x)} can be obtained which con-

verges to zero in a positive set ACS.

P2. A sub-sequence of the sequence {c/>„(x)} can be obtained which con-

verges uniformly to zero in a positive set A C ß-

Pj. A positive set A C ß can be obtained such that :

lim inf   I   I pn(x) I dx = 0.
n-»«o      J a

The following theorem can now be proved [4, 3].

Theorem. For any measurable base we have n(Pi)~n(Pi)~n(Pi)~CL.
~LD.

Proof. We divide the proof into the following parts.

(a) Pi implies Ps. This follows immediately from Egoroff's theorem [l,

p. 144].
(b) P2 implies P3. This is obvious if we consider a positive set ACß of

finite measure in the condition stated by P2»

(c) Ps implies Pi. In fact, from P8 it follows that a sub-sequence of the

sequence {<£n(it)} can be obtained which converges on the average to zero

in a positive set ACß [l, p. 245]; hence a further sub-sequence of the se-

quence {<pfl(ic)} can be obtained which converges to zero almost everywhere

in A.

(d) P2 implies w(LD). In fact, by virtue of Pa there exist a positive set

ACß and an increasing sequence of positive integers {nr} such that

|<pnr(*)| ^l/2r for #CA and r = l, 2, • • • ; we may then define a sequence X„

(w = 0, 1, 2, • • • ) by taking X„ = l for n = nr (r = l, 2, • • • ) and Xn = 0 other-

wise. Then Eô'XnCpnfa) is absolutely convergent in A and Eô"|Xn| = + °° ;

hence the base does not have the LD property.

(e) P2 implies w(CL). This follows also from the preceding argument.

(f) n(Ch) implies Pi. In fact, by virtue of n(CL) there exists a certain

(*) This paper, previously overlooked by me, was kindly called to my attention by the

referee. Stone proves the equivalences CL~LD~n(Pa) (property Pa is defined below in §2)

under the assumptions that Í2 is bounded and the functions J4>n(x)} are uniformly bounded

in Í2. These assumptions are superfluous for Theorems 2 and 4 of Stone, but this is not the case

for his Theorems 1 and 3.
(') A positive set is a measurable set whose measure is positive. We observe that the meas-

ure of a measurable set and the integral of a non-negative measurable function may be finite

or infinite.
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sequence Xn(ra=0, 1, 2, ■ • • ) such that (1) lim sup |\„| >0 as ra—► oo, and

such that (2) ZtTXnC>„(x) is convergent in a certain positive subset ACß.

From (2) we obtain (3) \n<pn(x)—>0 as ra—► oo for #£A. Next Pi follows from (1)

and (3).
(g) w(LD) implies P3. In fact, by virtue of ra(LD) there exists a sequence

Xn (ra = 0, 1, 2, • • • ) such that (1) Z<i°|X„[ =+ °o, and such that (2) S(x)

=Zo I Xnc/>„(*) | <+ °° holds in a positive subset of ß. By (2) there exist a

positive set A C ß of finite measure and a number K ^ 0 such that (3) S(x) ^K

for #£A. Integrating (3) over A we obtain

(4) Z|Xn| f |*.(*) I á*á Km(à).
0 J A

From (1) and (4) we may infer Ps.

Having proved these implications, the theorem follows readily. In fact,

(a), (b) and (c) show that Pi~P2~P3; next from (e) and (f) and from (d)

and (g) we obtain the remainder of the theorem.

3. An example. Now we consider as an example of the preceding argument

the following base which contains as a particular case the trigonometric series

and is of interest in the theory of almost periodic functions. Let/(a;) be a real

function of the real variable x, defined for — oo <x < + oo, periodic with pe-

riod a>0, and essentially distinct from the identically zero function. Let co»

and 6n (ra = 0, 1,2, • • • ) be two sequences of real numbers; also we suppose

that co„—*oo as ra—>=o. The base constituted by the following functions:

*.(*) = /(«»* + *«) (ra = 0, 1, 2, • • • )

possesses the Cantor-Lebesgue and the Lusin-Denjoy properties. In fact, ac-

cording to a theorem recently proved by Mazur and Orlicz [2] which gen-

eralizes Steinhaus' theorem [5, p. 269], we can assert that the relation:

lim sup | (¡>nr(x) I = ess. l.u.b. | f(x) \
T—+W —oo<X<-f-o6

holds almost everywhere for any increasing sequence of positive integers ra,

(r = l, 2, • • • ). This relation enables us to conclude that the base possesses

the property w(Pi)~CL~LD. If the function f(x) is summable on any finite

interval, we can make use of the following elementary equation:

m(A)
lim /' i      i       m(A) r a \     iI <bn(x) | dx =- I     I f(x) I dx

a                              a    J o

where A denotes a measurable set of real numbers. From this equation we may

infer that the base possesses the property ra(P3)'~CL'^LD.

I wish to express my warmest thanks to Professor Lelio I. Gama, of the

National Observatory, Rio de Janeiro.
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