ON FUNCTIONS HOLOMORPHIC IN A STRIP REGION,
AND AN EXTENSION OF WATSON’S PROBLEM

BY
S. MANDELBROJT AND G. R. MAacLANE

1. Introduction. The following theorem is well known.

THEOREM A. Let ¢(¢) be holomorphic and bounded in R({) >0, and continu-
ous on the boundary. If $({) is not identically zero, then(*)

o [ log "’;‘"’)'d,, S log |¢;(m)|dn S o
n — n

In the usual statement of this theorem, for example Ostrowski [9, pp. 195-
196](?), it is supposed that ¢(¢) is holomorphic on R({) =0. If we note, how-
ever, that if f(x) 20 is holomorphic and bounded in le <1, and continuous
on |x| =1 except perhaps at x=1, then the set of points on |x| =1 where
f(x) =0 is of measure zero(3), it is evident that a slight modification of Ostrow-
ski’s proof yields Theorem A(%).

Since ¢(¢) is bounded, (1) is equivalent to stating that the left-hand mem-
ber of (1) is.finite.

Conversely there follows from well known results:

THEOREM B. Let L(u), >0, be an increasing function such that

fwi:‘)du< ©,

u

There exists a function ¢({) mot identically zero, holomorphic in R({) >0,
and continuous on the boundary, such that log M(p) < —L(p) where M(p)

=maxlo|5f/zl¢(Peio) | .

The proof of this theorem follows immediately from Lemma VI of this

Presented to the Society, August 23, 1946; received by the editors June 10, 1946.

() By f*<» (f*>—») we mean that there exists a positive number a such that
limy.ofN=A4 exists and A< (4>—w). By /[*=© we mean that 4= «. Similarly for
f—a< L (f—,> - w).

(2) Numbers in brackets refer to the references cited at the end of the paper.

(®) This (which is trivial to prove) is of course a particular case of a theorem of F. and
M. Riesz giving the same conclusion without imposing continuity on lxl =1,

(%) Actually, as was proved by Szegé [10], Theorem A is still true if the condition that ¢(¢)
be continuous on the boundary is dropped. Also it should be remarked that obviously the con-
dition |¢»(§‘)| < M may be replaced by the condition that ¢(¢) be the quotient of two bounded
functions, Szegd uses the condition (in |x| <1) that J2|f(re*)|2d6 be bounded for r<1, but it
may be shown that any such function is the quotient of two bounded functions.
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paper, if we set { =e?, ¢(¢) = F(s), L(u) = N(log u).
It is convenient to translate the facts above by the transformation {=e*,
whence:

THEOREM A’. Let F(z) be holomorphic and bounded in the strip |y| <x/2,
continuous on the boundary, and not identically zero. Then the integrals

f log | F(x + ix/2) | e*dx

are finite.

TaEOREM B’. If N(x), x> — «, s an increasing function such that
JoN(x)e~*dx < o, then there exists a function F(z), not identically zero, holo-
morphic in the strip Iyl <w/2, continuous on the boundary, and such that

log | F(x + ix/2) | < log M(x) < — N(%)
where
M(x) = max |F(x+ iy)|.
lyls=/2

The following problem was suggested by Watson: { M,} being a sequence
of positive numbers, to give necessary and sufficient conditions on { M ,,} such
that if ¢(¢) is a function holomorphic in the half-plane R({) 20 and satisfies
there the inequalities

(2) GIES AR (n21)

then ¢(¢) is identically zero.

This problem is closely related to the problem of unicity of asymptotic
representation in a half-plane; that is, the solution of Watson’s problem fur-
nishes the answer to the following question: Let Y a.{—" represent asymptoti-'b
cally (2 la Poincaré) in the half-plane R({) =0 the holomorphic function ¢({),
this representation satisfying the inequalities '

m—1

123
3 "’(”“EF l¢m < M (m 2 1).
n=0
What are the conditions on { M ,,} in order that ¢(¢) be the only function satis-
fying (3)?

Denjoy [3] gave a sufficient condition that (2) imply ¢({) =0; Carleman
[2] gave a necessary and sufficient condition, and Ostrowski [9] gave an alter-
native proof. Actually, Ostrowski proved that if Carleman’s conditions are
not satisfied, then there exists a function ¢({), holomorphic and not taking
the value zero in R({) =0, and satisfying (2).

Let us suppose that lim MY"= «, and let us consider in the plane X0V
the points P, with coordinates (%, log M,) (n=1). Let y=II(x) be the enve-
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lope of all straight lines of non-negative slope passing through at least one
point P, but lying above no points P,. This envelope is a modified (since we
consider only lines of non-negative slope) polygon of Newton; in other words,
y=II(x) is the highest increasing convex curve under which no P, is situate.
If we set log M =II(n), Carleman’s condition is equivalent to the following:

TaEOREM C. If lim inf MY*< o and if ¢(¢), holomorphic in R(¢) =0,
satisfies (2) then ¢(¢) =0. If lim MY"= «, a necessary and sufficient condition
that from (2) together with ¢() holomorphic in R(¢) =0 it follows that ¢({) =0
is that

c

M,
M

2

This form of the condition was given by Mandelbrojt [4, 5]; it is more
suitable to the purposes of the present paper than the others. It is readily seen
that the same condition is also necessary and sufficient that from (2) together
with ¢({) holomorphic in the half-plane R({) >0, continuous in R({) 20, it
follows that ¢({) =0.

If we set { =e* we have the following two theorems.

= o0,

THEOREM C’. Let { M.}, n21, be a sequence of positive numbers. Let F(z)
be holomorphic in the strip I yl <w/2, continuous on the boundary, and such that
in this strip

|F(z)| < Mpe " (nz=1).
If lim inf MY"< o, or if lim MY"= o with ) M./ M:,,= o, then F(z)=0.

THEOREM C'’. If lim MY*= o and if 3 M/ M:,, <  then there exists a
function F(2) not identically zero, holomorphic in the strip |y| <m/2, continuous
on the boundary, and such that

| F(z) | < Mae = (nz1).

Mandelbrojt [6] proved that Theorem A’ still holds if the region D:
|y[ <m/2,isreplaced by a domain A defined by x>0, Iyl <g(x),0<g(x) T m/2,
and f*(r/2—g(x))dx < . Simple examples show that the conclusion is in-
valid when f*(7/2—g(x))dx= . The condition that this integral be finite
means that the area of the region D—A in the right half-plane be finite.
Since the above results are used in many branches of the theory of functions,
it seems useful to give analogous theorems valid when this area is not finite.
Some restricted results of this nature were given by Mandelbrojt [7]. It is
our purpose here to give general theorems (I, III) which contain Mandel-
brojt’s results and which essentially cannot be improved since we also prove
the converse (II). These theorems lead to a solution (Theorems IV, V) of a
problem generalizing that of Watson to regions other than a parallel strip.
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Since we do not suppose a finite area for D —A, it is natural that the ex-
pressions involved in the statements of our theorems should contain a func-
tion characterizing that part of A contained in R(z) <x. Also we shall not re-
strict ourselves to g(x) <w/2, but will assume g(x)—m/2.

2. Extensions of Theorems A’ and B’'. Let g(o) >0 be defined and continu-
ous for 0 =a, where — © <a< », g(o) of bounded variation in (a, «), and
lim, ., g(o) =7/2. Let S(c) be defined by

° du

w
4 S@)=—1] —
4 (@) 7).
where ¢>a.
Let D, be the strip in the z-plane (z=x+1y): |y| <w/2. Let A, be the do-
main in the s-plane (s=0+1¢) : 0 >aq, | tI <g(0). Let T be the boundary of A,.

We prove first the following three theorems.

TueoreM 1. Let F(s), notidentically zero, be holomorphic and bounded in A,,

continuous in A,+T. Let N(o) be an increasing function such that for o large
log | F(e + ig(0)) | £ — N(o). Then

f N(e)e5@dg < .

Note that from this statement it does not follow that f=log | F(e
+'ig(¢r))|e‘3(')da> — o, since —log | F(a+ig(o))| is not necessarily increas-
ing. Thus without further hypothesis on the boundary (cf. Theorem III)
Theorem I does not contain exactly Theorem A’.

THEOREM I1. Let N(o) be an increasing function such that [*N(c)e=5da
< o, Then there exists a function F(s) holomorphic in A,, continuous and not
taking the value zero in A,+ T, such that

log | F(o + ig(0))| < log M(¢) < — N(o)
holds in A,+T, where
M(s) = max |F(c+ it)].

|¢|§a(v)o

TuaEOREM II1. Let A, be such that g’ (o) exists for ¢ >k>a and satisfies for
o>k the conditions

lg@| <4, g+ —¢g0@>— 4k (h > 0)
for some positive constant A. Let F(s), not identically zero, be holomorphic and
bounded in A,, continuous in A,+T. Then

f log | F(o + ig(o)) ‘ e5@dg > — o,
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3. Lemmas. It is convenient to prove several lemmas before proceeding
with the proofs of the above theorems.

Let z=2(s) =x(s) +4y(s) map A, onto D, so that the interval ¢ <o < = of
the real axis in the s-plane corresponds to the real axis of the z-plane, 2(d) =1,
where d >a is a fixed number, and 2’(¢) >0. Let s(z) =0(2)+4¢(2) be the func-
tion inverse to z(s).

LeMMA 1.(1) x(¢) =S(0) +0(1) (6— = ). (2) |x(a) —x(o+1t) | '=0(1) (c— =)
uniformly for s=o+#E€A,. (3) |cr(x+iy)—cr(x)| =0(1) (x—») uniformly
for z=x+4yED,. (4) Ix(al) —x(a2)| =O(|o'1—02|)+0(l) (01, 02— ).

Proof. This lemma follows immediately from the distortion theorems of

Ahlfors [1, pp. 7-16] concerning strip mappings, which for the particular map
of A, onto D, may be stated as follows: Let

x1(¢) = min x(c + ), x2(¢c) = max xz(c + ),
|t|5a(¢) |tl§a(c)~

oi(2) = min o(x+ 7y), o2(x) = max o(x+ iy).

lylS=/2 lyls=/2
Then:
2 do
1)) If f > 4, then
o g(‘f)
@ —merz o [* 2y
X1(02) — X2\01) = — — 47.
2J, glo)
. T % do
(1§ %2(o2) — x1(0) = -—f +C
2 4 g(a)
for some constant C.
ﬂg(z) da'
() f <8
a1 (z) g(o')

The condition that g(o) be of bounded variation in (a, «) (then also g%(s)
is of bounded variation) insures the validity of (II) with a constant C. The
inequality (III) results from (I) upon setting x1(d2) =x2(01)-

Part (1) of Lemma I follows from (I) and (II), if we set 01=c¢, 02=0, the
condition in (I) being satisfied for ¢ sufficiently large since g(o)—w/2. Part (2)
follows from (II) with ¢y =02=g¢. Part (3) follows from (III) and the fact that
g(0) is bounded. Part (4) follows from (II) and g(o)—w/2.

Lemwma II. Lim, ., dx(0) /do=1.
Proof. Let D, be that part of D, for which x >x,, and A, the corresponding
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part of A, by the map z=2(s). By (4), since g(o)—n/2, S(¢) =0+0(s). By
Lemma I, (1), (2), x(s) =0+0(c), 0— , uniformly for s€A,. Thus for suffi-
ciently large x;, AT CA,CAjr, where we define

Av: o> 2x, |t| < inf glo) =4 =< w/2;
o2z

o> %1/2, ltl < sup g(o) = = /2.

o>z1/2

A+:

[

Since g(6) —>m/2aso— o, ff—7/2 as x;—> ».

Let o9 =s(xo), where x> 2x;. The function { = fi(z) = (e* — e%)/(e* + ¢%)
maps D, into | ¢ | <1, fi(x0) =0. Dy, the image of D, contains that part of
|§‘| <1 exterior to the circle passing through { = (e**—e=2)/(e*+e*°) and or-
thogonal to |¢| =1. Thus D; contains

®) It <1-—2  — R,
e 4 e*
The function
et — e’
© W=l =~

maps A" onto a region of the w-plane consisting of the part common to the
two circles passing through —1 and +1, making angles of +¢# with the real
axis, and exterior to the circle orthogonal to le =1 passing through
w = (e2#1 — e%) / (€2*1+-¢%). This domain contains the disc

e — e 1 — costy
) |'w|<min{ ) — ‘} = R..
€% - 271 sin tl‘

Similarly, the image of Ajt by (6) is contained in

1 — cos 1

- 1

8 w| < ——— = Rs.

® lw] < — i

Thus Ay, the map of A, by (6), contains I'wl < R and is contained in |w| <Rs.
The function

© ¢ = fi(w) = fi(s(s), s = f3 (w) (s €8
maps A, onto D; with f3(0) =0. It is readily seen that
dz d¢
0 il B
(1 ) ds a0 o dw |w=o

which is a real positive quantity.
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Applying Schwarz’ lemma to (9) and its inverse,
R, dt 1
—_— < —_— < —_—
R; dw w0 Re

By (5), (7), (8), and (10) we have on letting oy, xo— =,
z}“ dx dx f
cot — = lim inf — =< lim sup — < max {1, cot —} .
2 do do 2

Allowing x;— «, 412—7/2, we have the lemma.

LemMA I11. Let A, be such that g’ (o) exists for o >k >a and satisfies the con-
ditions

(11) | g'(0) | < 4, g+ kb)) —g(e) > — Ak (>0
for some positive constant A. Then there exists a positive constant & such that

(12) M>5 0<os—01<1,01> k)

where (o) =x(o+1g(0)).

Proof. A proof of the inequality (12) may be based on harmonic measure
and Carleman’s principle of domain-alteration (cf. Nevanlinna [8, p. 63]).
Let E(u, 01, 02), u=1, be the ellipse in the s-plane with minor axis of length 25
on the o-axis, major axis of length 2ub, and passing through the points
a1+1g(a1) and g2+1g(02). If u, fixed, is chosen sufficiently large, then for all
gy, oz such that k <oy <02 <0141, E(u, 01, 02) has the following two properties:

(1) There exists a constant B such that b <B.

(2) The two symmetric arcs «, a’ of E lying in the strip 01 <o <03 are ex-
terior to A,, and the complementary arcs are interior to A,.

First, it is readily seen that

_ 8 n [02 L g%(o2) — 1!2(t'1):|2

b2

u? 2 2u*(o2 — a1)
_ 82(:1) n [a: — 0 n g(&)g’(é)]’
u 2 u?

where ¢, < £ <0. Since g(o)—7/2, | g'(0)| <4,p =1, and |o:—01| <1, we have
(1) with B independent of the choice of p=1.
To prove (2), let t=q(s) be the equation of the upper half of E. Then if
s=0y is the center of E, we have for |0 —a3| <b:
uid? u

<-L£ <L
g%(c) b B

q"(0) = —
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~and for £>0,
uh
(13) g+ k) —q¢@0) < - 5

If G(¢) =q(0) —g(a), then by (11) and (13), G'(c + k) —G'(¢) < (A — u/B)h.
Thus if we choose u>A4B, G'(s) is a decreasing function and since G(o1)
=G(02) =0, G(0) >0 for g, <0o <02, and G(o) <0 for 3—b <o <7, 0or 62 <0 <03
+b, which is (2).

Let s =03 be the center of E, and let w(s; ¢, 02) be the harmonic function
of s regular in A, with boundary value unity on the two symmetric arcs of T
in g, <o <03, and zero on the rest of I'. Let w,(s; o1, 2) be the harmonic func-
tion of s regular in E(u, 01, 02) assuming the boundary value unity on the arcs
a, o’ and vanishing on the complementary arcs of E. Then by Carleman’s
principle

(14) 0 § wl(s; g1, 0’2) < w(S; g1, 0'2) é 1

for any s in the common part of E and A,.

Let { =f(s) map E onto |§' | <1 with f(e3) =0. Then f(s) is analytic, f’(s)
#0, on the boundary of E, and since E is of fixed eccentricity and of bounded
size (b <B) there existsa positive constant v such that any arc of E of length
\ corresponds to an arc of [; l =1 of length not less than yA. Finally, sincea
harmonic function is preserved by a conformal map,

1
(15) wi(o3; 01, 09) = — YA
]

where M\ is the length of a. But A>03—0y, and combining (14) and (15) we
have .

(16) w(os; 01, 02) > -} (o2 — a1).

Let x=2(c1) =x(01+1g(01)), x2==%(02), x3=x(03). Then w(s; o1, 02)
=w,(3; %1, ¥2), where 2=2(s) and w, is the harmonic function of 2 regular in
D,, zero on the boundary except for the segments in x; <x <x. where it as-
sumes the boundary value unity. It is readily seen that

( 2 tan-1 era — 1
X3; X1, %) = — tan! { ———M—— ).
w2\ X3 1y 2) x p— + p—

By Lemma I, x3=x,+0(1) and x;—x;=0(1) for o2 —0, <1, and

2 2
an w2(%3; %1, %2) < —tan~1C(x2 — %1) < — C(%2 — %1)
n w
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where C is a positive constant independent of 1, 02. Combining (16) and (17)
we have (12), with §=+/2C.

LeMMA 1V. Let N(o) be a positive increasing function and let o(x+ir/2)
=a(x). The convergence of one of the integrals

(@ [ v@eseu,
® f N(5(x))e=dx,
€%) f N(o(x))e=dx

entails the convergence of the other two.

Proof. By Lemma I, (3), there exists a positive constant b such that
a(x) —b<a(x) <o(x)+b, and by Lemma II there exists a positive constant d
such that for x sufficiently large o(x)+b<o(x+d) and o(x) —b>o(x—d).
Therefore for x sufficiently large o(x —d) <a(x) <o(x+d) and the convergence
of (B) is equivalent to the convergence of ().

By Lemma I; (1), S(¢(x)) =x+0(1) and by Lemma II, do/dx—1. Thus
from the relation

r 2(T) do
N(o)e5@dg = f N(o())e-seen 2 gy
T, 2(Tg) dx

we see that there exists a positive constant M, independent of T, such that
for Ty>c sufficiently large:

1 D T =(T)
— N(o(%x)ezdx < f N(o)e5@Wde < M N(o(x))ezdx.
M z(To) Ty z(To)

Since all the integrands are positive it follows that the convergence of (&)
is equivalent to the convergence of (), which completes the proof.

LeMMA V. Let Ny(x), x20, N1(0) =0, be an increasing function such that
Jee==dN1(x) < . The function

(18) P(2) =f {log [1 — exp (— e**)] + u — 2}dN1(u)
0
s holomorphic in D,, and satisfies there the inequalities
z—log 2 =1 _
RP(2) < —f Ni(w)du < — Ni(%)du, z2=1
0

[]
RP(2) <0, x < 1.

(19)
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Proof. For z bounded, the bracket in (18) is —e~%*+*/2+40(e~?%). The singu-
larities of the log term occur on the boundary of D,. Thus (18) converges
uniformly in any bounded closed subset of D,, and P(2) is holomorphic in D,.
Since log |1 —exp(—e**%)| +u—x <0, the second part of (19) is true, and
also we have for |y| <7/2, x 21,

RP(z) < fAlog | 1- exp (— e~vt9) | dN(u) +fAudN1(u) - fole(h)
= fAlog 2dN1(u) + ANl(A) - fANl(u)du - le(A)

A
= (log 2 + 4 — )Nx(4) — f Ni(w)du.

If we set A =x—log 2, we obtain (19).

The proof of Lemma V is equivalent to Mandelbrojt’s proof of Theorem
C"" [5, Lemma I, p. 342] if the strip is replaced by a half-plane, N;(x) being
the distribution function of the sequence { —log u, } .

LEmMMmA VI. If N(x), — o <x< 06, is an increasing function such that
J*N(x)e*dx < =, there exists a function F(z) holomorphic in D,, continuous and
never zero in D,, such that
(20) log |F(z) | < — N(2).

Proof. We may assume that N(x)>0. If in Lemma V we set Nj(x)
= [2N(u)du we obtain a furttion P(2) holomorphic in D,, continuous in D,
and satisfying R P(2) <O for all x, and for x 2 3,

RP(z) < —fz-l Ni(u)du < — Ny(x — 2) < — N(x — 3).

The function
F(3) = ePG+-N®

satisfies (20).
4. Proof of Theorems I, II, and IIl. The method of proof is now

obvious.
Proof of Theorem I. Let us set ®(z) = F(s(z)). Then

log | (x4 ix/2) | = log | F(3(x) + ig((x))) | S — N(3(=)).
From Theorem A’ it follows that
f N(3(2))e*dx < o,

and from Lemma IV
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f N(o)e3@dg < =,

Proof of Theorem II. By Lemma IV, (y) converges, and therefore
JeN(o(x+d))e*dx < o where d is any real number. By Lemma VI there
exists a function ®(2) holomorphic in D,, continuous and not taking the value
zero in D,, such that in D,

log | #(z) | < — N(o(x + d)).

The function F(s) = ®(z(s)) is holomorphic in A,, continuous and not zero in
A,+T, and satisfies in A,

log | F(s)| < — N(o[2(c + i2) + d)).

By Lemma I, (2), if d is sufficiently large x(o+14t) +d >x(a) for all o +itEA,;
olx(c+it)+d]}>c(x(e)) =0, and log| F(s)l < —N(o), which is the desired
function.

REMARK. If we apply Theorem II to the domain A*: |¢| <g(s)+e—7,
setting S*(o) = (7/2) J¢ [g(u) +e~+]-'du, and noting that S(¢) —S*(¢) =0(1) so
that the convergence of [*N(s)e=5*)do is equivalent to the convergence:of
J*N(s)e=5@dg, we have a stronger conclusion to Theorem II, namely that
F(s) is holomorphic and never zero in the closed domain A,+T' (with the ex-
ception of s= » of course) and satisfies log M(s) = —N(o).

Proof of Theorem III. We note first that if F(s) =®(z), (2) vanishes on
the boundary of D, in a set of measure zero, and hence by Lemma III,
F(c+1g(c)) as a function of o vanishes only orf a set of measure zero, and
log |F(a+ig(a))| is continuous almost everywhere. Thus since ¢(x) is a con-
tinuous increasing function we have

f Qlog |F(a + ig(o)) | eS@dg
= f log | ®(x + ix/2) | exp (— S((x)))da(x),

the second integral being a Stieltjes integral which by Lemmas I and III is
greater than

Cfnlog | ®(x + in/2) | e=dx

for some positive constant C. Applying Theorem A’ we have Theorem III.
5. Ageneralization of Watson’s problem. We now prove the following two
theorems.

THEOREM 1V. Let F(s) be holomorphic in A,, and continuous in A,+7T. Let
{M »} (n=1) be a sequence positive numbers such that in A,
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(21) |F(s)| < Mo (n 2 1).
If lim inf MY*< 0, or if lim MY"= « with

(22) i exp {— S (log A:;';l)} = o

then F(s)=0.
THEOREM V. If lim MY*= » and if

(23) i exp {— S(log 3:;‘;)} < o

then there exists a function F(s), holomorphic in A,, contmuous and not taking
the value zero in A, 4T, such that in A,

|F(s)| < Mone (nz1).

We prove first two lemmas.

LemMa VII. Let {v.} be a positive increasing sequence with lim v,= «. Let
N(x) be its distribution function: N(x) =0,0SxSv1; N(x) =n, v, <X Sv.41. Let
N.=>_"v;. The following equality holds:

z

f N(®)dt = max (nx — N,) = mx — Nn
(] n21

where m is such that v <x S vmy1.

Proof.

z m—1
f N(Hdt = E kE(is1 — vi) + m(x — vm)
[] k=1

If 0 <n<m, then
n—1

nx — N, = Z k(viyr — vi) + n(x — »,)
k=1

n—1 m—1

= 2 ke — v) + 22 (raa — vi) + n(x — vm)
ke=1 Fm=n

m—1
S Y k(vier — vi) + m(x — vm) = mx — Np.

k=1

If n>m, then
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m—1 n
nx— No= 2 k(a1 —wa) +m(x —vm) — 2, w+ (n —m)x
k=1 kemm+-1

=mx— Np— 2, (v — %) Smx— Np,
kmm+1

and the proof is complete.

LemMA VIIL. Let {v,} and N(x) be as in Lemma VII, and let Ny(x)
= [EN(t)dt. The two expressions

(24) i e—s(-..)'
(25) f “e"‘“’)N;(x)dx

converge or diverge together.

Proof. Since S(¢c) =0 we have
T T T dt
f eSWON(t)dt = e S@N(T) — Ni(c) + 7f Ni(t)es® —(t_)-’
¢ ¢ 4

and if [*e~3() N(t)dt converges, [e~5(Y Ny(t)dt converges also since Ny(£) >0
and g(t)—w/2. Conversely, if [“e~S()N,(¢)dt converges, then for some se-
quence of numbers T;— «, e S(T)IN,(T;)—0, ff‘e‘s(”N (#)dt is bounded, and
J2eS(ON(t)dt converges. Thus the convergence of (25) is equivalent to the
convergence of [*¢~S(9 N(t)dt. By a virtually identical argument, the conver-
gence of [*e~S(ON(f)dt is equivalent to the convergence of f*e=5()d N(f)
= > " ¢~50s), which completes the proof of Lemma VIII.
Proof of Theorem IV. By (21) we have in 4,,

| F(s) | < inf Mpe = A(0)
nal

and if lim inf MY"< «, then 4 (¢) =0 for ¢ sufficiently large and the conclu-
sion is obvious. In case lim MY*= « we have also

A(c) = inf Moe ™
n21
Let N(x) be the distribution function of the sequence {va} with »,
=log(M5/M;_,) (n=1, My=1), and Ni(x) = [iN(x)dx. Then, in the notation
of Lemma VII,

. M, . .
N,.=log‘M1+log—A-l;+--o + log —— = log M,,
1 n—1

and by Lemma VII
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log | F(s)| < log A(¢) = — sup (ns — log M)
nal

= — max (ne — N,) = — Ni(o).

But by Lemma VIII, fe~$(®N(x)dx= », and therefore by Theorem I,
F(s)=0.

Proof of Theorem V. Let N(x) be the distribution function of {v,} with
vo=log(Mi/M:_,) (n=1, My=1), and let Ni(0) = [§N(x)dx. By Lemma VIII,
J*e 8@ N(x)dx < ©, and by Theorem II there exists a function F(s) holo-
morphic in A,, continuous and never zero in A,+T, such that

log | F(s)| £ — Ni(o).
But by Lemma VII, N;(¢) = max,z1(no —log M;). Therefore
log |F(s)| < — max (no — log M:) < —no + log Mf.,
na1
for all n=1, which proves Theorem V.

When A, is the strip |¢| <7/2, Theorems IV and V become Theorems C"
and C'’, for then S(¢) =0 —c¢ and

— M. M.
D exp {— S(log +1)} =), .
M; "+
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