
ON FUNCTIONS HOLOMORPHIC IN A STRIP REGION,
AND AN EXTENSION OF WATSON'S PROBLEM

BY

S. MANDELBROJT AND G. R. MacLANE

1. Introduction. The following theorem is well known.

Theorem A. Let <£(f) be holomorphic and bounded in %.($) >0, and continu-

ous on the boundary. If <(>(£) is not identically zero, then(l)

r - log | 4,(iv) | r    log | <¡>(iv) \
(1) I- ¿7J>-00, I- ¿~>-00.

J 1) J-a, V

In the usual statement of this theorem, for example Ostrowski [9, pp. 195—

196](2), it is supposed that <p(Ç) is holomorphic on ^(f) =0. If we note, how-

ever, that if f(x) ¿¿0 is holomorphic and bounded in |a;| <1, and continuous

on |jc| =1 except perhaps at x = l, then the set of points on |ac| =1 where

f(x) =0 is of measure zero(3), it is evident that a slight modification of Ostrow-

ski's proof yields Theorem A(4).

Since 0(f) is bounded, (1) is equivalent to stating that the left-hand mem-

ber of (1) is finite.

Conversely there follows from well known results:

Theorem B. Let L(u), w>0, Ae an increasing function such that

I      -du < ».
J        u2

There exists a function 0(f) not identically zero, holomorphic in 3^.(f)>0,

and continuous on the boundary, such that log M(p) <—L(p) where M(p)

= max\)\ér/2\<f>(pei<>)\.

The proof of this theorem follows immediately from Lemma VI of this

Presented to the Society, August 23, 1946; received by the editors June 10, 1946.

(') By f"<a> (/*> —oo) we mean that there exists a positive number a such that

\imN-.„f¡f=A exists and A<» (A>—<*>). By /*= » we mean that A = «>. Similarly for

/_-<» (/-„>- «).
(2) Numbers in brackets refer to the references cited at the end of the paper.

(3) This (which is trivial to prove) is of course a particular case of a theorem of F. and

M. Riesz giving the same conclusion without imposing continuity on \x\ =1.

(4) Actually, as was proved by Szegö [10], Theorem Ais still true if the condition that <¿>(f)

be continuous on the boundary is dropped. Also it should be remarked that obviously the con-

dition | <t>(t) | <M may be replaced by the condition that <¡>{t) be the quotient of two bounded

functions. Szegö uses the condition (in \x\ <1) that f$*\f{re&)\*d6 be bounded for r<l, but it

may be shown that any such function is the quotient of two bounded functions.

454
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paper, if we set f = e", <p(f) = 77(j), L(w) =TV(log u).

It is convenient to translate the facts above by the transformation f = e',

whence :

Theorem A'. Let Fiz) be holomorphic and bounded in the strip \y\ <ir/2,

continuous on the boundary, and not identically zero. Then the integrals

f log | F(x + ítt/2) I er*dx

are finite.

Theorem B'. If N(x), x> — », is an increasing function such that

f°"N(x)e~xdx< », then there exists a function F(z), not identically zero, holo-

morphic in the strip \y\ <ir/2, continuous on the boundary, and such that

log \F(x± ir/2) | S log M(x) ^ - N(x)

where

M(x)  =   max   ^(x+iy)!.
lvláx/2

The following problem was suggested by Watson : { TH„} being a sequence

of positive numbers, to give necessary and sufficient conditions on { 7H„} such

that if <p(f) is a function holomorphic in the half-plane î^.(f) ^0 and satisfies

there the inequalities

(2) |*(f)| ^ AT- | r I— (»èD

then <pOT) is identically zero.

This problem is closely related to the problem of unicity of asymptotic

representation in a half-plane; that is, the solution of Watson's problem fur-

nishes the answer to the following question: LetT^o„C~n represent asymptoti-

cally (à la Poincaré) in the half-plane <BJX) ̂0 the holomorphic function 0(f),

this representation satisfying the inequalities

m~~ 1 a

Pit) - £ -; <Mm (» £ 1).

What are the conditions on {Mn} in order that $(f ) be the only function satis-

fying (3)?

Denjoy [3] gave a sufficient condition that (2) imply pi^)=0; Carleman

[2] gave a necessary and sufficient condition, and Ostrowski [9] gave an alter-

native proof. Actually, Ostrowski proved that if Carleman's conditions are

not satisfied, then there exists a function Pit), holomorphic and not taking

the value zero in 'rv(f) SiO, and satisfying (2).

Let us suppose that lim M]/n = », and let us consider in the plane XO Y

the points Pn with coordinates in, log Mn) in ^ 1). Let y = LT(x) be the enve-
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lope of all straight lines of non-negative slope passing through at least one

point Pn but lying above no points Pn. This envelope is a modified (since we

consider only lines of non-negative slope) polygon of Newton ; in other words,

y = II(x) is the highest increasing convex curve under which no Pn is situate.

If we set log THÜ = LT(n), Carleman's condition is equivalent to the following:

Theorem C. If lim inf Mn/n< » and if pit), holomorphic in %it) ^0,

satisfies (2) then p(t) =0. If lim M„= », a necessary and sufficient condition

that from (2) together with pit) holomorphic in %(t) ^0 it follows that p(t)=0

is that

^       Mn

Mn+i

This form of the condition was given by Mandelbrojt [4, 5]; it is more

suitable to the purposes of the present paper than the others. It is readily seen

that the same condition is also necessary and sufficient that from (2) together

with pit) holomorphic in the half-plane £r\(f)>0, continuous in 'RXf^O, it

follows that pit) =0.

If we set t = ez we have the following two theorems.

Theorem C. Let {Mn), »sSl, be a sequence of positive numbers. Let F(z)

be holomorphic in the strip \ y\ <ir/2, continuous on the boundary, and such that

in this strip

|F(z)| < Mne~nx int 1).

If lim inf M]/n< », or if lim Mn/n= » with T,Mn/Mn+l= «>, then 77(z)=0.

Theorem C". If lim M]/n= » and if^2Mñ/Mn+1< » then there exists a

function Fiz) not identically zero, holomorphic in the strip \ y\ <ir/2, continuous

on the boundary, and such that

\Fiz) | < Mne~nx (n ^ 1).

Mandelbrojt [6] proved that Theorem A' still holds if the region D:

\y\ <7r/2, is replaced by a domain A defined by x>0, |y| <g(x),0<g(x) ] w/2,

and faiir/2—gix))dx< ». Simple examples show that the conclusion is in-

valid when fKiw/2—gix))dx= ». The condition that this integral be finite

means that the area of the region D—A in the right half-plane be finite.

Since the above results are used in many branches of the theory of functions,

it seems useful to give analogous theorems valid when this area is not finite.

Some restricted results of this nature were given by Mandelbrojt [7]. It is

our purpose here to give general theorems (I, III) which contain Mandel-

brojt's results and which essentially cannot be improved since we also prove

the converse (II). These theorems lead to a solution (Theorems IV, V) of a

problem generalizing that of Watson to regions other than a parallel strip.
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Since we do not suppose a finite area for D —A, it is natural that the ex-

pressions involved in the statements of our theorems should contain a func-

tion characterizing that part of A contained inir\(z) <x. Also we shall not re-

strict ourselves to g(x)^ir/2, but will assume g(x)—*w/2.

2. Extensions of Theorems A' and B'. Let g(cr) > 0 be defined and continu-

ous for cr^a, where — oo áa< », g(o) of bounded variation in (a, oo), and

lim,.«, g(a)=tr/2. Let S(o) be defined by

(4) S(-) = - J
du

g(«)
where c>a.

Yet Dz be the strip in the z-plane (z = x+iy) : \y\ <ir/2. Yet A„ be the do-

main in the s-plane (s=a+it) :a>a, \t\ <g(a). Yet Y be the boundary of A,.

We prove first the following three theorems.

Theorem I. Let F(s), not identically zero, be holomorphic and bounded in A„

continuous in A.+ T. Let N(o) be an increasing function such that for a large

log | F(o- + ig(a)) | = - N(<r). Then

f N(o)e-S^do- < oo.

Note that from this statement it does not follow that /°° log | F(o

+ig(a))\e~s{')dcT> — oo, since —log | F(<r+ig(cr))\ is not necessarily increas-

ing. Thus without further hypothesis on the boundary (cf. Theorem III)

Theorem I does not contain exactly Theorem A'.

Theorem II. Let N(a) be an increasing function such that fxN(a)e~swd<r

< oo. ZTJe« iAere exists a function F(s) holomorphic in A„ continuous and not

taking the value zero in A„-rT, such that

log | F(c ± ig(a)) | = log M (a) = - N(<r)

holds in As + Y, where

M (a) =    max    | F(a + it) \.

Theorem III. Let A„ be such that g'(o) exists for a>k>a and satisfies for

<T>k the conditions

| ¿(c) I < A, ¿(a + A) - ¿(a) > -Ah (h>0)

for some positive constant A. Let F(s), not identically zero, be holomorphic and

bounded in A„ continuous in As + r. FAen

/
log | F(a + ig(tr)) I e~s^c)da > — oo.
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3. Lemmas. It is convenient to prove several lemmas before proceeding

with the proofs of the above theorems.

Let z = z(s) =x(s)+iy(s) map A, onto Dx so that the interval a<a< oo of

the real axis in the s-plane corresponds to the real axis of the z-plane, z(d) = 1,

where d>a is a fixed number, and z'(o) >0. Let s(z) =a(z)+it(z) be the func-

tion inverse to z(s).

Lemma I. (1) x(a) =S(a)+0(l) (cr->»). (2) |x(<r) -x(<r+it)| =0(1)(a-*oo)

uniformly for s = cr+itGA,. (3) \o(x+iy) — a(x)\ =0(1) (x—>oo) uniformly

for z = x+iyGDx. (4) \x(oi)-x(<x2)\ =0(\<n-o-1\) + 0(l) (<ru <r2->=o).

Proof. This lemma follows immediately from the distortion theorems of

Ahlfors [l, pp. 7-16] concerning strip mappings, which for the particular map

of A, onto Dt may be stated as follows : Let

Xi(a) =    min    x(c + it), x2(a) =    max   x(a + it),
Ul=e(») lil=((»).

ffi(x) =    min   o-(x + iy),       <r2(x) =    max   <r(x + iy).
lldáir/2 \v\£'/2

Then:

(I)
»   /.

'»   da
> 4,    then

<">■   do-

(II)

for some constant C.

(HI)

n    g(°)

Xi(a2) — x2(ai) = — I
2 J o

x2(o-2) —  Xl((Tl)  = —   I
2 •/ ff

«i  s(<0
4lT.

"1 «w
+ c

»2(^>       ¿o-

«-l(x) g(a)
< 8.

The condition that g(a) be of bounded variation in (a, oo) (then also g2(cr)

is of bounded variation) insures the validity of (II) with a constant C. The

inequality (III) results from (I) upon setting Xi(o2) =x2(oi).

Part (1) of Lemma I follows from (I) and (II), if we set <7i = c, <r2=<T, the

condition in (I) being satisfied for a sufficiently large since g(<r)—>7r/2. Part (2)

follows from (II) with Oi = a2=a. Part (3) follows from (III) and the fact that

g(a) is bounded. Part (4) follows from (II) and g(a)—*ir/2.

Lemma II. Yim,^x dx(o)/do = 1.

Proof. Let Z>i be that part of Dx for which x>Xi, and Ai the corresponding
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part of A, by the map z = zis). By (4), since g(o-)—>7r/2, S(cr)=cr+o(o-). By

Lemma I, (1), (2), x(s) = o-+o(cr), a—>», uniformly for sGA,. Thus for suffi-

ciently large xi, ArCAiCAí1", where we define

A?:       o-> 2xi,      \t\  <    inf   g(a) -» h á r/2;
c>ix¡

Ai":        o- > Xi/2,     | í|   <   sup   g(<r) = tî à ir/2.
ff>il/2

Since g(<r)—»ir/2 as <r—> » , t*—*ir/2 as Xi—* ».

Let cr0 = î(x0), where x0>2xi. The function f = /i(z) = (ez — exo)/(e' + e**)

maps Dz into \t\ <1, /i(x0)=0. I?r, the image of 2?i, contains that part of

\t\ <1 exterior to the circle passing through t = (exl — ex")/(exl+ex,>) and or-

thogonal to \t\ =1. Thus Dt contains

2e1!

(5) f   <1- =7?i.
e«o + eXl

The function

e' — e">
(6) w = /,(*) =

e* + e*»

maps Ar onto a region of the w-plane consisting of the part common to the

two circles passing through —1 and +1, making angles of +tr with the real

axis, and exterior to the circle orthogonal to \w\ =1 passing through

w=(e2xi — e<,o)/(e2ll + e'o). This domain contains the disc

(7)
te'» — e2xi    1 — cos h \

\ w   < min <-> ->  = 7?
Ke'o + e2li       sin tr    )

Similarly, the image of Af1- by (6) is contained in

,     .      1 — cos h
(8) | w | <-r——- = 7?,.

sin r"
i

Thus A„, the map of Ai by (6), contains \w\ < 7?2 and is contained in \w\ < T?s.

The function

(9) f = h(w) = fi(z(s)),       s = f2\w) (s E A.)

maps A„ onto Dt with/3(0) =0. It is readily seen that

dtdz
(10) -

ds

which is a real positive quantity.

dw
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Applying Schwarz' lemma to (9) and its inverse,

1Zti      ¿f— <-
F3      dw

<
vi—0 Ri

By (5), (7), (8), and (10) we have on letting cr0, x0—*°°,

h        _    t    dx dx | h)
cot.— ^ lim inf — ^ lim sup — g max < 1, cot —> .

2 da da \ 2 )

Allowing xi—* oo , /!±—>w/2, we have the lemma.

Lemma III. Let As be such that g'(o) exists for o>k>a and satisfies the con-

ditions

(ID \g'(c)\<A, g'(<r+h)-g'(o)> -Ah (h>0)

for some positive constant A. Then there exists a positive constant 5 5«cA that

x(c2) — x(ci)
(12) -^—-— > 5       (0 < -, - -i < 1, <n > k)

a2 — <7i

where x(<r) =x(o+ig(o)).

Proof. A proof of the inequality (12) maybe based on harmonic measure

and Carleman's principle of domain-alteration (cf. Nevanlinna [8, p. 63]).

Let E(u, ai, a2), p. = 1, be the ellipse in the 5-plane with minor axis of length 2A

on the cr-axis, major axis of length 2pb, and passing through the points

Oi+ig(<Ji) and o2+ig(o2). If p., fixed, is chosen sufficiently large, then for all

ffi, (72 such that A<<Ti<cr2<o'i-r-l, E(p, Oi, cr2) has the following two properties :

(1) There exists a constant B such that b<B.

(2) The two symmetric arcs a, a' of E lying in the strip <7i <<r <<t2 are ex-

terior to A„ and the complementary arcs are interior to A,.

First, it is readily seen that

gVi)   ,   r<rt - <ti       g2(<x2)
b2 =-h |-1-

2p2(o-2

M2

fo-2  -  ff! g2(c2)   -  g2(<Tl)T

L      2     " 2p2(a2 - -j)   J

r^-<ri   g(Ç)g'(t)-yg\ci)      Yo-2-ai   ,   g(Z)g'(S)-*

where Oi<^<a2. Since g(<r)—»7r/2, |g'(cr)| <.4,/j = l,and |<r2—r/i| <1, we have

(1) with B independent of the choice of ju = l.

To prove (2), let t = q(a) be the equation of the upper half of E. Then if

s = <Ti is the center of E, we have for |<r — cr3\ <b:

n'b2 p P
q"(a) =-<-<-

q*(a) b B
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and for h > 0,

(13) q'(a +h)- q'(a) < - ^ ■
D

If G(a)=q(a)-g(a), then by (11) and (13),G'(<r + h) -G'(a) < (A - p/B)h.
Thus if we choose p>AB, G'(a) is a decreasing function and since G(ai)

= G(<r2)=0, G(<r)>0 for ai<a<a2, and G(cr) <0 for <73 — b<a<ai or <r2<<r<er3

+ b, which is (2).

Let i = a3 be the center of E, and let co(s; oi, ai) be the harmonic function

of s regular in A, with boundary value unity on the two symmetric arcs of T

in (Ti<(r<<72, and zero on the rest of T. Let coi(s; Oi, a2) be the harmonic func-

tion of 5 regular in E(p, ai, ai) assuming the boundary value unity on the arcs

a, a' and vanishing on the complementary arcs of E. Then by Carleman's

principle

(14) 0 ^ wi(s; «ri, <r2) < u(s; ai, ai) á 1

for any 5 in the common part of E and A,.

Let t =f(s) map E onto |f| <1 with f(a3) = 0. Then/(s) is analytic,/'(s)

9*0, on the boundary of E, and since E is of fixed eccentricity and of bounded

size (b<B) there exists a positive constant y such that any arc of E of length

X corresponds to an arc of \t\ =1 of length not less than 7X. Finally, since a

harmonic function is preserved by a conformai map,

(15) wi(o-3; <ti, <r2) ̂  —7X
IT

where X is the length of a. But X><r2 — <Ti, and combining (14) and (15) we

have

7
(16) co(<r3; <ri, ai) > — (a2 — ai).

ir

Let Xi = x(o-i)=x(cr1+íg(<ri)), x2 = x(ai), x3 = x(a3). Then io(s; ait a2)

= o>i(z; Xi, x2), where z = z(s) and w2 is the harmonic function of z regular in

Dz, zero on the boundary except for the segments in Xi<x<x2 where it as-

sumes the boundary value unity. It is readily seen that

2 /    e*j-*i - 1   \
w2(x3; xi, xi) = — tan"1 I-).

■K \ex'~xi + e1*-1*/

By Lemma I, x3 = Xi+0(l) and x2— Xi = 0(l) for <r2— <ri<l, and

2 2
(17) w2(x3; Xi, x2) < —tan~1C(x2 — xi) < —C(x2 — Xi)

ir ir
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where C is a positive constant independent of ax, a2. Combining (16) and (17)

we have (12), with b=y/2C.

Lemma IV. Let N(a) be a positive increasing function and let a(x+iir/2)

= â(x). The convergence of one of the integrals

(a) ]     N(a)e~s^da,

03) f   N(a(x))e~xdx,

(y) f   N(a(x))e~*dx

entails the convergence of the other two.

Proof. By Lemma I, (3), there exists a positive constant b such that

a(x) —b<â(x) <a(x)+b, and by Lemma II there exists a positive constant d

such that for x sufficiently large a(x)+b<a(x+d) and a(x) — b>a(x — d).

Therefore for x sufficiently large a(x — d) <â(x) <a(x+d) and the convergence

of (ß) is equivalent to the convergence of (7).

By Lemma I; (1), S(a(x)) =x + 0(l) and by Lemma II, da/dx—>1. Thus

from the relation

CT r *<r) da
I    N(a)e~s^da =   I N(a(x))e~s^^ — dx

J t0 J i(r0) dx

we see that there exists a positive constant M, independent of T, such that

for To>c sufficiently large:

1     /• x(X) foT to i(D

— I        N(a(x))erxdx < I    N(a)ers^da < M I        N(a(x))e~xdx.
M J x(r0> J t„ of l(ro)

Since all the integrands are positive it follows that the convergence of (a)

is equivalent to the convergence of (7), which completes the proof.

Lemma V. Let TVi(x), xèO, TV"i(0)=0, be an increasing function such that

fxe~xdNi(x) < ». The function

(18) P(z) =  f   {log [1 - exp (- #—+')] + « - z}dNi(u)
Jo

is holomorphic in D„ and satisfies there the inequalities

/, X—log 2 ro x—1

Ni(u)du < -  I       Ni(u)du, x ^ 1
0 J 0

%P(z) < 0, x < 1.
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Proof. For z bounded, the bracket in (18) is — e-u+72+0(e-2u). The singu-

larities of the log term occur on the boundary of D,. Thus (18) converges

uniformly in any bounded closed subset of Dt, and P(z) is holomorphic in Dt.

Since log 11 — exp( — e-u+*)| +u—x<0, the second part of (19) is true, and

also we have for |y| <ir/2,x^l,

<RP(z) < f  log | 1 - exp (- e—+*) | dNi(u) + f   udNi(u) - x f   dNi(u)

/* A /» Alog 2dNi(u) + ANi(A) -  I    Ni(u)du - xNi(A)
o «'0

= (log 2+A- x)Ni(A) - f   Ni(u)du.
Jo

If we set A =x — log 2, we obtain (19).

The proof of Lemma V is equivalent to Mandelbrojt's proof of Theorem

C" [5, Lemma I, p. 342] if the strip is replaced by a half-plane, Ni(x) being

the distribution function of the sequence { — log pn} ■

Lemma VI. If N(x), — oo<a;<cc, is an increasing function such that

f"N(x)erxdx < oo, there exists a function F(z) holomorphic in Dt, continuous and

never zero in Dz, such that

(20) log \F(z)\ < - N(x).

Proof. We may assume that N(x)>0. If in Lemma V we set Ni(x)

= fzN(u)du we obtain a furfttion P(z) holomorphic in Dz, continuous in Dt,

and satisfying cRP(z) <0 for all x, and for x = 3,

/, x—l Ni(u)du < - Ni(x - 2) < - N(x - 3).
0

The function

ff¿)   _.  eP(i+S)-JV(0)

satisfies (20).

4. Proof of Theorems I, II, and III. The method of proof is now

obvious.

Proof of Theorem I. Let us set $(z) = F(s(z)). Then

log | $(x + Mr/2) | = log \F(i(x) + ig(H*))) I = - N(a(x)).

From Theorem A' it follows that

N(â(x))e~xdx < oo,

and from Lemma IV

/'
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f   N(a)e-S^da < ».

Proof of Theorem II. By Lemma IV, (7) converges, and therefore

f™-N(a(x+d))e~xdx<™ where d is any real number. By Lemma VI there

exists a function 3>(z) holomorphic in Dz, continuous and not taking the value

zero in D., such that in D,

log I $(z) I < - N(a(x + d)).

The function F(s) = Q(z(s)) is holomorphic in A„ continuous and not zero in

A, + r, and satisfies in A,

log I F(s) I < - N(a[x(a + it) + d]).

By Lemma I, (2), if d is sufficiently large x(a+it) +d>x(a) for all a+itEA„;

a[x(a+it)+d]>a(x(a))=a, and log| F(s)\ < — TV(<r), which is the desired

function.

Remark. If we apply Theorem II to the domain A,*: |¿| <g(a)+e~",

setting S*(a) = (ir/2)f"c [g(u) + e-u]~1du, and noting that S(a)-S*(a) = 0(1) so

that the convergence of fxN(a)e~s*(a)da is equivalent to the convergence'of

fccN(a)e~s(-')da, we have a stronger conclusion to Theorem II, namely that

F(s) is holomorphic and never zero in the closed domain A. + T (with the ex-

ception of 5= » of course) and satisfies log Tlf(<r) g —N(a).

Proof of Theorem III. We note first that if F(s) = 3>(z), $(2) vanishes on

the boundary of D, in a set of measure zero, and hence by Lemma III,

F(a+ig(a)) as a function of a vanishes only on a set of measure zero, and

log I F(a+ig(a))\ is continuous almost everywhere. Thus since <r(x) is a con-

tinuous increasing function we have

J   log I F(a + ig(a)) I e-^da

= j  log I 4>(s + fcr/2) I exp (- S(ä(x)))da(x),

the second integral being a Stieltjes integral which by Lemmas I and III is

greater than

log I $(x + ít/2) I e-xdx

for some positive constant C. Applying Theorem A' we have Theorem III.

5. A generalization of Watson's problem. We now prove the following two

theorems.

Theorem IV. Let F(s) be holomorphic in A„ and continuous in A, + T. Let

{Mn} (n ^ 1) be a sequence positive numbers such that in A,
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(21) | F(s) | = ifne— (nul).

If lim inf M]/n<oo,orif lim MlJn = oo with

(22) ¿exp j-s(log-^)}  -co

then F(s)=0.

Theorem V. If lim M1n/n= oo and if

*->{-<*£)} <   oo

then there exists a function F(s), holomorphic in A„ continuous and not taking

the value zero in A. + T, such that in A,

|F(j)| =.Mne-"" (n = 1).

We prove first two lemmas.

Lemma VII. Let {vn} be a positive increasing sequence with lim vn = oo. Let

N(x) be its distribution function: N(x) =0, 0=x = i'i; N(x) =n, vn<x^vn+i. Let

An=^?=1c,-. The following equality holds:

/N(t)dt = max (nx — Nn) = mx — Nm
0 näl

wAere m is such that vm <x ^ vm+i.

Proof.

/i x m—1
JV(0* = E A(«-*+i - **) + m(x - vm)

0 jt-l

= mx — Nm.

If 0<n<m, then

«x - Nn = ^ A("*+i - "*) + »(* - "»)
*=i

m-l

fc=n

=   ¿Z   k(Vk+l  —  Vic)   +  »^ (Vi+l   —   I»*)   +  W(*  —   I'm)

m-l

= X A("*+i — v») + m(x - vw) = mx — Nv
k-l

lin>m, then



f   e~s^N(t)dt = e~s^Ni(T) - Ni(c)+— f   Ni(t)e~s^
J e 2   J c

S. MANDELBROJT AND G. R. MACLANE [May

m—1 n

nx — Nn = Y2 H"k+i — vi) + m(x — vm) —    ^2   vk + (n — m)x
k-l k—m+l

n

= mx — Nm —  ^2  ("* — *) = mx ~ N*»
i—m+l

and the proof is complete.

Lemma VIII. Let  \vn\  and N(x) be as in Lemma VII, and let Ni(x)

= flN(t)dt. The two expressions

00

(24) J2 e~SM,

(25) f   e-s^Ni(x)dx

converge or diverge together.

Proof. Since S(c) = 0 we have

dt

W
and if fxe-s'-t)N(t)dt converges, fKe~S(l)Ni(t)dt converges also since TVi(/)>0

and g(t)—>7r/2. Conversely, if fKe~S(t)Ni(t)dt converges, then for some se-

quence of numbers T—»», e_S(Ti)TVi(7\) —>0, fcT<e~S(-')N(t)dt is bounded, and

f°°e~Si')N(t)dt converges. Thus the convergence of (25) is equivalent to the

convergence of faerS(l)N(t)dt. By a virtually identical argument, the conver-

gence of fKe~S{t)N(t)dt is equivalent to the convergence of f'ce~SU)dN(t)

= ^°° e_S('n\ which completes the proof of Lemma VIII.

Proof of Theorem IV. By (21) we have in A„

|F(í)| á inf M„<f—' = A(a)

and if lim inf M„/n< », then A (a) =0 for a sufficiently large and the conclu-

sion is obvious. In case lim M]/n= » we have also

A(a) = inf Mne
näl

Let N(x) be the distribution function of the sequence {vn} with vn

= \og(M'J M'n-i) (w^l, Mo=l), and Ni(x)=fx0N(x)dx. Then, in the notation

of Lemma VII,
e c

c M2 Mn c
Nn = log Mi + log—-+•••+ log ——- = log M„,

Mi Tl7c„_i

and by Lemma VII
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log | F(s) |  = log A (a) = — sup (no- — log Mn)
nal

= — max (no- — Nn) = — Ni(a).

But by Lemma VIII, fme~S(-x)Ni(x)dx= <*>, and therefore by Theorem I,

F(5)=0.

Proof of Theorem V. Let N(x) he the distribution function of {>>„} with

vn = \og(McjM'n_i) (» = 1, AZo = l),andlet Ni(<r)=f'0N(x)dx. By Lemma VIII,

/°°e_S(l)Ni(x)dx< oo, and by Theorem II there exists a function F(s) holo-

morphic in A„ continuous and never zero in A, + r, such that

log | F(s) | = - AM*).

But by Lemma VII, Ni(cr) =maxn^i(n<r — log M°n). Therefore

log | F(s) | =^ — max (no- — log Mn) =^ — nc + log M„,
»£1

for all w = 1, which proves Theorem V.

When A, is the strip 11\ <ir/2, Theorems IV and V become Theorems C

and C", for then S(o) =o — c and
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