NOTE ON A PAPER BY MANDELBROJT AND MACLANE

BY

JACQUELINE FERRAND

The results obtained by J. Dufresnoy and J. Ferrand⁽¹⁾ enable us to extend Theorems I, II, and III of the preceding paper to more general strip regions.

Let $g_i(\sigma) > 0$ (i=1, 2) be defined and continuous for $\sigma \ge a$ $(-\infty \le a < \infty)$ with $\lim_{\sigma \to \infty} g_i(\sigma) = \pi/2$. Let

$$S(\sigma) = \pi \int_c^{\sigma} \frac{du}{g_1(u) + g_2(u)}$$

Let Δ_s be the domain in the s-plane $(s=\sigma+it)$ defined by $-g_1(\sigma) < t < g_2(\sigma)$.

If $g_1(\sigma) = g_2(\sigma)$ we have the symmetrical domain considered above.

Lemmas I, II, III, and IV are true for the new domain if we suppose that $g_1(\sigma)$ and $g_2(\sigma)$ separately satisfy all the conditions given for $g(\sigma): g_1(\sigma)$ and $g_2(\sigma)$ must be of bounded variation⁽²⁾ and satisfy the condition (11), $|g'_i(\sigma)| < A$, $g'_i(\sigma+h)-g'_i(\sigma) > -Ah$. The proofs of Theorems I, II, and III are the same, with the new function $S(\sigma)$.

The University of Caen, Caen, France

Received by the editors August 18, 1946.

(1) C. R. Acad. Sci. Paris vol. 220 (1945) pp. 189, 873.

^(*) In fact the conclusions hold if this first condition is replaced by $\int_{0}^{\infty} |g'_{i}(\sigma)|^{2} d\sigma < \infty$.