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Introduction. Let /(z) be a nonconstant meromorphic function. Further,

let there exist two numbers my^O, 1 and hy^O, and two rational functions R

and S, such that

(1) fimz) = R[f(z)],

and

(2) f(z + h) = S[f(z)].

Then the function f(z) has both a rational multiplication and a rational

addition theorem. We propose to determine all such functions.

Our problem is a generalization of one treated in a paper by Ritti1), in

which all periodic meromorphic functions having a multiplication theorem

were determined. This is equivalent to taking S(z) =z in (2). For this case,

Ritt proved that \m\ ^ 1 ; and if \m\ > 1, then f(z) is a linear function of one

of the functions eaz, cos(az+ß), p(z+ß); when gs = 0, g»2(z+j3); when g2 = 0,

S>'(z+ß) and j?3(z+j3). Here a is arbitrary while ß is restricted to certain val-

ues. If \m\ =1, then it was shown that m is either —1 or a third, fourth or

sixth root of unity. The forms for the function f(z) were also explicitly given

in this case. Use will be made of the results quoted and also of the methods

of Ritt's paper.

We distinguish the following three cases :

(A) m  >1;

(B) m  ¿1, with m not a rational root of unity;

(C) m a primitive wth root of unity.

For Case (A), which is the one usually considered in multiplication theo-

rems, we can restate the problem in a way which shows its connection with

the theory of a class of functions first systematically studied by Poincaré(2).

He provided an existence theorem for meromorphic functions satisfying (1)

assuming that 7?(z) has a fixed point(3) a for which 7?'(a) has a modulus

greater than unity. Thus our problem is equivalent to that of finding all

Poincaré functions having a rational addition theorem.

Presented to the Society, February 22, 1947; received by the editors June 19, 1946.

(') Ritt, Periodic functions with a multiplication theorem, Trans. Amer. Math. Soc. vol. 23

(1922) pp. 16-25.
(2) H. Poincaré, Sur une classe nouvelle de transcendantes uniformes, Journal de Mathé-

matiques (3) vol. 55 (1890).

(3) That is, a point for which R(a) =a.
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We remark that, if f(z) is a linear function of z, integral or fractional,

then f(z) will evidently have both a multiplication and addition theorem for

every value of m and A. This solution is therefore common to all three cases

and, as it turns out, is the only rational solution of our problem.

On the other hand, if f(z) is transcendental, we may state the chief result

of this paper for Case (A) as follows :

If a Poincare function has a rational addition theorem, it must be a periodic

function.
Although /(z) is periodic in this case, the value of A in the addition theo-

rem is not necessarily a period, and therefore the corresponding S(z) need not

equal z. The possibilities for A and S(z) are given in detail in §4. It is found

that except for the case in which f(z) is a linear function of e°", A, when not a

period, must be a suitable half or third of a period. It is noteworthy that for

each of these admissible values of A, S(z) is a linear function of z.

In Case (B), f(z) must be a linear function of z.

In Case (C) there appear nonperiodic solutions in addition to the types

already mentioned.

It will be noted that, essentially, only the conditions that f(mz) and

f(z+h) are uniform functions of f(z) will enter into consideration.

1. Preliminary transformations. The case of f(z) rational will be handled

in §5. From this point on through §4, we assume that/(z) is transcendental.

Supposing that \m\ >1, we wish to replace/(z). by another meromorphic

function g(z), related to it in a simple way, but having the following special

properties at the origin:

(a) g(0)=0;

(ß) g'(0)^0;
(7) 0 is not an exceptional point of g(z) ; that is, g(z) has an infinite num-

ber of zeros.

We further require that there exist relations of the form

(3) g(Mz) = U[g(z)],

and

(4) g(z+ A) = V[g(z)].

Here U and V are rational and M is a number for which \M\ > 1.

To find such a function g(z), we consider g(z) =f(z + ^)— /(£), where/(z)

is analytic at £. We shall show that £ can be chosen so that the resulting func-

tion g(z) fulfills ah the conditions placed upon it.

Evidently for any value of £ at which/(z) is analytic, property (a) holds,

and also a relation of type (4) exists with V(z) = 5[z +/(£)]—/(£)•

Write <x(z) =mz, r(z) =z+h. Let a positive integral subscript appended to

a function denote the corresponding iterate of that function; for example

RT(z) denotes the rth iterate of R(z). Then if £ is a finite fixed point of one of
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the transformations a or ra, (r = 1, 2, • • • ) and if f(z) is analytic at £, a rela-

tion of type (3) will exist.

For if £ = 0, the finite'fixed point of a, we may take M = m and U(z)

= 7?[z+/(0)]-/(0).
And if for a positive integral r, T(rr(£)=£, we may take M = mr and

I7(z) =S7?r[z+/(£) ] -/(£). This follows since

g(Mz) = g[<rr(z)] = f[ar(z) + £] - /(£) = /[r<rr(z + £)] ~ /(£);

and using (1) and (2) we have

}[rar(z + Ö] - 5J/k(Z + £)]}  = 57?r[/(z + ©].

In each of these cases | Tll| > 1.

It remains to show the existence of a fixed point £ at which f(z) is analytic

and for which the corresponding function g(z) has properties (ß) and (7). To

this end consider the sequence

h h h
0,  -,   -;   ■ •  •  , -, * • •  ,

I — m    I — m2 1 — mr

consisting of the finite fixed points of a and rov (r = 1, 2, • • • ).

These points converge to the origin since |w| >1. Hence there exists a

point £ in the above sequence at which/(z) is analytic, at which/'(z) is not

zero, and which is not an exceptional point of f(z) in the sense of Picard. With

this value of £, the corresponding function g(z) will have the required proper-

ties (ß) and (7).

2. The automorphism of g(z). Adapting a method of Ritt(4), we now estab-

lish a relation for g(z) which will enable us to show that g(z) is periodic.

As giz) has an infinite number of zeros, suppose that Zit*0 is one of them.

Then, since g(0) =0 and g'(0) 9*0, there exists a neighborhood of the origin, To,

in which g(z) assumes no value more than once.

Since g(zi) =0, there exists a neighborhood Ti of zi, in which giz) takes no

value not assumed in To.

Define Piz), for z in Ti, as that unique point z2 of To for which g(z2) = g(z).

Then

(5) g [*(«)] - giz)

for z in 1*1.

The function piz) is analytic in Ti, not identically 0, and has a Taylor

development at zi. Since p(zi) =0, we may write that expansion as

(6) p(z) = ai(z — zi) + a2(z — zi)2 + ■ ■ ■ + otn(z — zi)n + • • • .

(.*) Ritt, loe. cit. pp. 17-19.
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It will now be shown that 0(z) is linear. Then evidently au^O, since 0(z) ^0

and our argument will show that a„ =0 for n>l. Take s, an integer, so great

that zi+h/M' is in IV Then, from (5),

<7) ?K* + £)]-«(*+_;>
Now by (3) and (7) with Us denoting the 5th iterate of U, we have

«M21+ir)] ' "■{{<(« + ¿)]} = u[(" +1?)]'

or

(8) *[M'*(Zl + ^)] = *[M'(Zl + ^)] = dM'zi + h).

Using (4) and then (3), we find

g[M'zi+h] = V[g(M'zi)] = VU.[g(zi)].

But, since g(zi)=0,VU.[g(zi)] = VU,(0) = F(0). Thus (8) becomes

(9) g^M'0^zi + —)]= 7(0). .

We have by (6)

/ A \ h2
M'4>[ zi-\-) = aih + a2-1- • • • .

\ M') M'

Then by (9)

(10) gtaih + at—- + ■    A= V(0)

for sufficiently large i.

It follows from (10) that a„ = 0 for w>l, otherwise allowing s to pass

through all sufficiently large values we would have an infinite number of dis-

tinct points accumulating at the point «iA for each of which g(z) assumes the

value F(0), and aiA would be an essential singularity of g(z).

Thus (5) becomes

(11) g[«,(z-z,)] =-g(z).

This equation, proved for z in Yi, must hold for the whole plane since the

functions in it are analytic.

This is the desired relation.

3. Proof of periodicity. It now follows that g(z) is periodic. For in (11),
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if «i = l, — Zi is a period of giz). If ai9*l, then by using (4) and (11) we find

g(z + h) = V{g[ai(z - zi)]} = g[ai(z - zi) + h].

But from (11) with z replaced by z+h, we get

g(z + h) = g[ai(z - zi) + aih].

Then

g[cti(z — zi) + h] = g[ai(z — Zi) + aih],

and h(ai —1)9*0 is a period of g(z).

The f unction/(z) which is g(z) +/(0) or g[z-h/(l -mr)]+f[h/(l -mr)] is,

of course, also periodic. This is the result stated in the introduction.

4. The values of h. Having established the periodicity of our functions,

our next step is to determine the values of h for which addition theorems are

possible if a multiplication theorem also holds. Evidently A may be a period

and then S(z) =z. But there are other values besides periods and it is these

in which we are particularly interested.

Use will be made of the fact that together with f(z), F(z) = [4/(z)

+73]/[C/(z)+I7] will also have a multiplication and addition theorem. In

what follows, we will use F(z) to denote such a linearly transformed/(z).

As stated in the introduction, the periodic functions with multiplication

theorems are divided into six categories and each of these will be considered

in turn.

Case (a) :/(z) a linear function of eaz. Here a is arbitrary and the multiplier

m must be an integer.

Replacing/(z) by a suitable linear function of itself, we may suppose that

F(z) = eaz.

Then since

F(z + h) = e ah F(z),

F(z) and therefore f(z) has an addition theorem for every value of h.

Case (b):/(z) a linear function of cos(az+ß). Here ß = kir/(m — l), k an

integer, while a is arbitrary. The multiplier m must be an integer.

We may suppose

F(z) = cos (az + ß),

and have to determine for which values of h, cos(az+ah+ß) is a rational

function of cos(az+jS). Replacing az+ß by z and ah by 7, we must have

cos (z + 7) = 5[cos z],

with S rational.

Let Zi be any value of z and determine another value of z, z2 so as to satisfy

the congruence
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(12) zi + z, = 0 (mod 2tt).

Then, since cos Zi =cos z2,

cos (zi + 7) = cos (z2 + y).

We have the following possibilities ; either

(13) zi + 7 = z2 + 7 (mod 2ir),

or

(13') zi + 7 + z2 + 7 = 0 (mod 2-),

or perhaps both of these congruences hold.

In any event, if (13) holds, then adding (12) to it we get

2zi s 0 (mod 2w);

that is, zi = ktr, k an integer. If Zi, which was arbitrary, is given any value not

of the form kir, only (13') can hold. We may suppose this done. Then the sub-

traction of (12) from (13') gives

27 s 0 (mod 2ir);

that is, y = kir, k an integer. Then h = kir/a.

Since 2ir/a is a period of cos(az+ß), the values of A, other than the periods,

must be the half-periods.

That this necessary condition for A is also sufficient is obvious. Thus, for A

the half-period ir/a, to which all other half-periods are congruent modulo

2-jr/a, we have

cos [a(z + it/a) + ß] = — cos (az + ß).

Case (c):/(z) a linear function of p(z+ß). The multiplier m must satisfy

the congruences

2i»wi = 0,        2mw3 = 0 (mod 2«i, 2a>3),

and the constant ß is given by the equation

lü¡l +   Aü>3

where / and A are integers, and 2wi, 2w3, a pair of primitive periods of p(z).

By repeating the procedure of the preceding case, except that all congru-

ences are taken modulis 2«i, 2w, we find that

h = /on + kb¡3,

where / and A are any integers.

Again we get periods and half-periods for A.
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To set up the addition theorem for the half-periods, it suffices to consider

«i, w3 and w2= — Wi —co3, for any other half-period will be congruent to one

of these modulis 2«i, 2«3.

The following formula is well known in the theory of elliptic functions (5)

.... ,    .      . .    (ft - ea)(ec - e„)
(14) v(z + w0) = ea H-—-,

9(z) — ea

where 8?(coa) =ea and a, b, c is any permutation of 1,2, 3.

This is the required addition theorem if z is replaced by z+ß.

Case (d):/(z) a linear function of p2(z+ß). Here p(z) is lemniscatic,

m=p+qi, with p and q integral, and

2/wi -f- 2¿to3

(m - 1)(1 - i)

where I and A are any integers.

We may replace z+ß by z and we shall suppose this done here and in the

following cases. The values of A do not depend on those of ß.

Taking F(z) = 92(z), we must have 92(z + A) = S[p2(z)].

Since 92(iu) = 92(u) in this case, the fourth order function 92(u) will take

on the same value at points congruent to i'u (s = 0, 1, 2, 3) modulis 2wi, 2<o3,

and only at these points if the i'u are all incongruent.

If any two of i'u are congruent, it follows that they are all congruent, and

92(u) will have a point of the fourth order at any one of them ; so that again

92(u) will take the same value only at the points i'u.

Choose an arbitrary Z\, and determine Z2 so as to satisfy the congruence

(15) z2 = izi (mod 2wi, 2w3).

Then since s?2(z2) = j?2(zi), it follows that

92(z2 + A) = p2(zi + h),

and

z2 + h = î'(zi + A) (mod 2wi, 2w3),

where 5 may be one of 0, 1, 2, 3, or perhaps any of them.

Subtracting (15) from this congruence gives

h(l — i') = (i' — i)zi (mod 2coi, 2w3);

and unless s = l, this will determine Zi as belonging to a particular residue

class modulis 2o¡i/(ií—i), 2<j}3/(i'' — i), whereas Zi was chosen without restric-

tion.

If s = l, we find that

(6) Tannery and Molk, Théorie des functions elliptiques, vol. 1, p. 193.
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2lui + 27écúj
h =

1 -

where / and k are any integers.

Simplifying this expression, we get h = (I — k)^ + (I + k)u3. Thus the

values of h must be periods or suitable half-periods ; namely, since l — k and

l+k are both of the same parity, those half-periods which are congruent to w2

modulis 2wi, 2co3.

If we note that

iu2 = i'(— wi — w3) = — <o3 + coi = ùii (mod 2«i, 2u3),

and that ff(iu) = — »(u) for this case, then

e2 = p(u2) = »(iai) = — p(wi) = — e2,

and e2 = 0.
Substituting c = 2 in (14) and squaring we get the addition formula

2  2

if      I \ eie°
t?2(z + U2) =

P2(z)

Case (e):/(z) a linear function of p'(z+ß). Here p'(z) is equianharmonic,

m=p+qe2rm, with p and q integral and

(m - 1)(1 - e2,r<'s)/3 = 0 (mod 2wi, 2ws).

This case and the next one may be treated in the same way as case (d)

and we simply state the results.

Since t?'(e2xil3u) = jp'(m) in this case, e2Ti/s takes the place of i in the pre-

ceding case and thus

2/tOl +  2&0!3,
h =->

1 - e2T<"

where I and k are any integers.

Rationalizing the denominator of this fraction, we get

2«i(2J - k) + 2cc3(l + k)
h =-■

Thus, apart from a period, h must be a suitable third of a period.

To get our addition theorem in the latter instance, we note that taken

modulis 2wi, 2to3 all these thirds of periods are congruent to 7 = (2wi —2co3)/3

or —7. It suffices to consider 7. Since p(e2ril3u) =e2T</3p(«) and

e2ri/37 = y (mod2coi, 2w3),

we have
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p(y) = 9(e2l!il%y) = e2Til3f?(y)

and v(y) = 0.
If we let m =7 in the addition formula for s>(z+w)(6) and differentiate the

resulting expression with respect to z, we find

9'(z)9'(y)-3[9'(y)]2
tp'(z + y) =

S>'00 + P'Or)

Case (f):/(z) a linear function of $>z(z+ß). Here p(z) is equianharmonic,

the multiplier m=p+qe2ril3, with p and g integral, and

(m - 1)(1 - e"'/3)/3 = 0 (mod 2wi, 2«3).

Since p3(eTil3u) = p3(w), we may use eri/3 in the same manner as e2r</3 and

i in the preceding two cases. The result is that

2/wi + 2ku>3
h =-,

1 - eri/3

with I and k any integers.

This simplifies to

h = (1 +e2*<'3)(2Zcoi + 2¿a>.,).

Then the only values of h in this case are periods of f(z).

5. The case of |w| ¿l, m not a rational root of unity. We first show that,

in this case, f(z) must be rational. For otherwise, suppose that f(z) is tran-

scendental.

Then again considering the sequence

h h h
o, -—

• m    I — m2 1 — mr

whose points are ail distinct, we can find a point in it which is not an excep-

tional point of f(z). If f(z) is analytic at this point, the transformations of §1

will then give us a g(z) having properties (a) and (7) and satisfying relations

of type (3) and (4).

If f(z) has a pole at the non-exceptional point, we take g(z) = l//(z) or

g(z) =l/f[z+h/(l—mr)] according as our point is 0 or h/(l—mr), and again

get a g(z) fulfilling these same four conditions. In either case, | Tll| ^ 1, Til not

a rational root of unity.

If Zi9*0 is one of the zeros of g(z), then the relation

g(Mz) = U[g(z)]

shows that TH'zi is a zero of g(z) for every positive integral 5. If | Tll| < 1, these

(•) See, for example, Tannery and Molk, loe. cit. p. 172.
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zeros will converge to the origin; if | M\ = 1, M not a rational root of unity,

they will be everywhere dense on the circle | z| = | Zi|. Both of these results

are impossible for a nonconstant meromorphic function.

Therefore, let/(z) be rational (7). Then R and 5 are both linear. Replacing

f(z) by a suitable linear function of itself, which will also be rational, we may

obtain the addition theorem in one of the forms:

F(z+ h) = aF(z), a 9¿ 1

or

F(z + A) = F(z) + b.

The first of these is impossible for a nonconstant rational F(z), since the

existence of a zero or a pole at zi would imply the existence of an infinite

number of zeros or poles at the points Zi+nh, n any integer.

The second gives

bz
Fit) = — + n(z),

h

where II (z) is a meromorphic periodic function of period A.

Here II (z) must be rational and therefore constant. Then F(z) and also

f(z) is a linear function of z.

6. The case m a primitive wth root of unity. If m is a primitive nth root

of unity,

f(m"z) =/(z) =Rn[f(z)],

and the rational function R(z) must be a periodic linear function of z with

period « or a divisor of n.

For every positive integral p and r, we have

f(m'z + ph) = S,\f(m'z)] = SpRr[f(z)].

Then, if r is not a multiple of n, the function g(z) =f(z+ph/(l—mr)) obeys

the relation

g(m'z) = SPRr[g(z)].

This shows that SpRT(z) is a linear periodic function of z with period n

or a divisor of n for every positive integral p and r, r not a multiple of n.

The function S(z) itself then must be linear.

Those cases with R(z) of period d<n are easily handled. For with r=d

and p = l, SpRr(z) becomes S(z) which must be periodic. Then/(z) is peri-

odic (8).

(') The following argument holds for any value of m. We thus complete our discussion of

Case (A) for/(z) rational.

(8) We refer to the paper of Ritt, loe. cit., for the enumeration of the functions in this case.
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In a similar manner, it may be shown that/(z) is periodic if the period of

SpR(z) is less than ».

These cases disposed of, we may assume both R(z) and SpR(z) to be of

period n (p = l, 2, • • • ).

Then, replacing f(z) by a suitable linear function of itself, we have two

sub-cases according as

F(z+ A) = aF(z), a 9* 1

or

F(z + A) = F(z) + b.

Subcase 1: S(z)=az, a5*1. Suppose first that m=— 1, that is, ra = 2. Then

R(z), being of period 2, is of the form (Az+B)/(Cz—A). The function

SR(z) = a(Az+B)/(Cz—A) must also be of period 2.

If A 9*0, a must be —1 and F(z) is periodic.

If A =0, a is arbitrary. Solving the addition relation for F(z) by elemen-

tary means, we get

F(z) = eazll(z),

where a = log a/h and II (z) is a meromorphic function with period A.

In order for this function, F(z), to satisfy the multiplication theorem, we

find that II(z), a periodic function, must also have a multiplication theorem,

namely

B
n(- z) =-

cn(z)

Thus n(z) and also F(z) are characterized.

Let us now consider the values of m for which ra>2. Then with R(z)

= (Az+B)/(Cz+D), we have

Az+B
SpR(z) = a"-;

Cz + D

and this function must be of period n for every positive integral p.

The multiplier, K, of the periodic linear transformation SpR(z) is a primi-

tive rath root of unity which we denote by ep, the subscript indicating its de-

pendence on p. Using the known relation between the multiplier and the co-

efficients of the transformation(9), we find that K is algebraic in ap, and we

may write

(16) ep = W(a>) (p = 1, 2, • • •)

where IF(z) is an algebraic function of z.

(') See, for example, Ford, Aulomorphic functions, p. 16.
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There being only a finite number of primitive «th roots of unity, at least

one of them will occur in (16) as ep an infinite number of times as p grows

large. This shows that a must be a rational root of unity since otherwise the

algebraic function W(z) would take the same value, ep, at an infinite number

of distinct points z — ap. Thus S(z) is periodic. We conclude that if n>2,f(z)

must be periodic.

Subcase 2: S(z)=z+b. If b = 0, f(z) is periodic. Suppose bj*0. Taking

Riz) = iAz+B)/iCz+D) with AD-BC= 1, the linear transformation 5p7?(z)

= [(4 +pbC)z+(73 +pbD)]/(Cz+Z>), p = l, 2, • ■ • , is periodic and hence

elliptic. Using the classic condition that a linear transformation of determi-

nant unity be elliptic(10), we would have 14 +pbC+D\ <2 for every positive

integral p and this implies that C = 0. Then A = eD where e is a primitive nth

root of unity. By taking a suitable linear function of F(z) we may suppose

our addition and multiplication theorem in the form

(17) Fimz) = eF(z),

(18) Fiz + h) = F(z) + b.

These show that F'iz) is a periodic function with a multiplication theorem.

If F'(z) is constant, F(?) is a linear function of z. If F'(z) is not constant; then,

as stated in the introduction, m is either — 1 or a primitive third, fourth, or

sixth root of unity.

Taking the solution of (18) as

F(z) = bz/h + n(z),

where LT(z) is a meromorphic function of period h, we must determine II (z)

so that (17) is also satisfied.

If m = — 1, n(z) must be an odd function. Then, if II(z) is simply periodic,

it is the product of sin(2irnz/Á) by a meromorphic function of cos(2irnz/h),

n any integer. If II(z) is elliptic, it is the product of p'(z) by a rational func-

tion of j?(z).

If m is a primitive fourth root of unity, we may suppose that m = i. Then

ife = ¿,

n(t'z) = ilJ(z),

and n(z) is the product of (?'(z) by a rational function of p2(z) with s>(z)

lemniscatic.

If l== — i, we proceed in a different manner. Let f(z) be the Weierstrass

zeta-function corresponding to a lemniscatic g>(z) having A as a period.

The following relations hold for f(z).

t(iz) = - it(z),       f(z + h) = t(z) + ft,       t(z + ih) = r(z) + K2.

Here Ki and k2 are constants each different from zero. To show this, we have

(10) Ford, loc. cit. p. 23.
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f (iz) + k2 = f(iz + ih) = — iC (z + h) = — iÇ(z) — íki = f (iz) — m.

Thus k2= —¿«i, and the vanishing of either would imply the same for the

other. But then f (z) would be elliptic, a contradiction.

If we let

F(z) = b{(z)/ki + U(z),

then (17) and (18) will be satisfied only if II(z) is of period A and obeys the

relation

II(iz) = - î'n(z).

Then II(z) is a product of s?"'(z) by a rational function of 92(z) with s?(z)

lemniscatic.

For the remaining cases the results are similar.

If m is a primitive cube root of unity,

F(z) = bz/h+ Kz)F[i>'(z)j,

or

F(z) = K(z)/ki+9"(z)T[9'(z)],

where p(z) is equianharmonic and T(z) is a rational function. If m is a primi-

tive sixth root of unity, we replace 9(z), 9"(z) and 9'(z) respectively by

9"'(z), 9y(z), and ¡?3(z). In each case it is understood that any linear function

of F(z) also has both a multiplication and addition theorem.
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