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1. Introduction^). The object of this paper is to consider the three classes

of open simply-connected symmetric Riemann surfaces which result from the

surfaces defined by the entire functions w = cos z1'2, w = cos z, and w= l/r(z),

when the branch points are displaced in an arbitrary fashion along the real

axis. For each class it is proved that all members are parabolic and a repre-

sentation of the corresponding entire function is obtained, which is precise

in the sense that any such entire function maps the punched plane onto a sur-

face of the class in question.

The method employed is approximation by elliptic surfaces. This avoids

restrictive assumptions on the location of the branch points such as those

involved in a line-complex representation.

In the terminology of Iversen [l, pp. 38-52](2), certain members of each

class of surfaces exhibit indirectly critical singularities, as well as either vari-

ety of directly critical singularity. To the best of the author's knowledge,

all classes of surfaces in the literature which have been proved parabolic

possess only directly critical singularities of the first kind, with the exception

of the surfaces treated by F. E. Ulrich [l ] which possess two directly critical

singularities, one of the first, and one of the second kind.

2. Description of surfaces. The symmetric semi-cosinic surface J covering

the w-plane is determined by the sequence of real numbers ak (k = 1, 2, ■ • • ),

with <zi>0, 02n±i>ö2n. J is composed of the sheets St, S2, ■ ■ ■ , Sk, ■ ■ ■ ; Si is

a replica of the w-plane cut along the positive real axis from w = ai to w= oo ;

Sk (k>l) is a replica of the w-plane cut along the real axis except for the in-

terval between ak-i and ak. Si and S2 are joined along their cuts from ai to

+ oo, forming a first order branch point over w — ai; Sk and Sk+i are joined

along their cuts from ak to ( — ) *_1 oo.

In the particular case ak = ( — )k~1, J is the Riemann surface of the function

z = (arc cos w)2. Any symmetric semi-cosinic surface is topologically equiva-

lent to this prototype, and therefore open and simply-connected.

The possible singularities of J may be classified as follows:

(1) | ak\ <M (k = 1, 2, • ■ ■ ) and lim*..«, ak does not exist. Then J has a
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99



100 G. R. MacLANE [July

single logarithmic branch point over w = oo, that is, one directly critical singu-

larity of the first kind.

(2) The sequence ak is unbounded. Then J has one directly critical singu-

larity of the second kind over w = <».

(3) Lim*..«, at = fl^«i, Then J has two singularities : one directly critical

of the first kind over w = <», the other directly critical over w = a.

The symmetric cosinic surface J, covering the w-plane, bears the same rela-

tion to that of z = arc cos w as the semi-cosinic surface bears to the surface of

z = (arc cos w)2. J consists of the sheets 5& (k = 0, ±1, ±2, • • • ); 5* is a

replica of the w-plane slit along the real axis except for the segment from a*

to Ck+i\ Sk and 5¿t+i are joined along their slits extending from c*+i. J is de-

termined by the sequence of real numbers a* (k = 0, ±1, ±2, ■ • • ),a2k±i>a2k.

We shall assume öi>0, öo<0, so that w = 0 is in the unslit portion of So.

The symmetric gammic surface J is obtained by adding a pair of logarithmic

ends to the initial sheet of the semi-cosinic surface. Let the sequence a* and

the sheets Sk be as described for the semi-cosinic surface. The sheet 5i is

opened up along the negative real axis from — oo to — a0, a<>>0, and a loga-

rithmic end spiraling over oo and — a0 is attached to each shore of this cut.

For later purposes it is convenient to break these up into half sheets. The

end attached to the upper shore is built up of the half sheets Qi, Q2, ■ ■ ■ ; Q2k-i

is a replica of 3w<0, Q2k of 3w>0. Qi is joined to the upper shore of 5i along

(—oo, — a0), Q2k-i and Q2k are joined on (—o0, «), Qik and Q2k+i on

(—oo, —ai). The other logarithmic end is similarly built up of half sheets

Q-i, Q-2, • • • ; Q_(2fc+u being an image of 3w>0, Q-2k an image of 3w<0,

and so on.

This class of surfaces is based on the Riemann surface defined by the en-

tire function w=l/Y(— z) (cf. Lense [l], Ginzel [l]). In this prototype sur-

face the logarithmic branch point lies over w = 0 rather than — do ; the algebraic

branch points straddle out in a uniform fashion: an~( — )n_lr(« — Ä„)/log «,

lim A„ = 0. The type of the symmetric gammic surface has been considered

by F. E. Ulrich [l] who proves, using Ahlfors' metric condition, that 7 is

parabolic provided sgn an = ( — )n_1 and | an\ log «>m exp («/log «) for some

positive constant m.

The possible singularities of the cosinic and gammic surfaces may be clas-

sified in terms of the sequence ak as was done for the semi-cosinic surfaces.

We now proceed to treat the class of symmetric gammic surfaces in detail.

The procedure for the other two classes is closely parallel and is therefore

omitted.

3. Proof that all symmetric gammic surfaces are parabolic. Let J, a sym-

metric gammic surface, be mapped onto the disc | f | <A = « by the normal-

ized function

(1) f = 4>(w),       w=/(f),
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(2) /(o) = oesi,     f'(0) = 1.

Let J be cut into two hyperbolic surfaces by slicing Si from — ao to Oi along

the real axis, and Sk from ak-i to ak- Let J+ be the part containing'the upper

half of Si, J~ the other. There is then an appropriate semi-disc D: |f| <Ei

^ oo, 3f > 0, such that J+ is the image of D by a holomorphic function w =/i(f )

and such that the image of — Ei<f <Ei is the system of cuts separating J+

and J~. Using the Schwarz reflection principle, /i(f) is holomorphic in the

whole disc | f | <Ei, which it maps onto J. If/i(f) is normalized we obtain (1).

Thus the image of the branch point of J over w = o„ is a point f = bn of the real

axis:

(3) f(bn) = an, 0 < bi < bi < ■ ■ ■ < bk -> R.

The zeros of/'(f) are all simple and occur at the points f = £>„.

The fundamental regions in the f-plane, images of the sheets of J, will

be as follows: Sk (A>1) is mapped onto a portion of |f | <E bounded by two

curves C*_i and Ck symmetric about the real axis and intersecting the real

axis at bk-i and bk respectively. The segment (o*-i, ak) of Sk corresponds to

the interval (bk-i, bi) ; the two shores of the cut in Sk commencing at ak-i

correspond to the two symmetric halves of C¡b_i, and the two shores of the

cut from ak correspond to the two halves of Ck. Si is mapped into a part of

| f | <R containing J" = 0 and bounded by Ci, Ti, and r_i, Ti lying in the upper

half circle and to the left of Ci, T_i being its reflection in the real axis. The in-

terval —E<f <bi corresponds to the interval —a0<w<ai in Si, Ti to the

upper shore of the cut ( — «, —a0)in Si, and T_i to the lower shore. The image

of Qn (n = l, 2, • ■ • ) is bounded by two curves TB and rn+i, the image of

Q-n by curves r_„, r_„_i which are the reflections of Tn and r„+i in the real

axis. r„ separates Tn+i and Ci. Each of the curves Ck and r±„ is a Querschnitt

of the disc | f | <R and no two of these have points in common. These curves

together with the interval — R <f <R of the real axis constitute the real paths

of/(f), the locus of points for which/(f) is real. Aside from the symmetry,

this description is topological, and indifferent to R< <*> or R= oo.

We now consider the elliptic approximating surface Jn which is assembled

from the m+1 sheets Si, Si, ■ • ■ , Sn, Si+i and the 2« half sheets

Q±i, Q±i, ■ • • > Q±(n-i)> Q±n- The unprimed sheets are as in J; Sú+i is ob-

tained by closing Sn+i smoothly across the cut (o„+i, ( — )"«); Qñ and Qln

dissected are the same as Qn and ()_„, but Qñ and Ç-n are now connected along

their free shores rather than passing on to Qn+i and Q-c+i)-

Thus Jn is a 2n+l sheeted simply-connected closed surface with n first

order branch points over d, • • • , an, an nth order branch point over — Oo,

and a branch point of order 2w over w = oo. This Riemann surface is the image

of the closed z-plane by a rational function which we may take to be a poly-

nomial since there is only one point of Jn over w= oo. We normalize this map

to correspond to that of the complete surface:
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(4) w = Pn(z) of degree 2« + 1,

(5) P„(0) = 0 G Si,       Pi (0) = 1.

The image of the branch point over w = ak is z = bn,k (Ä = l, 2, ■ • -, n),

0<bn,i< ■ ■ ■ <bn,n- The image of the «th order branch point is z= —cn,

cn>0. The fundamental regions are bounded by curves Cn,k (k = l, ■ ■ • , «)

through b„,k and by 2« curved rays emanating from —c„.

Let Dn be the 2-plane cut along the real axis except for the interval

(—c„, £>„,„)• Let An he that region of the f-plane containing the origin and

bounded by | f | = R, Yn+i, r_(n+D, C„+i, and the interval (bn, b„+i). As is read-

ily seen Dn and An correspond to the same portion of 7 by the maps w = Pn(z)

and w=/(f) respectively. The composite function

(6) f = yPn(z) = 4>(Pn(z))

maps D„ schlichtly onto A„, and by (2) and (5)

(7) W0)=0,       *i(0)-l.

The domain Dn contains the disc [z\ <min(c„, bn¡n). Applying the Koebe

1/4-theorem to the map of this disc by ypn(z) we obtain

(8) R> 4-1min(cn, bn,n).

Now Pi (z) has simple zeros at z = bn,k and an «th order zero at 2= — cn.

Consulting (5), we have

(9) Pi (z) = (1 + z/cnY ft (1 - */b».i),
*=1

(io) pn(z) = r Pi(z)dz.
J 0

In particular,

(11) - ao =  f    "Pi(z)dz,        ai=  f "'' Pi(z)dz.
Jo Jo

Let b* be defined by

(12) n/bl = ¿ l/bn,k.
■k-l

Then bn,i<b*<bn.n. For — cn<z<¿>„,i all the factors in the product (9) are

positive, and by the comparison between the geometric and arithmetic means

PÍ(Z)   <   (1  + Z/Cn)*i— Z (1   -  z/bnA "=   (1  + 8/c«)"(l   -  */bn)\
\n k-i )
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We consider two possibilities :

(1) b*^c„. Then for -c„ <s <0, Pi (z) < (1 +z/cn)n(l -z/cn)" = (1 -z2/c\y

and by (11)

/0 /• 0 0       0 C T'2 2   -1-1Pi (z)dz <  I     (1 — 2 /cn) dz = cn \       cos       tdt
-cn J -c„ J 0

= cnTr^2T(n + l)/2T(n + 3/2) ~ 7rI'2c„/2»1/2.

Thus b*^cn>An112, A>0.

(2)cn>b*n.Theníor0<z<bn,i,Pi(z)<(\+z/b*y(l-z/b*y = (l-zí/bty

and by (11)

/' b"-1 C bnA 2      *2  n Cbn 2       *2   n
Pi (Z)dz < (1  - Z ¡bl )  dz  < (1  - 2    /b*n )   dz

o J o Jo

J 0

ir/2

cos2^1 tdt ~ Tr1'2^«1'2.

0

*-Thus cn^b*>An1'2, A>0.

In either case, by (12)

(13) cn > An1'2,       bn,n >b*n> An"2, A > 0.

By (8) and (13) R = oo, that is, J is parabolic.

4. The structure of the entire function w =f(z). The following is a standard

theorem (cf. Bieberbach [l, pp. 13-15]) on families of schlicht mappings: let

An he a sequence of schlicht domains in the 2-plane, all containing the origin.

Let Bn be a sequence of schlicht domains in the f-plane, all containing the

origin. Let f = F„(z) map An schlichtly onto Bn, Fn(0) =0, Fi (0) = 1. If the

sequence An converges to its kernel A then a necessary and sufficient condi-

tion that An(2) converge uniformly in any closed subset of A is that the Bn's

converge to their kernel B. The limit function Z"(2) maps A schlichtly onto B.

We have just shown that the sequence of domains Dn converges to the

punched z-plane, and A„ converges to the punched if-plane. Hence ypn(z)-+F(z),

Z"(0) = 0, F'(0) = 1, and f = F(z) maps the finite z-plane onto the finite f-plane.

Therefore F(z) =z. Thus by (1), (6)

(14) Pn(*)->f(z), Pi(z)-*f'(z)

uniformly for [2I bounded. By Hurwitz' theorem the zeros of Pi (2) tend to

those of f'(z),

(15) lim bn,k = bk, k = 1, 2, • • • ,

and the multiple zero of Pi (2) at 2= — cn passes out of the picture by (13).

Note that (15) is of course not uniform for all k.

For |2| <bi/2 and n>n0, Pi (2) and f'(z) do not vanish and log Pi(z)
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—dog/'(z), where we take that determination of the logarithm for which

log PI (0) =log/'(0) =0. From (9)

(16) log Pi (z) = (n/cn - ¿ l/bn,k\z - —(n/cl + ¿ l/iÜ.*V + • • • .

and therefore the following limits exist:

(17) lim I n/cn — X 1/*»,* ) = «rii

(18) lim —(n/cl + ¿ l/bl,k} = <r2 > 0.
»-»« 2 \ fc_i /

All terms in the parenthesis of (18) are positive, hence bounded for all n:

(19) n/cl <M, ¿ 1/6*.» < M.
k=l

For any fixed N, by (15), 2-1£f_1l/^ = Hmn^2^til/bl,kú lim inf„^2"!
• S"-iV^n,t=°"2, and allowing N to become infinite

1 e0 2

(20) <T3  = — Z V&*  á   <T2.
2 i=i

Now from (19), (20), and the monotone character of the sequences bk, bn,k

(21) cn>An1'2,       bn,k>Ak1'2,       bk>Ak1'2

for some positive constant A. For p¡z3 and any N

lim sup ¿2 bk   — ¿_, bn,k

if —p      ,—pi

^ lim sup X/1 ̂ *   — ̂ ».
n->»        fc_l

+   S 6* "+lim sup 2 ¿».fc-
(fc-AT+1 "-*»     fc=AT+l

If we use (15) and (21) the first term on the right vanishes and the last two

are 0(N1~pl2) ; if we allow N to become infinite

(22) lim  ¿ l/bl,k = ¿ l/bl, p>3.K.k =  ¿2 '
n->oo   k=i i_i

If we combine (16), (17), (18), (21), (22)

oo oo

(23) log/'(z) = .riz - a2z  - ¿ (zv/p) £ ¿;P.

By (20) the canonical product
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(24) U(z) = fi {(1 - z/bk)e'^}
i=i

converges, and for \z\ small

log n(z) = - (z2/2) ¿ b? - ¿ (z'/p) ¿ b7.
k=l p=3 ¡fc=l

Comparing this with  (23)  and   (20): log f'(z) =<riz — (a2—<r3)z2+log II(z)

with <72— ffaèO. Writing a2 — Oi = a, <ri=ß, we have

(25) f'(z) = e-°22+^n(2) a è 0, )3 real.

Now/(s) must have a finite asymptotic value along the negative end of the

real axis corresponding to the logarithmic branch point of J over w= —a0.

Hence the in tegral/<rwexp(— ax2+ßx)Tl(x)dx must con verge. So we must have

either a>0 or ß+^2t^il/bk>0. If ¿^1 /bk diverges this condition is met, but

as we shall see later (Theorem la) this sum may converge.

Summarizing these results we have the following theorem.

Theorem I. The symmetric gammic surface J determined by any sequence of

real numbers ak (k = l, 2, • • • ), ai>0, a2n±i>a2n, and any ao>0 is always

parabolic. Furthermore, J is the (1-1) image of the z-plane by an entire function

(26a) w = f(z) = f  f'(t)dt,

(26b) f'(z) = «-«*+»■ Ô {(1 - z/bk)e"b*),
i--i

(26c) 0 < bi < b2 < ■ ■ ■ , £ bk~2 < »,

(26d) a = 0,   ß real,   max la, ß + ¿ 1/bX > 0,

the branch point over w = ak corresponding to z = bk-

Remark. If the normalization w(0) =0G5i, w'(0) = 1, is dropped we obtain :

any entire function w = g(z) which maps the2-plane (1-1) onto J is of the form

g(z) =f(pz+q), p, qconstants, p^0.

In a very similar fashion we obtain the following results for the other two

classes of surfaces described in §2.

Theorem II. The symmetric semi-cosinic surface J is always parabolic; it

is the (1-1) image of the z-plane by an entire function

(27a) w = f(z) = f '"f'(t)dt,
J o
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(27b) f'(z) = e-^n (1 - */h),
k=i

(27c) 0 <bi<b2< ■ ■ ■ ,   Xl/it< oo,

(27d) S ̂  0,

the branch point over w = ak corresponding to z = bk, andf(0) = 0£Si.

Theorem III. The symmetric cosinic surface J is always parabolic; it is the

(1-1) image of the z-plane by an entire function

(28a) w = f(z) =  f  f'(t)dt,
J o

(28b) /'(*) - e-"*+i" II  {(1 - z/bk)e'i>>\,
k=—oo

(28c) • • • < i_i < ¿o < 0 < bi < h < ■ ■ ■, X) h? < oo,

(28d) aèO,        ß real,

the branch point over w = ak corresponding to z = bk, andf(0) = 0£So-

Remarks. In Theorems I and III, ^2l/bk may or may not converge (§5 will

show that both possibilities may occur). lf^l/bk converges then the repre-

sentation (26b) or (28b) may be simplified. Note that then (26d) and (27d)

prevent overlapping between (26b) and (27b).

5. The converse problem. The converses of the preceeding theorems are

also true, that is:

Theorem la. Any entire function of the form (26abcd) maps the z-plane

(1-1) onto the symmetric gammic surface with ak=f(bk), — ao = limx,_00/(a;),

x real.

Theorem Ha. Any entire function of the form (27abcd) maps the z-plane

(1-1) onto the symmetric semi-cosinic surface with ak=fibk).

Theorem Ilia. Any entire function of the form (28abcd) maps the z-plane

(1-1) onto the symmetric cosinic surface with ak =fibk).

The proofs of these three theorems are similar, and we consider only the

first. The essence of the proof is to construct the fundamental regions for

w=f(z) by finding the real paths of/(z). Now it is obvious that any/(z) of the

form (26) has, among others, the following real paths: the real axis, and one

curve Ck through each point z = bk (k = l, 2, ■ ■ ■ ) symmetric about the real

axis. Furthermore, no two real paths intersect except at the critical points bk.

But it is not obvious that /(z) also has the appropriate real paths T±k de-

scribed in §3, nor is it immediate that there are no more real paths between

the Cjfc's. The easiest procedure is to use a sequence of polynomials which
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approximate f(z) and which correspond to easily constructed surfaces.

Let

(29) ßn  =   ß +   É 1/bk.

For any sequence of positive integers X„ which increase rapidly enough the

polynomials

(30)

(31)

Qn(z) = f'Qi(t)dt,
J 0

Qi(z) = (1 - az2/\ny»(l + /WXn)x"ñ (1 - z/bk)

approximate/(z) :

(32) lim Qi (z) = /'(*),        lim Qn(z) = f(z)
n—* <x> n—* »

uniformly for \z\ bounded. This depends on

(33) lim (1 + z/N)N = eÊ, uniformly for | z | ^ R.
N-"°

Thus

(34)

Also

(35)

lim (1 - az2/\„y»

(1 + /Wa„)x»IÍ (1 - -/**) - ef- Ê {(1 - z/bk)e'»>*)

g I (i + ßnz/\ny" - «*" I n d - */**)

+ «í-'íí (1 - z/bk) - #' II {(1 - z/ô*)e2/di}

The last term on the right of (35) tends to zero, uniformly for \z\ =A,

by the nature of an infinite product. If we choose X„ so that, by virtue of (33)

|(l+|3nz/X„)x»-e^| <[»Il2=i(l+«/*>*)]-1 for |z|=w, then the left-hand

member of (35) tends to zero uniformly for \z\ bounded. Combining this

with (34) we have the first part of (32); the second follows immediately.

We shall now construct the Riemann surface of the function z=<p(w), in-

verse to w=f(z), for the case a>0. The general idea is that the real paths of

Qn(z) tend to those oí f(z). Increasing the terms in the sequence X„ does not

affect (32), so we shall assume that Xn/1 ßn \ >(X„/a)1/2>&„. By (31) itis read-

ily seen that the real paths of Qn(z) are as follows: (1) the real axis; (2) curves
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Cn.k ik = l, ■ ■ ■ , n) through bk; (3) 2X„ curved rays T„t±k (t — i, • • • , X»)

emanating from z= — (\n/a)112, those in the upper half-plane being r„,i, r„,2,

• ■ • , r„,xn in counterclockwise order about their origin, and Tn,-k being the

reflection of Tn,k in the real axis; (4) 2X„ curved rays T' emanating from

z = (X„/o:)l/2 ; and (5) 2X„ curved rays V" emanating from z= —X„/j8„. This

whole scheme is symmetric about the real axis.

The rays V and T" disappear in the limit, for if not, some circle |z| ^R

would contain sections of the limiting curves of all the Cn.k and Tn,k (since

XB/|j8n| >(X„/a)1/2>ô„), and f(z) would possess sections of infinitely many

different real paths in \z\ ¿¡R, which is impossible for an entire function.

The curves Cn,k will tend to limiting curves Ck. They cannot pass out of

the picture since Cn,k contains the fixed point z = bk for all n, but it is conceiv-

able that Ck might consist of several pieces, all "ends" being at z= oo. The

strip Dn,k, bounded by Cn,k and Cn,k+i, is mapped by Qn(z) onto a zn-plane,

A„tk, slit along the real axis except for the segment (Qn(bk), Qn(bk+i)). The se-

quence A„,fc converges to its kernel Ak, the w-plane slit along the real axis

except for the segment (ak, ak+i) = (f(bk), f(bk+i)). Applying the theorem

stated at the beginning of §4 to the sequence of functions Qn~1(w) (the condition

Fn(0) =0, FU (0) = 1, is replaced by Qn~1((ak+ak+i)/2)-^A, Qnl((ak+ak+i)/2)

—*B 9*0) we see: w=f(z) maps Dk, the kernel of the sequence Dn,k, onto Ak.

Thus Dk is simply-connected. Furthermore Ck is all in one piece, for if we

apply similar considerations to the map of the part of D„,k-i+Dn,k in the up-

per half-plane,/(z) is analytic at every point of Ck except one at infinity, that

is, Ck is one connected curve and the regions Di, Z>2, • • • , fill out the section

of the z-plane bounded by Ci and not containing z = 0. Comparing this with

§3, this part of the z-plane is mapped onto the sheets S2, S3, • • • , of the "semi-

cosinic end" of a garrimic surface.

The logarithmic ends are obtained in a similar fashion : the region of the

upper half-plane bounded by Cn,u r„,2, the real axis, and containing r„,i

is mapped by Qn(z) onto a plane slit along the real axis from + 00 to

Qn( — (X„/a)1/2), r„,i mapping into the remainder of the real axis. Applying

the same theorem to this sequence of maps, there are two possibilities: (1) r„,i

(and hence all Tn,k) disappear in the limit and the (appropriate) region

bounded by the real axis and Ci is mapped by w=f(z) onto an upper half-

plane. This is impossible,for this would imply that \imx-.-<cf(x) = — » (x real),

whereas equations (26) imply a finite asymptotic value = — a0 along the nega-

tive real axis. Hence we have (2), the curves Ti and r2, limits of r„,i and r„,2,

actually exist; the region bounded by r2, the real axis, and Ci is mapped by

w=f(z) onto a plane slit along (— o0, + °°). The curve Ti is mapped onto

(— 00, — oo) and hence I\ is all in one piece. Repeating this argument for the

various regions between T„,k and r„,¡t+2, we see that f(z) has an infinite

sequence of real paths Tk as described in §3, and the associated strips map

into the half-sheets of a logarithmic end with singularities over w= — ao and
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w= oo. Since f(z) is symmetric in the real axis we obtain the other logarithmic

end, which completes the proof of Theorem la, for a>0. For a = 0 the pro-

cedure is virtually the same except that the paths Yk arise from the multiple

zero of Qi (z) at z= — X„//3„ (less than 0 for w sufficiently large by (26d)).

6. Some properties of the fundamental regions. The sequence of polyno-

mials Qn(z) may be used to derive properties of the real paths of w=f(z)

other than the topological and symmetric properties mentioned in §3.

First it may be shown that the line y = y0>0 (z = x+iy) intersects all the

real paths of Qn(z) which lie in the upper half-plane exactly once. These in-

tersections correspond to the roots of the equation

(36) SQn(x + iyo) = 0

which, for a>0, is of degree 3X„+« in x. Considering the fact that the real

paths of a polynomial divide the angle at z= oo equally, the line y=yo must

intersect each of the following at least once: C„,i, ■ • • , C„,„; r„,i, ■ • ■ , r„,\n;

X„ of the T', and X„ of the Y". But this makes up the precise degree of (36),

so there is exactly one simple intersection of the line with each curve men-

tioned. Since the roots of (36) are real and simple, the roots of

(37) d 3Qn(x + iy0)/dx = 0

are real, simple, and alternate with those of (36). That these facts still ob-

tain in the limit may be proved in various ways, either elementary or by use

of Hurwitz' theorem. The roots of

(38) 3/(* + iy0) =0, yo * 0,

are simple and alternate with the (simple) roots of

(39) d Sf(x + iyo)/ox = 0.

For a = 0 this is proved in a similar manner. This result does not state that the

line y = yo actually intersects Ck and Yk for all values of y o and k; some of

these intersections might disappear in the limit, for example Ti might have a

horizontal asymptote y = yi>0. We consider this question now. Equation (39)

is equivalent to 3/'(x+î'y0) =0, or

(40) 0 = arg/'(* + iyo) = - kir, k = 0, ± 1, ± 2, ■ ■ ■ .

Consulting (26b), we have

(41) 0 = - 2axy + ßy + ¿ í— - tan"1 —-1
it_i Ibk bk — x)

where we choose 0<tan~l(y/(bk — x)) <tt. With this determination the sum

in (41) is convergent, and 9 is a continuous function of both x and y for all x

and for y>0. Differentiating (41), we have
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d® °°
(42) —= -2ay-~Zy/[y2+(bk- x)2].

ox k-i

Thus © decreases as we move to the right along y =yo- Since 0 is continuous,

the value of k in (40) associated with the intersection between two given C

or r curves is a constant. The particular value of this constant may be deter-

mined by setting x = (bk+bk+i)/2 in (41) and letting y—>0:

lim <è((bk + bk+i)/2, y) = - krr.

Let the root of ®(x, y) = —kir be x = £*(y). Let the equation of the curve Cu

be x = Xk(y) and the equation of Yk be x = %-k(y)- Then we have

£k-i(y) <xk(y) <Uy), k « 1, 2, • • • ,
(43)

*_*(y) < x-k(y) < f-*+i(y), k = l, 2, • • ■ .

®(x2, y) - ®(xi, y) | - J dx > 2ay | x2 — Xi\ .

There is one immediate fact to be drawn from (42) if a>0, for then

• " \ d®

dx

Therefore 0<£¡t_i(y)— £t(y) <ir/2ay, and by (43),

0 < Xk^i(y) - Xk(y) < */ay, k = 1, 2, ■ • • ,

(44) 0 < xi(y) - X-i(y) < rr/ay,

0 < X-k(y) - X-k-i(y) < ir/ay, k = 1, 2, • • • .

In this case, a>0, we see that the real paths have no horizontal asymptotes,

and the horizontal width of all strips decreases uniformly as 1/y.

Now for x<0, tan~1(y/(bk—x)) <y/(bk — x)<y/bk, and since the sum in

(41) is a monotone function of x we have for any N

lim   è{f-tan-i-^-l   ̂    lim   £ U - tan- —*-l  - £ f •
*->-•» k~i \0k bk — x)        i^-«o k_¡ {ok bk — xj        k=i bk

Also

L.
¡fc=l    bk

Thus this limit is y2Z"=il/¿>jt. If a = 0, then

(45) lim ®(x,y) = y(/3+¿l/e,Y
*—-» \        k-i        /

Thus if ¿^,1/bk diverges all curves Y are intersected by any horizontal line,

but if X)t°-i 1 /bk = t< oo then y = yo intersects Yk for y0>kir/(ß+t) but does

Um    EÍf-tan"'--3^}   g  ¿
*->-»   fc=i VOjt 0* —  tfj k~l
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not intersect Tk for y0<(k — l)ir/(ß+t).

On the other side of the picture, 0 is a monotone function of x and so

limx..+M0(x, y0) exists and the value determines roughly which curves Ck are

intersected by y = yo- Here we consider only a = 0, since we know the answer

by (44) when a>0.

For bn<x<bn+u bn>y, we have from (42)

d& " " 2 2

— < - E (y/(y2 + *2) - Z y/(y + bi)
OX A—1 4-n+l

n

< — E y/(*2 + *2) = — ny/2x2,
k=i

/6"+1     00 »y / 1 1   \-~-dx> -f (---— ).
6„ o* 2   \{>n       6n+i /

Adding these inequalities for all n^m, where bm>y:

y JL / » n  \
@(bm, y) - lim @(x, y) > -f £(-- - —-)

»-»•» 2 n=m \bn       bn+i /

= ^-(m/bm+   ¿   l/bn).
2   \ n=m+l /

Therefore if ^1/^» diverges, limx.oo0(x, y) = — oo and C„ is intersected by

every horizontal line.

If Jl/4, converges we proceed as follows. From (41), a = 0,

(46) 0 = ßy + yÍ,l/bn- ¿ tan-* —~-•
n—1 n=l "n *

Then since tan~1(y(b„—x))>0 we have for x>bm, &<ßy+y^2n-il/bn

~Yln~iir/2= Ay —mir/2 and \imx,K<è(x, y) = — oo, and again, C* is inter-

sected by every horizontal line.

Sharper results on the course of the real paths may obviously be obtained

using the relation between (39) and (40), especially when a reasonably regular

behaviour is assumed for the sequence bn.

The problem of the relation between the numbers a, ß, bn and the branch

points, an, of the Riemann surface is not simple. The following however may

easily be established : if a > 0 then

00

(47) £ | ak+1 - a* j - 0(e-^-'^) = o(e~">)
k-n

for any positive y. For the canonical product in (26) is 0(e" ) for any e>0.

Thus £*"-»|a*+i-a*| = ftZ\f'(z)\dz = 0(e~^-'^), which is the first part of
(47). The rest follows since bl/n—>™.
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Results similar to the above may be stated for the other two classes of

surfaces. The semi-cosinic fundamental regions, associated with (27), have the

following properties :

(1) The real paths of w=f(z) consist of the real axis and one curve C»

through each critical point bn, symmetric about the real axis.

(2) As the point P travels along the upper half of Cn from bn to infinity

its ordinate increases monotonically.

(3) Each C„ eventually enters the half-plane %.(z) <bi. The upper half of

Cn has a finite negative slope at every point of this half-plane. C„ has precisely

one simple intersection with the line î^/js) =xo<2>i in the upper half^plane.

Let this point be (x0, yn(xo)).

(4) The values yn(xi) alternate with the simple roots of arg/'(xo — iy)

= (2k-l)w/2. If arg/'(x0)=0 and arg/'(»o-*'-*) = (2* —1)tt/2, then 0<?u

<yi<??2<y2<

(5) Each C„ is simply visible from any point z<bi of the real axis.

(6) Ck lies entirely in the half-plane 1{(z) <b2k-i.

(7) If 5>0, then \imx^xf(x) =a j£ oo, x real, and

00

Z I a*+i ~ ak\ < A(t)e-^t)h*.
k-n

If 5 = 0 and limx,xf(x) = a ^ oo, then there exists an infinite subsequence of in-

dices « for which | a„ — a \ > K(e)e~,h,+1.

The cosinic fundamental regions associated with (28) have the following

properties :

(1) The real paths of w=f(z) consist of the real axis and a curve C»

through each critical point bn, symmetric about the real axis.

(2) The line y = yo intersects each C„ exactly once.

(3) If a>0, the horizontal width of the strip between C„ and C„+i is

0(1/y) uniformly for all w.

(4) If a>0, then

¿ | ak+i -ak\= 0(<~<~->¿),       2 I «*+i - *» I = 0(e-^~^").
k=n fc=—n

7. Remarks. As is immediately seen upon examination of the proofs of

both the direct and converse theorems, the restriction a2n±i>a2n, or its equiva-

lent bn+i>b„, may be replaced by the weaker ¿>B+i = &„; that is, a group of p

consecutive first-order branch points may be collapsed into a single branch

point of order p, with no essential change in the statement of the theorem

involved.
Concerning the product representations for w=f(z) we may say:

Theorem lb. Ifjis a symmetric gammic surface with a2n+i>0, fl2n<0, then

w=f(z) (cf. (26)) is of the form
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f(z) = ze-y**+s*fl {(I - z/cn)e*i<»)
n-l

with 7^0, 5 real, 0<ci<c2< • • • , and maxOy, b+^n-il/cn)>0. And con-

versely, an entire function of this form maps the z-plane onto a symmetric gammic

surface J with a2n+i>0, a2n<0.

The proof of this theorem is obvious. Similar results obtain for the other

two classes of surfaces.

This enables us to conclude at once that the Riemann surface correspond-

ing to the entire function w = z~nJn(z), where Jn(z) is the Bessel function of

order n > — I, is a symmetric cosinic surface. For the zeros of w(z) are real

and (cf. Watson [l, pp. 482 and 498]) wT(n+l)2*-J]j?m-m {(l-z/ck)e°'°k}.

The Riemann surfaces connected with the Bessel functions have been con-

sidered by Lense [2].

When the condition sgn a„=( — )n_1 is not fulfilled/(z) has certain com-

plex zeros occurring in conjugate pairs, and the story is not so simple; for

example, iff(z) = z(l+z2/3)IXT-i(l — z/bn), bn>0,f'(z) will have zeros in the
vicinity of ±i if the sequence bn is chosen large enough, since the derivative

of z(l+z2/3) has zeros at ±i, and hence/(z) will not correspond to asymmet-

ric semi-cosinic surface.

A comparison of Theorems I and III suggests that it should be possible

to replace a pair of logarithmic ends by a symmetric "semi-cosinic end" with-

out altering the type of the Riemann surface. That this is true in fairly general

situations will be shown in a later paper.
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