
ON MÖBIUS' INVERSION FORMULA AND
CLOSED SETS OF FUNCTIONS

BY

OTTO SZÂSZ0)

1. Introduction. We consider the functions x(t) of a variable t, defined on

a point set E, consisting of an infinity of real or complex numbers. We assume

that each function is bounded, and denote the totality of these functions by

5. Given a sequence of real or complex numbers:

Xi = 1, X2, \», • • • , X, !* \u for v 7* u,

X, ^ 0 for all v,

and a sequence of real or complex numbers

(1. la) ai = 1, o2, 0s, • ■ • ,        S I a» I < °°.

we now assume that if t(£E, then all X„/£.E.

Consider the transformation

00 00

(1.2) y(t) = £ anx(\J) = x(t) + £ anx(\j) = I(x) + A(x),
1 2

say; clearly, if x(t)(E.S, then y(t)(E.S. We further assume that the sequence

(1.1) has the property: (P) the product of any two X is a X. It then follows

that X^1 • • • X?* is in the sequence (1.1) ; «i, o¡2, ■ ■ ■ are non-negative integers.

We shall give conditions under which the functional equation (1.2) has a

unique inverse; we shall express the inverse in the form x(t) =y>,¿>„'v(X„¿). and

we shall give applications to problems of closure and completeness. The spe-

cial case Xn=« is a generalization of an inversion formula due to Möbius.

It has been applied to prove completeness (closure) of certain sequences in

two papers by E. Hille and the author [5, I and II].

Actually the assumption (P) is no restriction of generality; for adjoining

successively all X-products which are missing in (1.1), we get a new de-

numerable X'-set, and (1.2) can be rewritten in the form 2Za„'a:(Xn'/); we

must however also extend the point set E, so that it contains all points

X„'<of tEE'.
Using the terminology of abstract spaces (see [l, pp. 11, 53]), defining

Presented to the Society, August 23, 1946; received by the editors June 3, 1946.

(l) The main results of this paper were presented in December, 1944, at Brown Univer-

sity, at the University of Pennsylvania, and the Ohio State University. In the meantime

closure theorems of a similar type have been announced by D. G. Bourgin [2J. Numbers in

brackets refer to the literature at the end of the paper.
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distance of two elements xi(t), ¡c2(<) by (xi, x2) = l.u.b.t^E¡Xi(t} — Xi(t)\, and

putting \\x(t)\\ = (x(t), 0), we see that 5 is a normed vector space of type (B).

Under the assumption (1.1a), (1.2) is a linear operation in S and

IMwllsslMli:i«.|.
2

2. The inverse transformation.

Theorem 1. #E"la»! <1, then the transformation (1.2) has a unique in-

verse

(2.1) x(t) = y(t) + B(y),

and B(y) is again of the form

00

(2.2) B(y) = 5>„y(M. £|*.| < «.
2

Formal operational calculus(2) yields from (1.2)

(2.3) x{t) - (J + A)-Ky) = (¿ (- DM») (y) = ¿ (- l)M»(y),
\   0 / 0

where A°(y) =I{y) =y, and

00 00

(2.4) A\y) = Z • • '   £ «., • • • «.»y(X., • • • W). k è 1.
»1=2 t)t— 2

Let

00

22 I a» | = â < 1, l.u.b | y(t) | = r¡,
2 <Gtf

then the general term in the multiple series (2.4) is majorized by

|a„, ■ • • av¡t\t], hence the series (2.4) is absolutely and uniformly convergent'

for /£e, and

,(±kl)'- i/î*M*(y)l áfl^D|fl»|j = »<*

Substituting (2.4) into (2.3) we get again an absolutely and uniformly con-

vergent multiple series, representing a function #(/)££; moreover

o 1 — ä

We next show that x(t) satisfies the equation (1.2); let

(*) I am indebted to E. R. Lorch for reminding me of this procedure.
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*.(<)- ¿(-l)*¿*(y),

then evidently

xn(i) —* x(t) uniformly in E, as n —* o°.

Furthermore

(/ + 4)«» = ¿ (- i)M*(y) + ¿ (- i)M«-'(y)
0 0

= (/+(- l)M»+0y-/(y),

as »—*oo; this proves (/+.4):e=y.

To prove that (2.1) is the only solution of (1.2), we show that

(I + A)x = 0

has only the solution x = 0. In fact if

A(x) = — I(x) = — x,

then

l.u.b.  | x(t) | ^ à" l.u.b.  | x(0 I;

but ä<l, hence x = 0 for all /££.

Finally collecting corresponding terms in (2.3), (2.4), we get (2.2), where

bn = — an + ^ ff»,»i>2 — •••+(— 1) S B»í«»j ■•• + •••

(2.5) -

say; to each factorization X„=X"11X£2 • • • ,«1+0:2+ • ■ • =k, into k not neces-

sarily different factors, X„>1, corresponds a term in Bk(n), the order of dif-

ferent factors X™ being essential. In other words, we have the formal identity

(00 _ \   k oo

2 / v=2

where Ck(n) is the number of terms in Bk{n). It is clear that

CO 00 ¿

zi*-i ̂ r**=-—-
2 i 1—5

and equality holds if all a„ are not greater than 0.

While the solution (2.1) is unique, it is possible that the representation

(2.2) is not unique; this is the case if and only if 0 has a development
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0 = Z/MAn/),       £|ä.|<«.
2

and not all ß„=0.

3. Other conditions for the inversion of the functional equation.

Theorem 2. Suppose that^H,.! | a„M„;y(A„A,¿) | <oo, where uv is a solu-

tion of the system of equations

(3.1) „ at'U       *-1'

¿^uvan = 0, summing over all \v\n = \m, m^ 2,

then

(3.2) *« = ¿«„;y(M
1

is a solution of the equation (1.2). Furthermore any solution of (1.2) which

satisfies the condition

(3.3) Z I 0»«,,*O»M | < °°,

where uv is a solution of (3.1), is represented by (3.2).

Proof. Under the assumption

(3.4) X) I anU,yfrn\vt) I < 00

substitution of (3.2) into (1.2) yields, in view of (3.1)

00/00 \ °°      / \

E^ÍZmÍU.«)) = Z)(    Z)   wvan)y(\mt) = y(t).

This proves the first part of our theorem. Furthermore if x(t) is a solution of

(1.2) satisfying (3.3), then from

00

y(A»0 = E anx(\n\vf)

and from (3.1),

00

Z M„:y(X„<)  = E anUvX(\nkvt) =  *(/).
1 v,n

This proves the second part of Theorem 2. For X„ = w see [4, Theorem 3.2.1 ;

9, chap. 3].
Note that we no longer assume that x(i), y(t) belong to S. The theorem

holds for those values of t which satisfy the assumption of absolute con-
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vergence of (3.3) and (3.4). In Theorem l,we had the assumptions E2°lan| <!<

x(t)f y(t) bounded in E. The unique solution was

(3.5) *(<)-¿*»y(M.
i

where bn is defined by (2.5), and 21M < °° • We can now show that bn is a

solution of (3.1). Clearly (3.1) is equivalent to the formal identity

(3.6) (¿aaxr)(¿«„xr) = 1,

if we employ Dirichlet-multiplication of the two series. If we choose y(t) =t~'

<^1, (3.5) becomes

oo

1

while equation (1.2) becomes

00

t    —  £ anô„(X„X„) '/ ' = / '(2 «»X/XZ^-X,,");
n,ï>—l

thus (3.6) holds, which proves (3.1) with «„=&».

It follows from Theorem 2 that if (3.1) has exactly one solution which

satisfies (3.4), then the equation (1.2) has exactly one solution which satisfies

(3.3), and the solution is given by (3.2).

We call a sequence uv that satisfies (3.1) a reciprocal or inverse oí the se-

quence on of X-type.

For X„=n, (3.1) and (3.2) reduce to the inversion formulae of Möbius:

Oi = l, Mi = l,

2 M««n = 0,   m > 1,    or    (2 «»»~*)(2 w»«-*) = 1.
(3.7) vn-n _

*(0 = 2M-:y(«i)-

4. The inverse of certain sequences. We now assume that the sequences

oB, X„ are completely multiplicative, that is, oi = l, Xi = l,

(4.1) anav = o„„       X„X„ = X„r, », p = 1, 2 3, • • • .

A multiplicative sequence a„ is uniquely determined by prescribing the

subsequence ap, p any prime, arbitrarily. For if n=p^p^* ■ ■ ■ ,

then fl„=o£Jo£| • • • . Furthermore if 2Ia»I < °°t then av*=a%'—*0 as a—>■»,

hence \ap\ <1, and \a„\ <1, »>1. Moreover

nr-T-7-nsi^h-EIM.
p      1 I   Op[ pa
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hence ZI °» I < °° ̂  anc^ on'v "" I°pI < * anc* ̂ ZIa? I < °° •
If (4.1) holds then formula (2.5) becomes

00

(4.2) bn = - an + Ci(»)o.-= o-Z (- 1)*£■*(»»)

where C*(«) is the number of factorizations of n,

n = Vi   »2   • • • i «i + «2 t • ■ ■ = «i

into ¿ not necessarily different factors greater than 1, the order of different

factors being essential. (For example, 12=22-3 = 3-22 = 2-3-2 are the dif-

ferent factorizations of 12.) The inverse is now independent of the sequence

X„. The series Z*(~~ 1)*C*(») is actually finite as Ck(n) =0 for k>n. Z*C*(W)
= F(n) is the number of factorizations of n into factors greater than one,

order being essential. It is clear that

(4.3) ¿ Ck{n)n- = (f(s) - 1)*,    Rs > 1,        k = 1, 2, 3, ■ • • ,
n-2

and, putting F{\)—\,

¿F(»)»- = (2 - f(*))-';     ff» = ¿ »-.
i i

From (4.3)

00 00 00 J    _     «./y\

Z (- i)*Z c»w»-« = Z (i - «*))* =    „v  »
*-l n=2 1 f(i)

or

hence

and

Z( Z (- D»C*(»))»- = -Î- - l = Zm(«)»-;
n-2 \ *—1 / f W 2

Z(-1)*C*(«)   -/•(»),
it-1

bn  =  M(«)«n

¿u(«) is the Möbius' function: a(n)=0, if n contains a quadratic factor,

/i(«) = ( —1)*, if « is the product of k different primes.

The system (3.1) now reduces to (3.7), which has the unique solution

u„ = u(n)a„ — b„. This is seen from the formal identities
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Z «n«- = Il (1 - aPP")-\        Il (1 - ipp-) = Z u(n)ann-.
1 V P

Note. If the sequence an is multiplicative and if ZIa« I < °° > then evidently

(4.4) (Zl«»l) =ZCt(»)|a„| < ».
\     2 / n=2

If in addition Z"|an| <1, then Z"-i (Z2" jo.„|)* = Z-^(n)|a»l is conver-

gent.

Ct(n) is closely related to d(n), the number of divisors of n; we have

Zá(»)n- = (f(í))2,
1

which yields, in view of (4.3) with k = 2, Cî(n) = d(n) — 2. It follows that

Z^(w)|a»| <°°. We shall show that moreover

(4.5) Y,d\n)\an\ < •-.

We employ the formula

f(*) = r(2*) Z d*(n)n-> = £ c„n-,

say; clearly

cn è <**(*).

Furthermore

Z cnn- = (r(i) - l)4 + 4(f(5) - l)8 + ■ • • ,

from which it follows easily that

d\n) ác„< 15C«(n).

Now (4.4) with jfe=4 yields (4.5).

The conditions of Theorem 2 now become (as uv =/i(w)a„)

Z I OnUvy(\n\vt) | =  Z I ß(v)anvy(Knj) |

(4.6) - "*

=  Ê(Z|M(«)|)|«-y(M| < »,

and

(4.7) Z I anuvx(\n\rt) I = Z( Z I M(«) l) I o-*(X»<) I < »•
n,t» m    \ 6|m /

We have thus the following theorem :
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Theorem 3. If (4.1) holds, then the sequence o„ has a unique reciprocal

«„=/i(»)o„. Moreover if (4.6) holds, then

(4.8) x(t) = 2 n(n)any(\nt)

is a solution of (1.2). There is at most one solution satisfying (4.7); if it exists,

it is given by (4.8).

It follows from the second part of the theorem, that the only solution of

the homogeneous equation ^a^¡cCKnt) = 0 which satisfies (4.7) is x(t) = 0. For

an application see §6.

If in particular 2Ia» I < °° an(^ ^ yW is bounded, then (4.6) holds (see

the Note) hence (4.8) is the unique solution of (1.2) which satisfies (4.7).

5. Application to approximation and closure. Given a sequence of func-

tions <j)n{t), w^l, ¿CE, we call the totality of functions which can be approxi-

mated uniformly by linear aggregates 2" c*4>v(t) in E, the span of the se-

quence l<f>n(t)}, and denote it by M(<f>n). It is also called the closed linear

manifold determined by the sequence <f>n(t).

Consider now the sequences x(Knt) =xr, and y(X„/) =y»; we shall prove:

Theorem 4. If the assumptions of Theorem 1 or Theorem 3 with uniform

convergence are satisfied, then the sequences x(K„t), y(X„i), » = 1, 2, • • • , define

the same span.

(a) It is easy to see that any function f(t) that can be approximated uni-

formly by the sequence y(\„t), that is,/(/)£M(y„), also belongs to M(x„).

For let «>0 be given, and

/W- ¿c*y(X**) < e,    / G E,       ck = Ck(n,t),    n — w(e);

then from (1.2)

M "IE avx(Kv\,t)

Furthermore, n being fixed,

2 c*2 avx(\v\kt)

< «.

< e for m > >»o(e).

Thus /(/) is approximated uniformly by linear aggregates of the functions

xÇU). Hence M(yn)CM(xn).

(b) The converse follows from the existence of an inverse of the form

(2.2).
Example 1. Let
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00

y(0 = 1(2»- i)-2(i - cos(2» - 1)t0,
1

then

y(/) = (ir2/4) |#|   for - 1 £ < g 1,

and the funtional equations y(— /) =y(i) =y(¿+2) define y(t) for all real <;

/ = 1/2 yields

Z(2*-l)-' = ^-,
1 o

hence

Z (2v - I)"2 = ^ - 1< 1.
2 O

Theorem 4 applies with x(t) =1—cos irt, a2t>-i = (2i> —l)-2, aiv = 0. Now M(x„)

is the totality of all continuous functions in the interval (0, 1), vanishing at

/ = 0. Hence the same is true of M(y„); here xn = x{ni), yn = y(,nt).

Example 2. Consider |sin t\ = 2/w — (4/7r) Z" cos 2vt/(4vi— 1), hence

" 1 3t . , "   1 — cos vt
£(4*»-l)-»--, |sin/|=3Z—!—-■
i 2 4 i      4d2 — 1

Put z(/)=l-cos 2/, a„ = 3(4n2-l)-1; then Z?«» = 3/2-1 =1/2 <1; again

Theorem 4 applies. Now M(xn) is the totality of all continuous functions in

(0, 7r/2), vanishing at i=0. The same is true for the sequence y„ = |sin nt\.

We have thus proved the theorem :

Theorem 5. Either of the sequences <j>(nt) and [ sin (irnt/2) \ is a base of all

continuous even functions in ( — 1, +1), vanishing at f = 0. Here <j>(t) = |/|

=<f>(t + 2), -lS*-sl.

A more general case is furnished by <f>(t) = Z"at>(l— cos vt), where ai = l

and Zi"Ia»I <1, or a„av=anv and Zlö»l<°°-
We are now in a position to discuss a question which arose in a con-

versation with R. P. Boas, Jr. Let a>0 and

y(t) = (sin t)a for 0 = t = t,

y(- t) = - y(<) = y(27T - <)•

y(¿) has a Fourier sine-series (if only a> — 1)

00 2   /*T

(5.1)        y(<) ~ Z a» sin «/,       a„ = — I    (sin /)   sin nt dt = an   .
1 IT  J 0

The question is: for what values of a>0 does the sequence y(nt), n = l, 2,
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3, • • • , span the same space as the sequence {sin 77/} inC(0,ir)?

We shall prove :

Theorem. 6. Let a>l/3; y(0 = (sin t)a for Oá/^Tr; y(-t) = -y(t)

=y(2x — t). The span of the sequence {y(nt)} is identical with the span of the

sequence {sin nt\ in C(0, ir).

On putting Oo = 0, we have from (5.1) for a> — 1, w^l,

— (on+i + «n-i) =  I     (sin ¿)"{sin (» -(- 1)/ + sin (n — \)t}dt
2 Jo

(5.2) = 2 I    (sin t)a sin nt cos tdt
J 0

In    rT
= — ■—— I    (sin /)a+1 cos ntdt,

and

2 I    (sin t)a+1 cos ntdt =  |    (sin t)a\sin (w + i)t - sin (« - l)<}o7

(5.3)
IT

— — («n+1  —   On-l)-

Thus

(a + l)(on+i + o„_i) = w(o„_i — on+i),

or

(» + a + l)o„+i = (» — a — l)o„_i,        n è 1, a > — 1.

In particular

02« = 0, » = 0, 1, 2, •    -,

(5.4) (2v + a + 1)«2h-i = (2» — a — l)o2„_i, i^l,

"   2v — a — 1
(5.5) o2„+i = aij.1-= 0(n-l-a) as»-»».

„_i 2» + a + 1

It follows that 2la2»+i| < °° for a>0, and 0<O2n+l<O2n_ifor — l<a<l.

For « = 1: 01 = (2/ir)/o'(sin /)^ift>0. From (5.4)

(2v + a + l)02„+i = (2v + a — l)o2„_i — 2ao2„_i,

hence

n 00

(2w + a + l)02n+i = (a + l)oi — 2a2 a2„-i, 2a2 a2»-i = (a + l)«i
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(from (5.5)). Let first l/3<a<l; then o2n-i>0, n>0, and

2_, 02r-X   =  —- Ol  <  «1,
2 2a

hence Theorem 4 applies.

Next let Ka^3; then a!n+i^O for »>0, and

00 00 a   -    J

(5.6) 21 a2i>-l I = — 2 a2«-i = ~"""^ ai < ai-
2 2 2a

Finally for a>3 from (5.5)

(a-2) (a-2) -A-   2» —  a +  1(a-Z) (a-2) -pj-

»2n+l     =   ßl 11
i 2v + a — 1

and

<«) . , (a-2)

«2n+l 1   — a «2n+l

a<«>       (2» + a - 1)(2« + a + 1) o<a-«

Thus (5.6) holds for all a>l/3, and our theorem follows from Theorem 4.

This proves Theorem 6.

We next consider the function

4>(t) - (sin f)a, 0 ^ t ^ 7T, a > 0,

<*>(-*) = <K0 = </>(2ir - /).

<¡>{t) has a Fourier cosine-series

1 00 9

(5.7)       <£(i) ~ — oo + 2 a* cos MÍ>       an = — I    (Sm 0 "
2 l IT  J 0

COS íítáí,

hence, from (5.2) and (5.3),

t.      . * « +  1        (a-l) (a-1) 1 (a-l) (a-1)
(5.8) an =-(o„+i    + a„_i  ) = — (o„+1    - o„_i  ), » à 1¡

2« 2

in particular oJ = a{a-1), O2*_! = 0, í)= 1, 2, 3, • • • . From (5.5)

(a—1)              (a—1)                  2a (a—1)

02n-1     —  a2n+l     =  - 02n-l
2« + a

hence

02n   =   — —-j- «2n-l     = C(» ),
2« + a

and
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Z I  «2- I   <   °° •
Let first 0<a<2; then

a2n < 0, n = 1, 2, 3,

from (5.7) and (5.8)

hence

From (5.9)

(a-l) *

L»!. =-— = ——'
i 2 2

<j>(t) = — Z a2»(l — cos 2vt).

* «       (o-i) a      *
tt2   =-"- öl =-flO,

2 + a 2+a

hence if 2/3<a<2,

Z* " I   * I V*   *       a°   i    *      2 — a I   * I ^ I   * I
| at« I = — 2^ a2« = ~ + ß2 = ~~— I a2 I < | fl2 | ■

2 2 2 2a

Finally, for a = 2, from (5.9),

*
a2v

a?

(o-l)

2 + a <Í2r-l

2» + a     a^"-»

and the inequality Zí"!0*»! <l°2*l follows from (5.6). Application of Theo-
rem 4 yields the theorem :

Thforem 6'. Let a>2/3,

<t>(t) = (sin t)a, 0 á t g »,

<*>(- <) = *(0 = *(* + 2»r).

TAe s/>ßM o/ /Äc sequence 4>(nt), w _ 1, in C(—ir/2, ir/2) is the totality of all even

functions vanishing for t = 0.

For a = i this reduces to example 2.

6. Application to completeness in Lr. We denote the class of L-integrable

functions </>(/) with integrable \<f>(t) \r in the interval (a, b) by Lr(a, b) ; we as-

sume r=l. The class of essentially bounded and measurable functions is

denoted by LM. Clearly LTC.Lt for r>q; let r'=r/(r — l), and r'=oo for

r = l; r and r' are called conjugate numbers; we have l/r + l/r' = l.
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A sequence of functions <¡>n(t)G-ír(o, b), »Sil, is called complete in this

space if the only function g(t)(E.Lr' which is orthogonal to all </>„(/), that is, for

which

(6.1) f   <t>n(t)g(t)dt = 0, n = 1, 2, 3, ■ • • ,
" a

is g(0'~0. Here g(t) is the conjugate complex to g{t); g(l)~0 means g(t)=0

almost everywhere.

The sequence <f>„(t)ÇzLr(a, b) is called closed in this space if to any func-

tion \f/(t) (£Lr(a, b) there exists a sequence of linear aggregates

n

L(t)   =   2 C„,»4>v{t)
1

convergent in LT to yp{t), that is,

j      \Mt)-Ut)\'dt^0 as » —» ».

Here 1 ̂ r < °°.

It is known that completeness and closure in Lr, 1 ^r < <x>, are equivalent;

one implies the other.

Note that completeness in Lr implies completeness in Lq for any q <r < °o.

Furthermore with <f>„ the sequence af>n, c a constant, is a complete system.

Consider now the equation (1.2), so that

oo

(6.2) y(\J) = 2 anx(\n\vt), v = 1, 2, 3, • • • ;
n-l

we assume x(t), y(t)(E;Lr(a, b), g(£) ££>•'• Then, if termwise integration is

permitted

/i  0 00 y»  by(\vt)g(t)dt = 2 «n I    x(\n\rt)g(t)dt.
a 1 J a

If we write

J   x(ut)g(t)dt = £(«).   j y(»t)g(t)dt = vW

(6.3) becomes

00

«»(«) = 2 aní(XnM), M = Xl, x2, x3, • • •  .
n-1

This is again an equation of the type (1.2), where now Xj, X2, • • • is the set E

for the variable m. As before the sequence Xn is subject to the assumption
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that the product of any two \v, X„ is aXm. It is now clear that the sequence of

functions y(X„¿) is complete in Lr(a, b), if (1) the only solution of the homo-

genous equations

00

(6.4) Z 0n£(Anw) =0, u - Xi, X2, X3, • • • ,

IS

(6.5) í(X»)-0,    that is,      f   x(\nt)g(t)dt = 0, n = 1, 2,

and if (2) (6.5) implies g(/)~0. The second condition states that the sequence

xÇkrt) is complete in Lr(a, b).

Summarizing we have the following theorem :

Theorem 7. Assume that the sequence x(Knt) is complete in Lr(a, b), that

y(/)£Lr(o, b), that (6.2) can be integrated termwise, and that (6.4) implies

(6.5) ; then the sequence y(\nt) is complete in LT(a, b).

Here 1 =r^ °o.

Note. The series ^anxÇK„t) need not be convergent; it maybe an orthog-

onal development of a function y(t)(ELr, or associated with such a function

by some summability method.

To be more specific, choose Xn = «; let x(t), — <*> <t< », be a bounded

function. Assume that x(nt), « = 1, 2, 3, • • • , is a complete orthogonal sys-

tem for the interval (a, b). Let 2=>< », y(t)Ç.Lr(a, b). Consider its Fourier

development
00

(6.6) y(*)~EM4
i

We assume that the sequence {a„\ is completely multiplicative, and that

Z|o-lr'<*. r'=f/(r-l).   Let

*<*) = J    *{nt)-g{t)dt, g(t) G £,..

From F. Riesz' generalization of the Young-Hausdorff inequality (see, for

example, [6, p. 122], [l, pp. 190-202]),

(6.7) Z| «•)!'**(/    If« h»)**".

k a constant. From (6.6)

y(vt) ~ Z anx(nvt), v = 1, 2, 3, • • • ,
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and

/.

6

y(vt)g(t)dt =i¡(v) = 2 o*î(wO;

the series is absolutely convergent, and termwise integration is justified. We

shall employ Theorem 3, where now x{t) is replaced by ¿(f); to the condition

(4.7) corresponds

(6.8) 2(21 /*(«) l) I <*»£M I - ». < •.
n    \   l|n /

But 2î|"|m(2)[ ûd(n), and a„ being multiplicative, |o„|r' is multiplicative.

It now follows in analogy to (4.5) that

(6.9) EU.|'W< »■

On the other hand, if we use Holder's inequality,

». ^ ( 21 «w») lr)1/r( 21 «. r'¿r'(«))1/r ;

here r'^2, hence, from (6.7) and (6.9) it follows that av<™. If we assume

now 77(f) =0, v = l, 2, • • • , Theorem 3 yields £(») =0, n = l, 2, • • • ; but the

sequence a;(«i) is complete, hence g(¿)~0- Summarizing we have proved:

Theorem 8. Let x(t) be bounded, — <x> </< 00, x(nt), n = l, 2, ■ ■ ■ , an

orthogonal sequence in (a, b), complete in L,(a, b), r^2. If y(t)(E.Lr, if its

Fourier coefficients a„ satisfy (4.1), and 2la»|r'< c°> ^en the sequencey(nt),

n = 1, 2, • • • , is complete in Lr(a, b).

7. Application to special cases.

1. Let x(t) = — sin 27r/, then the sequence x(nt), w^l, is orthogonal and

complete in Lr(0, 1/2) for all r>i. Let

A  sin 2vwt        "   x{vt)
(7.1) y(t)~ -2 - = L—'

1 » if

so that o„ = t>-1, Onu» =o„r. It is known that y(i) =w{t— [t] —1/2) for />0, not

an integer. Now y(t)E.Lr for all r>l, 2*l_r'< °° f°r aH f'>l; application of

Theorem 8 yields:

Theorem 9. The sequence nt— [»/] —1/2 is complete in Lr(0, 1/2) for all

r>\ (').

The functions sin irt, sin 3irt, • • •, being orthogonal to the sequence x(nf)

in (0,1), are also orthogonal to the sequence y(nt) ; we note that N. P. Roma-

rt For r = 2 see Wintner [l0].
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noff [7] states that the system I, y(nt),u(nt), where u(t)=t*-t +1/6,0 á/jgl,

and of period 1, is complete in Z.2(0, 1).

Utilizing the uniform convergence of (7.2), it is seen that the span of the

sequence sin 2nirt in £7(0, 1) is included in the span of the sequence y{nt).

Furthermore
00

r2u(t) = Z v-2 cos 2vrt, 0 = * = 1,
i

hence, by Theorem 3,

oo

cos 2ir< = n2 Z p(v)v~*u(vt),
i

and the series is evidently uniformly convergent. It follows that the span of

the sequence cos 2mvt, n = l, is identical with the span of the sequence u(nt)

in C(0, 1). This yields Romanoff's result not only for L2 but for C(0, 1). For

Lr(0, 1), r>l, the corresponding proof is elementary.

2. Let x(t) = (4/ir) sin irt; the sequence x(nt) is orthogonal and complete

inLr(0, 1) for all r; let

4   "   sin (2d - 1)t*
y(0 - -Z —:-:—>

ir    i 2v — 1

so that a„=0 if n even, a„ = i/n if « odd. We have again a„av=a„v. Further-

more y(t) =sgn sin wtE.Lr for all r>l, ^(2v — l)_r'< oo for all r'>i. From

Theorem 8 it now follows:

Theorem 10. The sequence sgn sin nirt, n = l, 2, ■ ■ ■ , is complete in

LT(0, \)forallr>\.

The sequence y(2"/), v=0, 1, 2, •• -, is the well known Rademacher set,

which is orthogonal, but incomplete in Z,2(0, 1).

3. Let x(t) =cos 2iri; the sequence 1, x(nt) is complete and orthogonal in

Lr(0, 1/2), r>\. Consider

00 O0

y(J) — Z v~lx(vt) = Z v~l cos 2í>7tí = — log I 2 sin wt |.
i i

We now get:

Theorem 10'. The sequence 1, log | 2 sin nwt\ is complete in Lr(0, 1/2) for

allr>\.

A generalization of (7.1) is

"    sin 2virt
y(t) ~ Z ——' 1/2 < a < 1.

1 V
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We have 2"*'~<'"''< °° for ar'>\, or r<l/(l—a); hence, by the Young-

Hausdorff inequalities (see [11, p. 190]) y(t)Ç.Lr for r<l/(l— a), and by

Theorem 8 the sequence {y(nt)} is complete in Lr(0, 1/2) for r <1/(1 —a). A

similar result holds for the corresponding cosine series. For r = 2 see Wintner

[10].
P. Erdös called my attention to two interesting papers by H. Davenport

[3]. It is proved in the second paper that the series

(7.2) 2^M = -—>
n ir

where

{*}=/- [t]- 1/2, iff* [t],

{t\ = 0, if * — [l],

is uniformly convergent. Hence any function belonging to the span of the

sequence sin 2nirt in C(0, 1/2) also belongs to the span of the sequence {nt}

« = 1, 2, 3, • • •   . Thus we have the theorem:

Theorem 11. Any function continuous in the closed interval [0, 1/2], and

vanishing at the end points, can be approximated uniformly by linear aggregates

of the functions \nl\.

It should be noted that Davenport, in proving the uniform convergence

of the series (7.2), uses a method based on Vinogradov's recent work on the

theory of primes. This is only natural when we observe that the uniform

convergence of (7.2) implies the prime number theorem. In fact, if we write

"    u(v)
*»(/) = 2 - {»'}. » = 1, 2, 3, ■ • • ,

i      v

it follows from uniform convergence that s*{n~2)—»0, or n-2 2iAt(*')

— 2_1 2"î,-1mM—»0 as «—>oo. Hence ^¡vrlp(v)—*Q, and this is known to be

equivalent to the prime number theorem.

We discuss here the limiting case 2? Ia» I = 1 01 Theorem 7 for the special

case of sine or cosine series and for completeness in Lx.

Let g(<)GLi; then

y{i>t)g{t)dt = 2 «<• I    sin vntg{t)dt.
0 n=X        J 0

If

/.
y(vt)g{t)dt = 0 for f = 1, 2, 3,

o
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then

00

(7.3) Z<*nC„ = 0, v = 1, 2, 3, • • • ,
n-l

where

Ck =  I    sin ktg(t)dt-^0 as fe—» ».
«/ o

Assume that not all c* are equal to 0; let maxngt |cn| =7*. then yk [ 0, hence

there is a jfe so that 7* > yv for v > k. For such a & we have

now from (7.3)

hence

Ck\ >   c,  , fort; > k;

Ck  =   —   Z anC*»>
n-2

I C* I   < I C* I Z I a" I   ̂  I ck I,
2

which is a contradiction; thus c„ =0 for » = 1, 2, 3, • • • . We have proved the

theorem :

Theorem 12. 7/

00 00

y(i) = sin t + Z a" sin nt>        Z I a» I = li
2 2

iAcw the sequence \y{nt)} is complete in LK(0, w).

A similar result holds for cosine series. In particular the sequence of

Theorem 6 is complete in Lx(0, ir) for a = 1/3, and the sequence of Theorem 6'

is complete in LK(0, x/2) for a = 2/3.

8. Closure and completeness in C(0, 1). We say that a sequence <£„(/), «

= 1, 2, ■• -, of continuous functions is closed in C(0, 1), or a base for the

interval (0, 1), if any function, continuous in the closed interval (0, 1), can be

approximated uniformly in (0, 1) by linear aggregates of the functions <f>n(t).

The sequence is called complete in C(0, 1) if for any function \p(f) of bounded

variation the infinitely many equations

(8.1) f  <?„«#« =0, »- 1,2,3, ••• ,
J 0

imply \p(t) =\p(l) =\p(0), except at an enumerable net of points t. Here #„ is
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the conjugate complex of <£„(/). It is known that closure and completeness in

C(0, 1) are equivalent (see, for example [l, p. 73]). Let

(8.2) /„(*) = 4>(t)Ut),

where <p(t) is continuous in the closed interval (0, 1). Assume that the se-

quence {$„(0 } is closed in C(0, 1); we shall investigate the closure properties

of the sequence (8.2).

Normalizing ^(t) by ^(0)=0, yp(t) = {\ft(t-0)+if>(t+0) }/2 for 0<¿<1,
the condition of closure is that (8.1) should imply \f/(t) =0 for O^/^l.

We first give three lemmas.

Lemma 1. Let f(x), cj>(x) be continuous, \¡/(x) of bounded variation in [0, l];

let

(8.3) ,(*) =  fVw#W-

Then

(8.4) f  f(x)<t>(x)dMx) =  f  f(x)dv(x).
*> 0 •'0

Cf. D. V. Widder, The Laplace transform, Princeton, 1946; in particular

Theorem 6b, p. 12.

Lemma 2. If \[/(t) is normalized, then r¡(t) is normalized.

See Widder, Theorem 8b, p. 14.

Lemma 3. Assume that<l>(t)9¿0 and has a continuous derivative for 0<i<l,

that <j>(t) is continuous in [0, l], and that <£(0)?¿<£(1). Let y¡/(f) be normalized; if

v(x) =  f   <t>(t)di(t) = 0
J 0

forOá *é 1,
o

a«di/^(0)=^(l)=0, then \p{t) =0 for 0 gí;gl.

We have

n(x) = 4>(x)4>(x) -  f   Ki)d4>{t)
J 0

= <t>{x)i{x) -  f   f(t)t'(t)dt = 0,
J 0

or

(8.5) <t>{x)^{x) =  f   t(t)<l>'(i)dt,
J 0

0 ^ ï Í 1.
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The right side is continuous in (0, 1), hence \[/(x) is continuous in (0, 1) ; it now

follows that the right side is differentiable in (0, 1), hence \[/(x) is differenti-

ate in (0, 1), and

*'(*)*(*) + *(*)*'(*) = *(*)*'(*). 0 < x < 1,

4>(xW(x) = 0, 0 < x < 1.

y(x) = 0, 0 < x < 1,

^(*) = c, a constant 0 < x < 1.

<t>(x)i(x) = <;{</>(*) - 0(0)}, 0 á * I 1,

It follows that

or

Now from (8.5)

and for x = 1

0(1)0(1) = O = c{0(l) -0(0)};

hence e = 0. This proves Lemma 3.

Remark. If 0(0) =0(1), while the other assumptions of Lemma 3 hold, and

if g(t) is a continuous function for which f0l g{t)d^{t) = 0, g(0) * g(l), then

again ip(t) =0. We have as before \p(t) =c for 0 <t < 1 ; hence

f-g{t)d*{t) =c{g(0)-g(l)} =0,
•/ o

and c = 0.

Assume now that \[/(t) is normalized, that

(8.6) f   0„(¿)0(/)#« =0, « = 1, 2, 3, • • • ,

and

f #«) = 0(1) - 0(0) = o.
J 0

Thus 0(1) =0(0) =0. By Lemma 1, (8.6) can be written in the form

(8.6') f   $n(t)dv(t) =0, n = 1, 2, 3, •• ■ ,

where
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n(x) =      ¿W#«;

by Lemma 2, r¡(x) is a normalized function of bounded variation. If the

sequence is complete in C(0, 1), then (8.6') implies r¡(t) = 0. Employing

Lemma 3 and the additional remark, we now get the following theorem:

Theorem 13. Assume that the sequence {<j>n(t)} is closed in C(0, 1), that

4>(t) 9*0 and has a continuous derivative in (0, 1), that <j>(t) is continuous in

[O, l], and that 0(0)^^(1). Then the sequence

1, <f>{t)4>n{t), n = 1, 2, 3, • • ■ ,

is closed in C(0, 1). If <¡>(0) =<£(1), if g(t) is continuous and g(0)?«íg(l), then the
sequence

l,g(t),<t>(t)4,n(t), n = 1, 2,3,- • •  ,

is closed in C(0, 1) (<).

Special cases: Let

(8.7) ^(t) = 1,        <*>„(;) = f", n = 2, 3, • • • ,

(8.8) Ryn>0,       yv^jk,        Z  t   ,  V ., = °°-
1 + | 7. I2

It is known (see [8]), that under the assumptions (8.8) the sequence (8.7)

is closed in C(0, 1). Theorem 13 now yields:

Theorem 13'. If (8.8) holds, if <f>(t) is continuous in [0, l], <j>(t)j¿0, and

<f>'(t) continuous in (0, 1) and if </>(0)?,i<^(l)  then the sequence

1, <t>(i), <t>(t)P>>, n = 2, 3, • ■ • ,

m f/osed t« £7(0, 1).

In particular let (¡>(t)=(l-t)sh(t), 5 = 0, h(0)^0; assume that h(t) is con-

tinuous in [0, l], and has a continuous derivative in (0, 1). If (8.8) holds,

then the sequence

1,    h(t)(l-ty,    h(t)(l - I)*?", « = 2,3, •■• ,

is closed in C(0, 1). Thus the sequence

(8.9) 1,    A(/)(l - tY,    h(t)(i - t)H»-°, a g 1; n = 2, 3, • • • ,

is closed in C(0, 1).

Let 4>(t) =/A(0(log (1/(1 — /)))~l, where h(t) satisfies the conditions stated

(4) For a more general result with a different proof see a forthcoming paper by J. Korevaar

in the Duke Mathematical Journal.
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above;the sequence

(8.10) 1, h(t)f(log-^—Y, »-1,2,3,-    -,

is closed in C(0, 1).

Let 0(0 =f (log   (I//))',  8>0,  thus 0(0) =0(1) =0;  if we  put  g{t)=t,
4>n{t)=tn~l, n = \, 2, ■ ■ ■ , it follows from Theorem 13 that the sequence

(8.11) \,t, ¿"Hog— j, ô>0, «- 1,2, ••• ,

is closed in C(0, 1).

9. Application of the preceding results. Let

00

*fl(0 = 2 »"'"- 0áKl,-l<JJá2.
i

If we put t — e~', 5>0, Theorem 3 yields

00

e~' = 2 ß(n)nßkß(e-n«), s > 0,
i

or

00

* = J2ß(n)nakß(tn), 0 ^ < < 1.
i

If was proved elsewhere [5, II], that for — 1 <ß¿2 the series

00

(9.1) 2/'(»Mi - 0fl+1 **(*") = <(i - <)"+1
i

converges boundedly in 0^/<l, and the partial sums are bounded by

(l—t)ß+1kß(t) for all »; we have concluded in [5, II] that for any function

0(0 of bounded variation

¿/*(»)«' f   (1 - ty+1hitn)d^ =  f   /(l-0ff+1#-
1 J 0 J 0

J. Korevaar pointed out to me that this conclusion is incorrect, unless we use

the convergence of (9.1) in the closed interval to a continuous function. We

have mentioned however that this can be proved on using the prime number

theorem. In fact defining (l—t)ß+1kß(t) for ¿ = 1 by

lim (1 - ty+'ksit) - r(0 + 1),
«-»i

we get
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ros +1)
lim (1 - tY+lkß{tn) =

n>/9+1

and, for t — \, (9.1) becomes Z"M~V(«) =0. which is equivalent to the prime

number theorem.

More generally, we shall employ:

Lemma 4. Let a — 1, — \<ß = 2; the series

oo

(9.2) ZM(»)»pr"(l - ty+1kß(tn) = ^-«(1 - <)"+1
1

converges boundedly to a continuous function in the closed interval 0=i = l.

The partial sums of (9.2) are bounded by

r»(i - ty+*kß(t) = t-Ki - ty+ikß(t) = Quit),

say. It was shown [5, II, Lemma 5.1] that for 03:1, 0<<<1, Qß(t) is an in-

creasing function of /; hence

Qß(t) ú öfl(i) = ros + i).

Furthermore

t~lkß(t) =  f   (tu)-lkß+i(tu)du;

hence, for ß^O

trlkß(t) ^ T(ß + 2) I    (1 - tuyt-Hu = T(ß + \)t~x{{\ - t)~^1 - 1},

or

Qß(t) = r(/3 + Dr1 {1 - (1 - t)'»}, ß £ 0.

But ^{l-fl-*)*«} îl as iîl, hence

Qß(t) = ros + i), ß = 0.

Repeating this process we find easily Qs(0 = r(/3 + 2), ß> — 1. This proves the

lemma.

It follows that the series

00

Z n(n)nH-"(l - ty+1kß(fn) = <»-«(l - f)«+1, t> è 1; 0 á í g 1,
i

converges boundedly. Assume that h(t) j^O and has a continuous derivative in

(0, 1); then termwise integration yields
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2m(»)»s f r«(i - ty+lk(t)kß(t°n)dt = f i»-"(i - 0í+1a(0#.
1 «/ o «/ 0

M  =   1, 2,

Assume that

f   /—(l - Oß+1Ä(0^(i")# = 0,
«J o

then

(9.3) f   r—(1 - 0ß+1Ä(0# = 0, f = 1, 2, • • • .

We further assume that 0(0 is normalized,

(9.4) f   # = 0, f   (1 - ty+lh(t)dip = Ç
•/ 0 v o

and that «(0)^0. The sequence

1, (1 - oß+1«W, r-(i - ty+*h(t), v = 1, 2, • • • ,

being complete in C(0, 1) (see (8.9)), it follows that 0(0=0. We have thus

proved :

Theorem 14. Assume that «(0 ?¿0 and has a continuous derivative in (0, 1),

that h(t) is continuous in [0, 1 ] and that h(0) 5^0. Let a ^ 1, — 1 <ß ^ 2 ; then the

sequence

i, (i - ty+ih(t), r«(i - ty+ih(t)kß(t»), » = i, 2, • • • ,

is complete in C(0, 1).

For h{t) = {\— 0", PsïO, a = 0 (see [5, I, II]); there the second term was

omitted by an oversight. For p>0 this is clearly not permissible as then all

linear combinations in the sequence take on equal values at 0 and 1. This was

pointed out to me by J. Korevaar.

For a = l the second of the conditions (9.4) is included in (9.3). We thus

get the following theorem.

Theorem 14*. If ß and hit) satisfy the conditions of Theorem 14, then the

sequence

1, f->(l - ty+lh(t)kß(t»), n = 1, 2, 3, • ■ ■ ,

is complete in C(0, 1).

In particular (j3 = 0and /3 = 1) each of the sequences 1,((1 -t)tn~l/{\-tn))

•ft(0;l, ((l-02ín~7(l-í")2)«(0,« = l, is complete in C(0, 1).
While in [5] complex function theory was employed, the proof given here
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presents a simplification. However, the complex method permits some gen-

eralizations. If we put

/log 1//Y+1
0 < a = 1,

(9.3) becomes

ci /    i v+i
J    f-flog —)    #(/) = 0, f = 1, 2, 3, ••• .

Now A(0) =0; assume that

f   #(0 = 0, f    tó0(O = 0.

The sequence

1, t, F(log (l/0)'+1, f = 1, 2, 3, • • • ,

is complete in C(0, 1) (see (8.11)); this yields:

Theorem 14'. Let —1</3^2; the sequence

1-, i, (log (l/0)i+1^('n)., « = 1, 2, 3, ■ • ■ ,

is complete in C(0, 1).

Putting /3 = 0 or /3 = 1, and t = e~", we get the corollary. Each of the se-

quences

s •
1, e~',-> » = 1, 2, 3, • • • ,

e"' — 1

1, « ', ^-—' » = 1, 2, 3, •■ •.,
(en' - l)s

is complete in C(0, <»).

The extremal case ß = — 1 of Theorem  14 deserves separate treatment.

Now

» 1
2 n~Hn = log-, 0 ¿ / < 1,
i l-<

and Theorem 3 yields

/ = 2 — log
i    «       i — tn

We have
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n    u(v) 1 "~1 1 — /"+1
sn(t) - Z -log- =  Z M*dO log-ß*(n) log (1 - /»),

i       v 1 — V i 1 — f

where

furthermore

J!-.   ß(v)
M*(«) = Z—> \ß*W    ál;

i       v

1 - ¿"+1
log-> 0, 0 < / < 1,

1 - /"

hence

| sn(t) | á - log (1 - t), 0 g / < 1.

If h(t) is continuous in [O, l], then the series

"   ß(n)   log (1 - í") th{t)
l->-7~~Z-"T AW = ~

1 M log (1  - /) log (1  - /)

is boundedly convergent, and

-    ß(n)  log (1 - f) t"h(i)
Z-:-T.-r" htJ) =
x      n      log (1 - t) log (1 - t)

is boundedly convergent to a continuous function; here i>= 1, 2, 3, ■ ■ ■ . Now

termwise integration yields

«    ß(n)  r » log (1 - /<"•) /"      <•*(*)
^-I   1—7i-77 Ä(i)# = ~ I   1—77—Wd*;
i      «   J o    log (1 — t) Jo   log (1 — t)

assume that fod\¡/(t) =0, and

C ' log (1 - i»)

-7^-7:-r A(0<W0 = 0, » - 1, 2, 3, • • • ;J o     log (1 — t)

then

/' »      fh(t)
.h^rr**»-«'       .-1.2.V-.

If ä(0 satisfies the conditions of Theorem 14, then the sequence

tvh(t)

1.7—7:—r> »= 1,2,3, ■•• ,
log (I-/)

is complete in C(0, 1) (see (8.10)), hence the result:
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Theorem 15. // h(i) satisfies the conditions of Theorem 14, then the se-

quence

log (1 - f)
1, h(t), -j » = 1, 2, 3, • • • ,

log (1-0

is complete in C(0, 1).
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