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1. Introduction. Let f(z) be a function analytic in the (open) interior K

of the unit circle \z\ =1. Then/(z) will be called a function of class(1) Sa, if

there exists a real number a, a>l, such that the integral

(1.1) SDl«(/; r) = °^— f     f    (1 - r2)«-21 f(reu) \hdddr
IT       •/ 0     •'0

is bounded for 0 <r < 1. Since a >ß > 1 implies

p — i

class 5/s is contained in class Sa for every a>ß. The right-hand side of (1.1),

when expanded, is a function of r2 (cf. §2). It is convenient to set p=r2,

and consider 2)?„(/; p). This will be done in §2.

Let ank, k = \,2, ■ ■ ■ , n; n=l, 2, ■ ■ ■ , be a set of points preassigned on

K and having no limit point on K. Two sets a„* and bnu will be regarded as

equivalent if they are related to each other by a transformation of the form

(1.2) f = XT--' |X| - 1, |«| < 1,
1 — cz

that is, by a transformation which maps |z| ^1 conformally onto |f| ^1 so-

that z = c corresponds to f = 0. To each point ank will be assigned an order as

follows : ank is of order rrik if exactly ra& points in the set (a„i, o„2, • ■ • , aB,*-i)

coincide with ank.

Let b~k denote the operation of differentiating «j times with respect to

the parameter ank followed by evaluation at the preassigned point a„*. Let

ôk denote the corresponding operation with respect to ank. If ntk = 0, we define

Now let ank, \ank\ <1, and a, a>i, be given, and let the functions

_ <t>nk(z) = 1/(1 - änkZ)a

Presented to the Society, April 26, 1947; received by the editors October 18, 1946.

(') These classes are among the classes treated by G. H. Hardy in connection with deriva-

tives of fractional orders. Because Hardy's work has been inaccessible to the present writer

since the war, general properties of the functions considered here are discussed in §2.
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be defined by the infinite series

a(o + 1) ,
1 + adnkz H-—— (änkz)2 + • • • , I z\ £ 1.

Let/(z) be an arbitrary function of class Sa, and let/„(z) denote the function

of the form

n

(1.3) /»(«)   =   £ AMnkifi)
h-l

found by interpolation to/(z) at the n points ank, that is, by the requirements:

(1.4) &kfn(ank) = 6kf(ank), k — 1, 2, • • • ,».

Then the question arises : What conditions should be imposed on a„k in order

that, for every function f(z) of class Sa, the corresponding sequence of functions

fn(z) converges to f(z) on K, uniformly on every closed point set interior to K?

In a previous paper(2), the present writer has obtained some results in

the particular case where a = 2. The object of the present discussion is tó

generalize and, in some respects, to complete, the previous results by the

following theorems :

Theorem A. A sufficient condition is that the set ank be equivalent to a set bnk

for which(*)

(A) lim»-1 ni*.*!1 = 0.

The condition is also necessary if the set ank is equivalent to a set bnk such that,

for each sufficiently large n, the n points b„k are equally spaced on a circle

\z\ =rB,0<rB<l.

Theorem B. A necessary condition is that

n

(B) lim  III «»* I = 0.
»-♦"   k-l

The condition is also sufficient if 1 <a^2, and if the set a„k is equivalent to a

set bnk such that, for each sufficiently large n, the n points b„k all lie on a diameter

d„ of the unit circle \z\ = 1.

Whether the restriction a ^ 2 can be removed from the last part of Theo-

rem B is a question which the present writer hopes to be able to consider on

a later occasion.
-

(J) Yu-cheng Shen, Interpolation to certain analytic functions by rational functions, Trans.

Amer. Math. Soc. vol. 60 (1946) pp. 12-21.
(*) In formulas (A) and (B), any factor which is zero should be omitted.
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As will be seen in §2, the limit class Si consists of all those functions

f(z) =y^QnZ". \z\ <1, for which the series yi|a»|2 converges. Interpolation to

functions of this class by rational functions of the form (1.3) with a=l has

been treated by J. L. Walsh and other authors(4). This class is excluded from

the following discussion.

For the sake of simplicity, we shall write a* for a„* when » is fixed. Unless

the contrary is explicitly stated, it is understood that a> 1 is a fixed number.

2. Functions of class Sa- If /(z) =zn, w = 0, 1, • • • , then

2»a(z»; p) = (a - 1) f " (1 - p)*-*P*dPt 0 < p < 1.
J o

Since the integrand is positive, %Ra(zn; p) increases monotonically with p,

0<p<l. For an arbitrary function f(z) =]Cn-o öB2n, \z\ <1, we have

(2.1) SR.(/;p) = ¿2Ka(z";p)|aB|2, 0 < p < 1.
a—0

It follows that iSRaif; p) is nondeceasing as p increases. Hence if f(z) is of class

•Sa, SDÎa(/; p) has a limit W„(f) as p approaches unity. 9Ka(/) will be called the

norm of/(z) on UT. The norms of zn are

¿o"0 -a».(l) = 1;

w .       r(a)r(» + i) »!
c»    = SW«(« ) = -

T(a + ») a(a + 1) • • • (a + n - 1)

n - 1, 2, ••• .

For the function f(z) to belong to class Sa, it is necessary and sufficient

that the series

(2.2) C.W|«.|, + ¿") | *!'+•••

should converge. It is sufficient because, for 0 <p < 1,

(i) ma(f;p)^f:cna)\an\\
n-0

It is necessary because, for 0 <p < 1, and for arbitrary N,

¿ sro„(*n; p) I «. I2 á a»«a; p) ̂  a».(/),
n-0

(4) For interpolation to functions of this class and for the relevant literature, see J. L.

Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math.

Soc. Colloquium Publications, vol. 20, 1935. (This book has been inaccessible to the present

writer since the war.)
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and therefore

oo

(n) Z^KI'^^a).
n-0

It follows from (i) and (ii) that, if /(z) is of class Sa, (2.2) converges to

5Dî«(/). Moreover, since cna) (m>0) decreases with l/ct, a>ß implies 30î„(/)

^'ÜSlßif), whe're the equality sign occurs only when/(z) is a constant.

If we put a = 1 in (2.2), the series becomes £ | a„ |2. Hence the limit class Si

may be defined as consisting of functions/(z) for which this latter series con-

verges or, what amounts to the same thing, the integral

(2.3) „(/; p) = - f 2' | /(re«) | Hd, p = r\
L-K J 0

is bounded for 0 <p < 1. This is the well known class L2, and will be excluded

from the following discussion.

From the relation

°°   znt"
= £^7' M<i,Mái,

(1 - zt)a      B=0 C

it can be verified that the integral representation

a-i rr    (i-M*)~"VW
(2.4) /(») =- \\ U    JU dS, z   < 1,

■K       J  J |/|<1 (1   — Zt)a

is valid for any function/(z) of class Sa, or, more generally, for any function

/(z) analytic on K, and such that (1 —|z| 2)a_2/(z) is integrable on K.

We conclude the preliminary discussion by a couple of lemmas.'

Lemma. 1. For any function f{z) of class Sa which does not vanish identically,

the inequality

2«a(/)
/*(p) - m(/; p) < -—-— > 0 < p < 1,

(1 - p)-i

is valid (where ju(/; p) Aa5 the same meaning as in (2.3)).

For arbitrary p and p', 0 <p<p'^ 1, set

(2.5) M(p, p') = (a - 1) (1 - p)^2p(p)dp.
J p

Since/(z)?^0 implies lf(p, 1) <2)îa(/), it is sufficient to prove

M(p, 1)
(2.6) /i(p)â--—> 0<p<l.

(1 - p)"-1
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Subject (2.5) to the real transformation x = l — (1 — p)a~\ p = l

— (1— x)llia~1) (which reduces to an identity if a = 2). As p increases from 0

to 1, x does also. Thus (2.5) becomes

M*(x, x') =  f   p*(x)dx,

where x, x', M*(x, x') and p*(x) correspond to p, p', M(p, p') and /¿(p) respec-

tively. By the mean value theorem (which is applicable since p,*(x) is a con-

tinuous function in 0^x<\), and by the monotonie property of p*(x), we

have

M*(x, x') = (*' - x)p*(x") ^ (x' - x)p*(x), x < x" < %' < 1,

whence

M*{x, x')
P*(x) g

Since, for fixed x, this is true for arbitrary x', x<x'<l, we may allow x' to

approach unity:

M*(x, 1)
M*(s) g      / ■

1 — x

When this is transformed back to p, (2.6) results. The lemma is thus proved.

Lemma 2. Letf(z) be a function of class Sa, oc>l, which does not vanish at

z = 0, but does vanish at a¡, a2, ■ ■ ■ ,an, where 0< \ai\ á |a2| ^ ■ ■ ¿|ö*| <1.

Then

/(0)
/          a - l\n / n    V"1 .

< Í 1 +-j   Í 1 + ——)      I aia, ■ ■ ■ an \WJj).

The proof is based on a method which is due to Montel(6). Let r, 0 <r < 1,

be so chosen that the first k (0<k<n) points au at, ■ • • , a* are interior to

the circle \z\ =r. Set

k    r2 — äiZ

(2.7) *(*)=/(*) II
<=i r{z — a{)

Then <p{z) is analytic for \z\ < 1, and |<p(z) | = |/(z) | on \z\ =r. Hence

I *(0) I2 < — f     I *(«") N = /,(/; p), p = r2.

(') Paul Montel, Leçons sur les familles normales de fonctions analytiques et leurs applica-

tions, Paris, 1927, p. 185.
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It follows from (2.7) and Lemma 1 that

P* , , SR«(/)
I /(0) |2 <

(1 - P)-1

that is,

, a\a% • ■ ■ ük\2

\W>\t<LTr<——t2R«(/)-
p*(l - p)"-1

Since p^ ¡a¡|2 for i = k-\-i, k + 2, ■■-,», we have

. aiat ■ • ■ an 2

(2.8) /(0)2<^—-r-^-SB-C/).
p"(l - p)"-1

An inspection of the above argument reveals that (2.8) is valid for every p,

0 <p < 1 ; it is independent of the special manner in which r has been chosen.

Hence (2.8) holds also at any point p0 at which the function p"(l — p)"-1 at-

tains its maximum in the interval 0<p<l. The existence of po follows from

Rolle's Theorem, and its value is found to be unique and equal to n/(w+a— 1).

When this value is substituted in the right-hand side of (2.8), the result is

the inequality asserted by Lemma 2. The proof is complete.

3. The remainder/(z) —fn(z). In the case where the n points au o2, • • •, a„

are distinct, the determinant A„ of the system of equations (1.4) is equal to

(3.1) Dn = Dn(au a2, ■ • • , an; äi, â2, • • • , ä„) =
1

Since, by (2.4),

- 1 ff (1 - I ¿|2)"-2a- 1 Ç Ç (1 - | t\¿)°-¿

T    J J |,|<i   (1 - <z¿í)"(l - äjt)a
dS

(1 - aidj)"

(1 - Oiâj)"

it follows that A„ is the Gramian determinant(•) for the n linearly independent

functions

(a- 1)J'2(1 - |z|2)<"-2>/2
-1 i = 1, 2, • • • , ».

Tr^a - ätz)"

Hence A„>0, and the function/„(z) is uniquely determined for each ». The

remainder/(z) —/„(z) =Rn(z) is given by

(3.2) Rn(z) = "—— ff      (1-1 t |2)-2/Wr„(z; t)dS, \z \ < 1,

where

(') See Gerhard Kowalewski, Einführung in die determinantentheorie, 2d ed., Berlin and

Leipzig, p. 224.
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An+i(z; î)

(3.3) A„

A„+i(z; /) = Z)n+1(ai, a2, ■ • ■ , an, z; äu ä2, ■ • ■ , án, î).

The verification is immediate; the right-hand side of (3.2) is /(z) minus a

function of the form (1.3) and vanishes at z = ai, a2, • • ■ , a». In a similar

manner, it can be verified that, even if the « points oi, a2, ■ ■ ■ , an are not

distinct, (3.2) is still true, provided that A„ is interpreted as implying

A„ = 5B5n-i • • • 3i5„5n-i • • • 5iDn(ai, o2, • -• , a„; äi, dt, • • • , än)

and An+i(z; t) is interpreted in a similar manner.

On comparing (3.2) with a well known formula in the theory of orthogonal

functions(7), we see that/„(z) is also the unique function of the form (1.3) for

which the norm SD?a(/—/„) on K is least. Thus our problem of interpolation

to /(z) by fn(z) is equivalent to one of approximation to f(z) by fn(z) in the

sense of least squares—measured by surface integrals on K with respect to

the weight function (a — l)7r_1(l— | z| 2)a-i-

In particular, if /(z) = (1 — fz), where f, | f | <1, is a parameter, the corre-

sponding Rn(z) is precisely rn(z ; f). Hence rn(z ; f) is the unique function of the

form

(3.4)-—- + ¿ AnklnkOk
(1 - fz)a k-1 (1  - Ontz)"

whose norm on K is least. This norm is given by

(3.5) aßa(fn(z; ?)) = '„(i"; ?),

as can be verified by multiplying 7r-1(« —1)(1 — \z\ 2)a_VB(z; f) by the con-

jugate of (3.4) and integrating. Furthermore, r„(f ; f) ^ 1 — | f 12)~a.

Now, applying Schwarz's inequality to (3.2) and using (3.5), we have

(3.6) | Rn{z) |2 ú ma(f)r¿z;z) £     ^f] | z | < 1.
(1 - |z|2)«

Thus the study of Rn(z) is reduced to a study of rn(z;z).

4. The invariant form of rn(z; î). The determinant Dn in (3.1) is analytic

in the 2« independent variables o<, dt in the region R: |o,| <1, |â,| <1,

i = 1, 2, • • • , ». As a function in a¡, it vanishes at ai = a2, ait ■ ■ ■ , a„. Hence

n

^»=•^111(01-^).
t-2

where Fi is analytic in R. Continuing the process, we arrive at

O Gerhard Kowalewski, ibid. pp. 227-229.
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Dn = F2n.tPnPn, P» = II (at - a,),

where Ftn-t is analytic in R. From this we deduce

An - Ftn-t | S„5»-l • ■ ■ W» | 2,

and similarly

AB+1(z; t) = $2„(z; Ï) | 4A-i • ■ • «iP. |2 f[ (7-~) (7-~) ■
t-i M — dtz / \ 1 - dtt /

Thus r„(z; t) can be written in the form

(4.1) rH(z; I) = An(z; t)Bn(z)Bn(t),

where

An(z; t) = —-,        5B(z) = H
»-i  1 — dtz

Since the symbol 5 does not appear in the right-hand side of (4.1), this formula

has the advantage that it is not affected by the coincidence of some or all of

the » points o<. Another advantage of (4.1) is its invariant property under

(1.2), which can be conveniently stated as follows:

Lemma 3. If the »+2 points au a2, ■ ■ ■ , a„, z, t on K are transformed by

(1.2) into bi, bt, ■ ■ ■ , bn, f, t, then

(4.2) (1 - zi)«r„(a, z; d, t) = (1 - &tjp, f; 5, f)

{where we have introduced new notation for rn(z; t) to indicate to which set of

points it corresponds).

This can be verified as follows. In the first place, Bn(z) is invariant under

(1.2). Secondly, when the a's are distinct, and the a's and the b's are differ-

ent from zero, the invariance of (1— zt)arn(z; t) follows from (3.3) and the

relation

1 - lcl2
1 - btbi =-——-—■ (1 - ata,).

(1 — ca,)(l — ca¡)

Hence, when the a's and the 2>'s are restricted as above, the function

(1 - zt)"rn{z; t)      (1 - zi)a*2n(z; t)
(1 - zt)"An(z; t) =

Bn(z)B„(t) Ftn-t

is invariant under (1.2). Since the forms of Fin-t and i>2„(z; Î) are not affected

by the removal of the above restriction, the invariance of (1 —zí)Mn(z; Í) sub-

sists in the general case. This can be justified by a limit process. Lemma 3

is thus verified.
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Lemma 4. For any n + í fixed points ai, at, ■ ■ ■ , a„ and t on K, the corre-

sponding function An{z; T) satisfies the inequality:

MT /   ae  \a-1

In virtue of the invariant property of (1 — \z\ 2)aAn(z; z), it is sufficient

to consider the case f = 0. If the a's are different from zero, then, by applying

Lemma 2 to the function <p(z) =An(z; 0)Bn(z), and by observing that

Wla(<b) = ¿„(0; 0),

we have

An(0;0) <(l +-)     1 +
n   y

a- 1/

The case where some of the a's are zero can be readily disposed of by limit

process. In each case, we have

(ae   V-1

because «2:1 implies

/       a - IV

(1 + —)

n an
< e"-\ 1 -|-:S -

a — 1      a — 1

The proof is complete.

5. Proof of the first part of Theorem A. We are now in a position to prove

the first part of Theorem A. Let /(z) be an arbitrary function of class Sa,

and Rn(z) the corresponding remainder. Then, by (3.6)

, , SW«(/)

It follows that the functions Rn(z) form a normal family on K. From every

subsequence of Rn(z) can be extracted a subsequence Rni(z) which converges

to an analytic function R(z) on K, uniformly on any closed point set on K.

To prove the first part of Theorem A, it is sufficient to prove that, under con-

dition (A), every such limit function R(z) is identically zero. For simplicity,

we shall take Rn(z) for i?n<(z).

Let b„k be the set of points which satisfies condition (A) and into which

the set a„t is transformed by (1.2). Let i?*(f) and i?n*(D be the transforms

of R(z) and Rn(z) respectively. By (3.6), we have

\Rn{z)\2úma{f)rn{a,z;a,z),

where we have changed the notation to that in Lemma 3. But, by Lemma 3
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and Lemma 4,

/i - |f |2\°
rn(a, z; ä, z) = (-¡—r- ) rn(b, f ; 5, f)

\1 —   z V

M
na~l\ 3B(f)|2, |r|<L

(i-M2)

and, by (1.2),

1 X + cf2 1 + \c\ 1 ,    ,
<-rr-!—ft'      f   < !•

1-|2|2     (l-|c|2)(l-|f|2)

Therefore

\1 - | c\l (1 - |f |2)"

Now suppose that R(z) ^0. Then i?*(f) ^0, and consequently there exists

anr,0<r<l,such that |.R*(f)| has a positive minimum won the circle |f | =r.

Hence, for «sufficiently large, |i?n*(f)| >w/2on |f | = r. In order to arrive at

a contradiction, three cases are to be distinguished.

First, suppose that there exists an n0 such that »>»0 implies \bnk\ >r.

Then, since -BB(f), »>»0, does not vanish in |f|"ár, |-Bn(f)| attains its mini-

mum in |f| ^r at a point f„ on the circle |f | —r:

| -B„(fn) |   < | Bn(0) |   = | bnlbnt •  •  •  Kn \ ■

Hence, at f = f„, (5.1) becomes

,        s I      * I /I  + I c |\°    MTlaif) AI
(5.2) |i?!(fn) 2<( —fl)   -—^»^n *.

\1 - \c /    (1 - r2)a *_!
*l2-

The right-hand side, by hypothesis, approaches zero with 1/w. It follows that,

for » sufficiently large, |i?n*(f«)| <m/2. This is a contradiction.

Secondly, suppose that there exists k0 such that k>k0 implies \b„k\ >r.

In this case, we simply omit the first k0 factors (f — b„k)/(l — fink), k = l,

2, • • • , ¿o, from 5„(f), and repeat the above argument. This leads to the in-

equality

(i.«      |Ä.)i-<(f±|4Y^t.-n i»..k\1 - | c|/    (1 - r2)"        k.k,+i

which differs from (5.2) only by the product | ¿>„i¿>„2 • • ■ bnkt\ 2. This product,

when it appears in condition (A), can not be zero, because, by definition, any

zero factor should be omitted ; nor can it approach zero, because the points

bnk have no limit point interior to the unit circle. Hence condition (A) im-
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plies that the right-hand side of (5.3) approaches zero with 1/«, and we arrive

at a contradiction as before.

Finally, there remains the (trivial) case where ki exists so that, for « suffi-

ciently large, at most ki points £>„* are exterior to |f | =r. Since | &„*| ;£r im-

plies

S-b. nk

1 - f5„* i + 'kl in <i.

it follows that, for |f | =r, the right-hand side of (5.1) is of an order not higher

than

-Kit?)
2n-2¡fc,

But this quantity approaches zero with 1/», and again we are led to a contra-

diction. The proof is complete.

6. Computation of r„(0 ; 0). To prepare for the proof of the remaining part

of Theorem A, let us compute the value of r„(0 ; 0) for the set

(6.1) bk = rxk,       Xk = ei2l"r,n, k = 1, 2, , »•

For this purpose, the so-called cyclic determinant can be used to advantage.

A cyclic determinant is one of the form (8)

(6.2) C =

Cl     C2 • ■  • Cn

C2      Cg •  • •  Ci

Cl Cn-1

whose value is given by

(6.3) C = (- l)(-'H»-2)/7(^)/(^) . . . /(*„),

where

/(*) — Cl + c2x -t c3x2 + • • • + c„zn_1,

Xi, xt, ■ ■ ■ , xn having the same meaning as in (6.1). Since we have to make

some alterations in (6.2), it is appropriate to indicate the proof of (6.3). Set

1      Xi     Xi

x2    x2

1    xn    xn

n-1
• Xi

n-1

• Xt

(') Gerhard Kowalewski, ibid. pp. 105-107. See the literature at the end of the book, p. 300.
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and perform the multiplication CV row by row. The element enk in the Ath

row and the &th column of CV can be reduced to the form xl~h+lf(xk). This

reduction depends on the periodic property of the x's only; it does not involve

any transformation of the matrix of CV. Thus

(6.4) CV =

Xlf(Xl) X2f(x2)        •  ■   ■   X„f(Xn)

Xl     f(Xl)       Xt"    f(Xt)   ■   •   ■   Xn    f(Xn)

Xlf(Xl) Xif(Xt)        ■   •   ■   Xnf(Xn)

which, when simplified, gives (6.3).

Now, if we replace the last row of C by 1, 1, • • • , 1, and denote by C*

the determinant thus obtained, the product C* Vis also of the form (6.4) ex-

cept that the last row becomes 0, 0, • ■ -, 0, ». Since *n = l, and (*i:*:2 • ■ x„)2

= 1, we have

C*V = nf(xi)f(xt) ■ ■ ■ /(*„_!)

n—t n—3

*1 Xl

n—t n—3
X2 Xi

n—t n—t

a;n_i    z„_i • ■ • 1

When V is divided by the determinant on the right-hand side, the result is

found to be(9)

(_ 1)(—l)(n-l)/*(l _ Xl)(1 _ Xt) . . . (i _ Xn_j = (_ 1)(»-lK»-2)/2w-

Hence,

C*  =   (-   1)<-»<"-»'*/(*)/(*,)   •  --fiXn-l),

and, if 6V0,

C* 1
~C

/(I)

Now proceed to compute A„ = Dn{bi, b2, ■ ■ ■ , bn; 5i, bt,

Since hbk =   r2xhxk = pxin+k~k, p = x2 , we have

5») (cf. §3).

An   =

Cn Cn-l

Cl        c„

Cl

c2

Cn— 1      Cn—2 '   '   '   Cn

Ck  =

1

(l - pxk)a

(') For the various expansions of V, see Gerhard Kowalewski, ibid. pp. 39-40.
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Let A„» denote the determinant obtained from A„ by replacing the Ath row

by 1, 1, • • • , 1. We note that

A„i = A„2 = • • • = An„.

For, if (when A>1) we shift the rows of A„n so that the first, second, • • • ,

(A —l)th rows becomes the »th, (w —l)th, ■ • • , (« —A+2)th rows respec-

tively, and then shift the columns in the same manner, A„* becomes A„i. On

the other hand, if we shift the Ath row of A„, to the »th row, the result is

(-1)-*AB1

With these observations, we can readily expand A„+i(0; 0) according to

the last column:

Hence

An+1(0; 0) = A„ + E (- 1)"+1+A(- l)"-*ABi = A„ - «Anl.
A-l

wAnl »A„
r„(0; 0) = 1- = 1

A« A„

Since A„ differs from C in the same way as A„„ from C*, we conclude that

(6.5) rn(0;0) = 1 --^-,

where

/(I)       1 A 1 .      A «(« + 1) • • • (« + *» - 1)   ,

« n k-i   (1 — pXhY t-i (kn)\

This is the value of r„(0; 0) desired.

7. Proof of the second part of Theorem A. Let the given function be

(1 — cz)~a, where eis the constant in (1.2). At z = c, the corresponding remain-

der is

rn{b, 0; 5, 0)
rn(a, c; a, c) = —-,    ,        •

(1 -|c|2)a

Since rn(b, 0; b, 0) is invariant under rotation, we may assume that the »th

point bnn is real and positive. Then the value of rn(b, 0; 5, 0) is given by (6.5)

with p =pB. In order that the remainder approaches zero with 1/«, it is neces-

sary that

(7.1) lun   -■-P„ = 0.
n-*<o til

To prove the second part of Theorem A, we need merely to prove the equiva-
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lence of (7.1) and (A), or, what amounts to the same thing, to prove that

a{a + 1) • • • la + « - 1)
(7.2) log   —---^- - (a - 1) log »

»I

remains finite as » increases. Since

a(a + 1) • ■ • (a + » - 1)

1-2 ••• »

and since

-(*+=rO('+ir)-(*+sr>

and

A2
A > log (1 + A) > A-, 0 < A < 1,

(7.2) lies between the two numbers

(« - 1) [ p \ - log »]

ia-1)L£T""togBJ——£p'

Both of these approach finite limits. The proof is complete.

8. The case of simple sequence a„. In the case where a„k = ak for all »

and k, we state a theorem which is an obvious extention of a theorem given by

Walsh(10) in connection with interpolation to functions of class Z2. The proof

is omitted.

For an arbitrary set a„ preassigned on K, and for a given function f(z) of

class Sa, a>l, the corresponding sequence fn(z) converges on K, uniformly on

any closed point set on K, to a function g(z), which is characterized by the fact

that, among all functions of class Sa which coincide with f(z) at the points a„,

g(z) is the unique one whose norm on K is the least. In particular, we have:

The function 0„a)(z) defined by(u)

/0 ,. («>.,      rn"(z;t)      An* (z; t)Bn(z)
(8.1) <f>„   (z) =-= -

r<»\t;l)       An°\t;t)Bn{t)
n

is the unique function of class Sa of least norm on K which vanishes at

ai, at, ■ ■ ■ , a„ and takes on the value unity atz = t.

In the last statement, it is tacitly assumed that t is distinct from the a's.

(10) See the book mentioned in footnote 4, §10.7.

(u) Since we are going to consider how r„(z; z) varies with a, superscripts are introduced

to indicate to which value of a the function rn(z; z) corresponds.
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If t coincides with k of these points, the factor Bn(t) in (8.1) should be re-

placed by Blk)(t), the &th derivative of Bn(z) at the point z = t. With this un-

derstanding, we proceed to establish the following lemma.

Lemma 5. Let »+1 points «i, a2, • • • , a„, t be preassigned on K. Then

{\) for fixed a, ct>\,Ana)(t; t) increases monotonically withn;and(2) for fixed »,

An^{t; t) increases monotonically with a, a>l.

To prove (1), let ^(z) and 4¡£Li{z) be defined as in (8.1), and let

(«)        z — an    1 — dnt
lAn(z)   =  *n-l(z)-

1 — a„z   t — an

Then cpi,a)(z) and ^B(z) both vanish at ai, a2, ■ • • , a„ and both take on the

value unity at z = t. Further, we have

(a) 1
2R«(*.  ) =

aw.(w <
1 - <U

< — On
a»«(*Lo =

4iä(<; i) I Bn(t) |2

Statement (1) then follows from the minimum property of <pna)(z; /).

To prove (2), let ß>a>i, and define 0Ía)(z) and ^'(z) as above. Then

both of these functions belong to class Sf, and both vanish at au a2, ■ • • , a«

and equal to unity at z = t. Because of the minimum property of ^>S"(z), we

have

WlßtiT)   ̂  mßi^)   á Wlaitn").

The first equality sign occurs when ai = a2= • • • =a„ = f = 0, for then

<pna)(z) =tpn\z)=zn/n\. But the second equality sign cannot occur, because

#•(**) is not a constant (cf. §2). Hence

which implies

mß(<Pn})   < SOU«»00),

An"\f, t) < A?{t; Î).

This completes the proof of Lemma 5.

9. Proof of Theorem B. We begin with the remark : If one of the two equiv-

alent sets a„k and bnk satisfies condition (B), so does the other. For, (1.2) gives

(1 -|z|2)(l -|c|2) .    . .    .
i — IrIa = -— '   . ,2'     >    |z|<i, |c|<i.

1 — cz\2

Since
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l-\c\        l-\c\2   <l + \c\

1 + 1 «I       |l-cz|2      1 — I c| '

we have

1 — I cI .   . .    .       1 + |c| .
—■[-|(l-|z|2)<l-|f|2<--^-(1-|2|2).
1 + | c\ 1 - I c\

Hence the divergence ofH£_!| ant|2 implies the divergence ofHJ_x| bnk\2, and

conversely.

To show that condition (B) is necessary for every set a„*, we may assume

that ank t^O. For, the general case can be brought into this case by a transfor-

mation of the form (1.2), and it follows from the above remark that, if (B)

is necessary for the new points, it is also necessary for the original points.

Choose/(z) = 1. Then the corresponding remainder is ^"'(z; 0). At z = 0, we

have, by Lemma 5, (1),

¿a\0; 0) - | Bn(0) \2An"\0; 0) > | Bn(0) \2A¡a\0; 0).

Since, by direct computation,

,ca>                l-q-laml2)^   4
Ai   (0;0) =-¡-r--> 1,

| ßnl|2

the necessity of condition (B) follows.

Turn to the sufficiency part of Theorem B. For a —2, this is true(12). An

immediate consequence is that r^iz; z) converges to zero at every point z,

| z| < 1. For, with fixed z, r„ (f ; z) is the remainder corresponding to the func-

tion 1/(1—fz)2. Since this remainder converges to zero for |f| <1, it con-

verges to zero at f = z.

Now let 1 <a<2. In view of (3.6), and in view of the fact that the func-

tions Rn(z) form a normal family interior to the unit circle, it is sufficient to

prove that rna)(z; z) converges to zero for every fixed z, |z| <1. By Lemma 5,

(2), we have
ta) it) i      i

An   (z; z) <An  (z;z), 1 < a < 2, | z | < 1.

Therefore

fn\z; z) á rn\z; z), 1< a < 2, | z\ < 1.

Hence, at every fixed point z, \z\ <1, r„a\z; z) converges to zero uniformly

for 1 <ai£2. The proof is complete.

10. Addendum. In what follows, we shall remove the restriction a^2

from Theorem B.

(u) This is proved in the paper referred to in footnote 2.
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Let r denote the circle r = cos 6 in the z-plane, z = reie. Then we have

|z|2 + | 1 -z|2 = 1, zonT.

Hence

ll-zl2

1-   z
= 1 +   z   < 2, z on r, z ?* 1.

Let zo be any point interior to T, and let z be one of the points at which T

intersects the circle |z| = |z0|. Then 1 — |zo| =1 — |zi|, 11— z0| <| 1—zi|, and

we have

|l-z|2
(10.1)-r—r- < 2, z interior to T.

1-|*|

Lemma 6. Let f(z) be a function which is analytic for \z\ <1, satisfies the

condition

(10.2) \f(z)\< n    M{    ..   » |*| <1
(\-\z\y

(where M>0, a>0 are constants), and vanishes at the points a¡, at, • • ■ , an

interior to T. Then, for z interior to T, we have

. 2"M "     w — wk
(10.3) |/(z)[ = r— II:-~

(1 — I z| )* k-l   1  -  WkW

where

(10.4) w - 2* - 1,

(10.5) wk = 2ak - Í, k - 1, 2, • • • , ».

From (10.1) and (10.2), we have, for z interior to T,

| (1 - z)*'/(*) I < i/    |    it  M < 2'M-
(1-1*|)#

The function on the left-hand side, when suitably defined, is analytic interior

toT.

Now transform the z-plane by (10.4), by which V: \z — l/2\ =1/2, or

r = cos 6, goes into the circle \w\ =1 so that their centers correspond to each

other. Let F(w) denote the transform of/(z). Then

1/1 - w\2'

|(—) F{W)
< 2'M, | w J < 1.

The function on the left-hand side is analytic and bounded for \w\ <1. Since

this function vanishes at the points wk given by (10.5), an application of the
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generalized form of Schwarz's lemma gives

i/i - »y , s

When the left-hand side is transformed back to z, inequality (10.3) follows.

The proof is complete.

Remark. Let T(6) denote the circle which can be brought into coincidence

with r by a rotation z'=ze~i>, 0<0<2ir. Then Lemma 6 remains valid if we

replace T by T(8) and replace (10.4) and (10.5) respectively by

w = 2ze~ie — 1, Wk = 2ake~i> — 1.

Proof of the second part of Theorem B (without the restriction a = 2). In

view of the proof of the first part of Theorem A, it is sufficient to consider the

case where the points ank have the property that, for each r', 0 <r' < 1, there

exists N such that n>N implies |a„&| >r'. For convenience, we divide this

case further into two sub-cases: (a) ank = bnk, and (b) the contrary case.

Case (a). For obvious reasons, we may assume that, for each sufficiently

large », the » points a„* are not only on a diameter, but on a radius, of the

unit circle |z| =1. Choose r' = 1/2. Then, for » sufficiently large,

ctnk = rnke"»,      1/2 < r„k < 1, k «■ 1, 2, • • • , ».

Now repeat the argument set forth at the beginning of §5 up to the point

where a sub-sequence Rni(z) of the sequence Rn(z) converges to a limit func-

tion R(z), uniformly on any closed point set interior to the unit circle. Here

again we take Rn(z) for Rni(z)- And again we are to prove that, under condi-

tion (B), any such limit function R(z) is identically zero.

Suppose that R(zjjàQ. Then there exists r0, 0<r0<l/2, such that |i?(z)|

has a positive minimum m on the circle \z\ ■ r0, and therefore for » sufficiently

large, |i?B(z)| >m/2 on |z| =r0.

But, by (3.6), we have

(10.6) |Ä„(«)|<--r-r—, M2 = 2Ka(/), 1*1  <1.
(i-|*l r

Since Rn(z) vanishes at ank, we have, by Lemma 6 and the remark following it,

2aM       "

(10.7) | Rn(roe<>») \ =-— Ü
(1 - r0)2a *_i

where 0>w0 = 2ra— 1, 0<w„¿ = 2r„t —1. Set x<¡= —w0. Then the product on

the right-hand side of (10.7) is equal to

i      yy/ xo + w„k\      " /     (i - *o)(i - wnk)

Pn k-1 \1  + XoWnJ i_l\ 1   + XoWnk

= 2'MlI
*=1

W —  Wk

WkW

w\<\.

Wo —  Wnk

1   —   WoWnk
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Since —log (1— A)>A, 0<A<1, we have

A   (1   -   *»)(!   -   Wnk)   ̂     l-«Df,
log P. > 2--r~,-> —— lu (1 - »»*)

*_1 1  +  X0M>„fc 1   +  *0 k-l

1  - *0 A
= 2——E (i-'-»)•

1   +  *0 *_1

Hence condition (B) implies that Pn becomes infinite with », which, in turn,

implies that, for « sufficiently large, |Pn(/oe'9")| <m/2. The contradiction

completes the proof for case (a).

Case (b). This case can be reduced to case (a) without difficulty. For, on

the one hand, (1.2) transforms (10.6) into

*     .       /I +   c V M

because

and

*   =
f + Xc

X + cf

f   + \c\

1 +
f   < 1,

i + Mm      ^ i + M     i |f| < i.
__-^-r-„-_-.        <        -,-;-, ' .-7-      t

i-l*l ~(i-|c|)(i-|r|)   l-Ul i-|f|
On the other hand, if condition (B) is valid for the set a„k, it is also valid for

the equivalent set bnk. Hence the argument used in case (a) can be repeated

with only formal modifications. The proof is complete.

We remark that Lemma 6 contains a little more than is necessary for the

proof of Theorem B. In fact, that lemma enables us to establish the following

theorem.

Theorem B'. If a>\, and if the set ank is equivalent to a set bnk, such that,

for each sufficiently large n, the n points b„k are interior to a T(6n), then a suffi-

cient condition is that

n

lim  II I 2*,**-^ - 11 = 0.
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