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Introduction. The study of the homology properties of topological spaces

by means of coverings, first clearly formulated by Cech [3](1), has been suc-

cessfully applied to compact spaces by(2) him and other topologists. The

large body of theory which has grown up around this work, however, deals

almost exclusively with finite coverings, and these alone are not a sufficient

tool for non-compact spaces. This was graphically demonstrated by Dowker

[4], who showed that under finite coverings the linear continuum has non-

bounding one-dimensional Cech cycles. Essentially the trouble is that we can-

not expect to make a thorough analysis of a topological space, as far as ho-

mology is concerned, without using a complete family of coverings; and for a

non-compact space the finite coverings do not form a complete family.

Thus, if we are going to extend our studies to spaces other than the com-

pact, a basic problem in the study of each type of space will be to find the

simplest possible complete family of coverings for that type. In the present

paper we take up the class of separable metric spaces. Since these include all

the subsets of Euclidean spaces, they constitute a large and important collec-

tion. The finite coverings of course do not form a complete family for such

spaces. Next to the finite, the simplest coverings are the countable star-finite,

and we show in §1 that these do form a complete family.

In §2 we consider Cech cycles on compact subsets of a separable metric

space, and compare the property of bounding on a compact subset with the

(more general) property of bounding in the space as a whole. We obtain a

topologically invariant type of bounding for Vietoris cycles which is equiva-

lent to the latter. In §3 we consider the question of obtaining the homology

properties of an arbitrary subset A of a separable metric space R by means

of open sets of R. As is well known, if A is closed in R, we can obtain all the

homology properties of A by using coverings of R and considering the parts

of such coverings which meet A. If A is not closed, this is no longer true. As

is shown in §3, the general solution is to use not coverings of R but coverings

of all the neighborhoods of A in R.
In §4 we establish the isomorphism between the Cech homology groups

Presented to the Society, April 18, 1942, under the title Homologies in metric separable

spaces; received by the editors August 30, 1946.

(l) Numbers in brackets refer to the references cited at the end of the paper.

(') A space R will be called compact if for every covering of R by open sets, there is a finite

number of the open sets which covers If.
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and the classical homology groups of an infinite complex. We then show that

if A is an arbitrary subset of a polyhedral complex, its homology properties

can be studied by means of singular cycles in the neighborhoods of A. We

also obtain the important property that a Cech cycle on a compact subset of

A bounds in A if and only if it bounds on some compact subset in every

neighborhood of A. In §5 we study the duality properties of arbitrary subsets

of the «-sphere. We obtain generalizations of the Alexander duality to such

arbitrary subsets. Using these we also obtain some relations between the di-

mension of an arbitrary subset and the homology properties of its comple-

ment, including the accessibility of its points from the complement. In §6 we

show that if A is an arbitrary subset of the «-sphere, the (« —l)-dimensional

homology properties of A can be obtained by considering only finite cover-

ings of A.

1. The covering theorem. By a covering of a topological space R, we shall

mean a collection 11= { U\, where the ¿7's are open sets of R and \JU=R.

The t/'s are called elements of U. Unless otherwise stated, there will be no re-

striction on the number of elements in a covering. Given the covering

U = { U\, a covering S3 = { V] is called a refinement of U—in symbols 33 > tl—

if every V is contained in some U. A collection of coverings {tl'} is called a

complete family of coverings for R if for every covering U there is a U'>11.

A covering is called finite if it contains only a'finite number of elements.

It is called star-finite if each element intersects only a finite number of the

elements. A finite covering is of course star-finite. Finally, a covering is called

countable if it contains a countable number of elements(8).

Theorem 1. The countable star-finite coverings form a complete family for

separable metric spaces.

Proof. By Urysohn's metrization theorem, a separable metric space is

homeomorphic to a subset of the Hubert cube, which is a compact metric

space. It is therefore sufficient to prove the theorem for an arbitrary subset

of a compact metric space. Let R be a compact metric space, A an arbitrary

subset of R, and tl= { U\ a covering of A by open subsets of A. For each U,

let U' be an open subset of R such that U'(~\A = U. (For example U' might be

defined by U' = R — Closure (A — U).) Then G=l)U' is an open subset of R

containing A, and U'= { U'\ is a covering of G.

We shall first obtain a countable star-finite covering of G which is a refine-

ment of U'. If G is closed in R, we simply apply the Borel theorem. If not, it

is the union of an expanding sequence of open sets, G=\J¡°.0Gi, such that

StCG.+i (we shall take Go = 0). For each i > 0, G< is compact and contained in G.

Therefore it is covered by a finite number of the U'; denote them by

U'a, • • • ,   %w.   Let

(') By countable we shall mean finite or countably infinite.
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Then { F¿} (t = l, 2, • • • ;j = l, 2, • • • , »(«')) is the required countable star-

finite refinement of U'. Let us denote it by S3' = { V'm}.

Now let Vm— V¡„C\A. Then 33= { Vm\ is a countable star-finite covering

of A which is a refinement of U. This completes the proof.

Two coverings, 11= { U\ and 33 = { V], will be called isomorphic if there

is a one-to-one correspondence between their elements such that if TJ\, • • •, Uk

are the images of Vi, • • • , V~h respectively, then f)?-i ¿7^0 implies DÎ-i^«^0,

and conversely. Given a covering U= { U\, by U we shall denote the closed

covering { U). A covering U such that U is isomorphic to U will be called

closure-isomorphic.

We now demonstrate a stronger form of the covering theorem.

(1.1) The closure-isomorphic, countable, star-finite coverings form a com-

plete family for metric separable spaces.

This is a corollary of Theorem 1 and the following theorem.

(1.2) If a topological space R is normal and U is a countable star-finite cover-

ing of R, then there is a covering S3 > U which is closure-isomorphic and isomor-

phic to U (hence S3, 93, and U are all isomorphic).

Proof. Let U = { i/<}. We shall obtain a covering 93 = { V{} such that

(i)  TiCUi,
(ii) if n?.it/<o-) 9*0, then f)¡.iVi(/)^0.

Then 93 will be the required refinement. We define the elements of S3 induc-

tively, f/i intersects only a finite number of the rest of the £/,-, therefore there

is only a finite number of nonvacuous intersections of the form

Ui H Uta* r» • • • H Uilh)       (i(i), • • • , »(A) running through 2, 3, • • • ).

Denote these intersections by G¡ (j = í, • ■ ■ , t) and let XjÇzGj (j = l, • • ■ , t).

The set (f/i — UiVii/j)W(Uj_ix:y) is closed and lies in U\. Therefore, from the

normality of R, it is contained in an open set V\ such that Vid. Ui. The cov-

ering { V\, Ui, i/j, • • ■ } is obviously isomorphic to U.

Now assume we have defined V%, • • • , V„-isuch that VíQUí (i = 1, ■ • • ,

« —1) and the covering

(iii) {Vlt--- ,7-1, Un, Un+u- ■- }

is isomorphic to U. We then define Vn relative to Î7» and (iii) by the same

method we used in defining Vi relative to Ui and U. We thus obtain a covering

{ Vi} satisfying (i) and (ii), which proves the theorem.

2. General bounding and compact bounding. In the homology theory of

this paper, all coefficients will be from some fixed field, and except when it

becomes necessary, no mention is henceforth made of the field of coefficients.



1947] HOMOLOGY PROPERTIES OF SUBSETS 251

Let R be a topological space and 11 a covering of R. We shall denote the

nerve(4) of U by K(U). We shall speak of chains of K(VL) as chains of VL,

and of homologies in K(U) as homologies in U. We shall restrict ourselves

entirely to finite chains and cycles. If 93 >U and it is a projection of ÜT(93)

into K (U), we shall say that it is a projection from 93 into U. If Z*(93) is a cycle

of 93, we shall denote its projection in tl by 7rZ*(93).

A C-k-cycle, or k-dimensional Cech cycle, will be a collection C= {Z"(\X)},

where U runs through all the coverings of R and for every 93 >U and it a

projection from 93 into U, irZk(2ß)~Zk(1l) in U [3]. Ck will be said to bound, or

be homologous to zero, in R—in symbols, C*~0 in R—if Zk(]X)~0 in U for all

coverings U of R. As is well known, we may restrict oursehes, in the above

definitions, to members of a complete family of coverings.

Now let A be a subset of R. If U= { U\ is a covering of R, the collection

of those elements of tl which intersect A will be called an external covering

of A, with the understanding that Z7o, ■ • • , Uk form a simplex in the nerve

of this covering only if DÎ-oiA- intersects .4. We shall speak of the chains in

this external covering as being on A, and similarly for the homologies. The

set of all external coverings of A gives us Cech cycles, which we shall call

Cech cycles on A. If a Cech cycle on A bounds in all the external coverings

of A, we shall say it bounds on A. It is easily shown (6) that if A is closed in

R, these Cech homology groups defined by the external coverings are iso-

morphic with the usual ones, that is, those obtained by coverings of A made

up of open subsets of A—the latter we shall call internal coverings.

In particular, if R is metric and A is a compact subset, the ¿-dimensional

Cech homology group of A obtained by external coverings, the one obtained

by internal coverings, and the ¿-dimensional Vietoris homology group [l,

chap. IV, §5 ] of A are all three isomorphic, for all k. We shall call a Cech cycle

given for such a set A by external coverings, a corresponding one (determined

up to a homology) given by internal coverings, and a corresponding Vietoris

cycle (also determined up to a homology) counterparts of each other. In general,

we shall not distinguish between counterpart external and internal Cech

cycles; that is, we shall merely write C*= (Z*(tl)}, and let tl run through

both external and internal coverings. It should be noted that only Cech cycles

on compact subsets of R have Vietoris counterparts. We shall call a Cech cycle

which is on a compact subset of a space a compact Cech cycle. (As opposed to

this, if we are not concerned with whether a Cech cycle lies on a compact set

or not, and wish to emphasize this, we shall refer to it as a general Cech cycle.)

(4) Given a covering of a space, the nerve of the covering is the abstract simplicial complex

defined as follows: Every element of the covering is a vertex of the nerve and for each natural

number k every set of k-\-\ elements with a nonvacuous intersection forms a fe-simplex of the

nerve.

(*) Cf. [3, chap. 3]. Cech's argument holds for arbitrary coverings.
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Between a compact Cech cycle and any of its Vietoris counterparts there

exists the following easily proved relation.

(2.1) Le¿ A be a compact subset of a metric space R, Ck= (Z*(tl)} and (8)

Vk= {Zm} counterpart Cech and Vietoris cycles on A, and U a finite covering of

A. Then there exists m(U) such that for m > m(U), Z*m can be projected into a cycle

irZm of U (by mapping each point of Z*m into any element of U containing it)

and 7rZÍ,~Z*(U) in U.

The proof is obtained by using the Lebesgue number of the covering U

[l, chap. I, §5]. We omit it here.

If a compact Cech cycle C* in a topological space R is homologous to zero

on a compact subset of R, we shall say that C* is compactly homologous to

zero in R, or bounds compactly in R—in symbols, C*=0 in R. If R is metric

and Vk is a Vietoris cycle counterpart to C*, then the compact bounding of C*

is equivalent to the bounding of Vk, that is,

(2.2) Ck^0 in R is equivalent to Vk~Q in i?(7).

In dealing with compact Cech cycles, in order to distinguish bounding (~)

from compact bounding (=), we shall sometimes refer to the former as gen-

eral bounding. Unlike compact bounding, general bounding does not imply

the bounding of the Vietoris counterpart. For an example, construct a

C-0-cycle on two points of R. Then compact bounding of the cycle is equiva-

lent to the two points lying together on a compact connected subset, while

general bounding is equivalent merely to their lying in the same quasi-compo-

nent of R.

However, it is still possible to state a condition on the counterpart Vk

which is equivalent to general bounding of C*. To do this we need two pre-

liminary notions. A Vietoris cycle V— {Z„} will be said to (-bound, or be

t-homologous to zero, in R—in symbols, F*~e0 in R—if almost all the Z£

e-bound in R (that is, bound point chains of mesh less than e). Vk will be

said to null bound in R—in symbols, F*<~00 in R—if it e-bounds in R for all

€>0(8). Null bounding is not in itself a topological invariant. A Vietoris

cycle which null bounds in R under one metric may fail to do so under a

different metric, even though R is unchanged topologically. The property of

null bounding under every metric which preserves the topology is, on the con-

trary, a topological invariant, and it is this property which is equivalent to

general bounding. That is, we have the following theorem.

Theorem 2. Let R be a separable metric space, Ck= {Zk(U)} a compact

Cech cycle in R, and Vk = {Z„} a counterpart Vietoris cycle.  Then a necessary

(8) The cycles in the brackets are of course point cycles such that the mth cycle is e„,-ho

mologous to the (m+l)th, «„—>0.

(') V~0 of course means Vk bounds on a compact subset.

(8) Not necessarily on a compact subset of R.
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and sufficient condition that Ck~0 in R is that F*~00 in R under every homeo-

morphic remetrization of R(*).

Proof. It will be understood without further mention of the fact that the

only remetrizations we shall consider will be those which preserve topology.

We first prove the necessity. Assume C*~0 and let any remetrization be

imposed on R. By the definition of null bounding above, it is sufficient to

show that for arbitrary «>0, F*~t0 in R. Given e>0, the set of neighbor-

hoods {S(x, e/3)}, where x runs through the points of R, forms a covering of

R, and by Theorem 1, this covering has a countable star-finite refinement

U= { Ui]. Construct a point complex K isomorphic to the nerve of U, K(U),

by choosing a point Xi in each f/¿ (the #,'s all distinct) and letting

#•(0), • • • , Xu» form a simplex of K if U^o), • ■ • , f/.w form a simplex of

K(VL). Denote the image of Z*(U) in K by Z*.

Since Zk (U)'—-0 in U, Z*~0 in K. But U is an e/3-covering, hence K is a

2e/3-complex. Therefore Z*<~e0 in R. We shall complete the argument by

showing that Vk~tZh. Let A be a compact set carrying Ck and Vk. Only a

finite number of elements of U meet A, therefore (2.1) holds. For every

m>m(VL) we define a projection w' of Z„ into K as follows: Consider the pro-

jection ir of Z„ into tl. For each vertex x of Z„, if irx= Ui, we define ir'x = Xi.

ir'Zm is obviously the image in K of wZ^. Therefore, since 7rZj1'~Z*:(U) in U,

from (2.1), tt'ZJ^Z* in K. Hence, since K is a 2e/3-complex, Tr'Zm~iZ*.

Now, under ir' each vertex was moved a distance less than e/3, therefore

k k k

Zm ~e irZm ~,Z .

Since this is true for all m >m(\X), F*~,Z\ which completes the proof of the

necessity.

Before proving the sufficiency we demonstrate a lemma.

(2.2) If U= { U} is a star-finite covering of a topological space and { U'\

is a subcollection of {U}, then U U' is a closed set.

Proof. Since each U intersects only a finite number of the U', U—[)U'

is open. Therefore \J(U—l)U') is open. But this last is exactly the comple-

ment of U£/', which establishes the lemma.

Returning to our theorem(10), assume Ck is not ~0 in R. We shall obtain

a remetrization of R under which Vk is not ~00 in R. There exists a countable

star-finite covering U= { Ui} of R such that Z*(U) is not ~0 in U. From (1.1)

we can assume that U is a closure-isomorphic covering. For each i, let

7'i = U[Z7y| Ui(~\Uj = Q]. From the closure-isomorphism of U, if Ui(~\Uj = 0,

(») This is a generalization of the well known property that if two points lie in the same

quasi-component, then, under any metric, they can be connected by a finite sequence of points

of mesh less than t for all «, and conversely.

(l0) The rest of the proof is patterned after Hurewicz [7].
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Uii~MJj = 0; hence, from the above lemma, UíC\Tí — 0. Therefore, since R

is normal, there is a continuous function f,(x) on R, 0 = f<(tf)al, such that

(i) /<(*) = 0    on    Vi,       fi(x) = 1    on    T,-.

The set of fi(x)'s (¿ = 1, 2, • • • ) have the property that for every x(E.R,

fi(x) = 1 for almost all i. Hence, for any pair of points x, y£i?,/«(x) — /.-(y) =0

for almost all i. Therefore we can define the new metric

(ii) *(*, y) = p(x, y) + £ | /,(*) - /,(?) |,

where p(x, y) is the given metric. It is easily verified that pi(x, y) is a homeo-

morphism and satisfies the axioms for a metric. Under this new metric :

(iii) If Vi nV, = 0   and    x G F,-, y <G V ¡,    then   Pi(x, y) ^ 1.

Pi is not the final metric. To obtain this we have to remetrize once more.

Let {Em} be the collection of all finite subsets of { Ut} with the following

property: If £m= { U«n] (j=l, • • • , h(m)), then:

(iv) Each Um) intersects all the other l/,(j) (j = 1, • ■ • , h(m)),
him)_

(v) n UiU) = 0.

Using the functions ft(x) defined in (i) we define, for each Em, the h(m) func-

tions

r.(m)/  \         1/   \      f<(i)(x) ,.       . i /   \\
Fj   (x) = h(m) ———- (j = 1, • • • , h(m)).

n\ m)

Z/«»><»

Consider any t/,- of U. If t/< does not intersect any of the [/,(,) in Em, then

Fjm)(x) = l on 17,- (j=i, • • • , h(m)). But from (iv) and the star-finiteness,

Ui appears in only a finite number of the Em and intersects only a finite

number of the others. Therefore FJm)(x) = l on Ûi (j=i, ••• , h(m)) for al-

most all m. We thus have: For every xÇzR,

(vi) Fj   (x) = 1 (j = 1, ■ ■ • , h(m)), for almost all m.

It follows that given x, y ER, F¡m)(x)-F¡m)(y)=0 (j=\, ■ ■ ■ , h(m)) for al-

most all m. Therefore we can define the new metric

«       him)

P2(x, y) = Pl(x, y) + Z   Z I ***<*) - F.    (y) I •
m=l     j'-l

p2 is a homeomorphism and satisfies the axioms for a metric.

Under this new metric, if n*-it/iO) = 0, every set of points  at/GC^iü)
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(j= 1, • • • , h) is of diameter not less than 1. To prove this we first note two

properties of the functions Fjm\x) : At every #£2?:

h(m)

(vii) 2 Fi™ (*) = h(m) for all m;
j-i

(viii) If    x G Viu)    of    Em,       F<im\x) = 0.

Now assume D*-ii/<o) =0. Since U is a closure-isomorphic covering, C]j-iUi(j)

= 0 also. If two of the sets Um) fail to intersect, we are through, from (iii).

If each Ui(j) intersects each of the others, { Un,-)} (j = 1, • • • , h) satisfies (iv)

and (v) and therefore forms an Em. Choose any points jt/£ Van (j— 1, • • •, h).

(Now » = &(»*)•)

p2(xi, Xj) = | F,m (xi) - F,m (xj) | = FJm(x1)

from (viii). Therefore

2p2(*1, Xj)  â   2í"í"(*l)   ■   h

from (vii). Therefore at least one of the summands, pi(xi, x¡) (j= 1, • • • , h),

is greater than or equal to 1. The property we have just proved can be stated

in the following form :

(ix) If the points Xi, • • • , ** form a set of diameter less than 1, and

XjEUiU) (j = l, • • • ,«),then nJ.iU.-u)s*0.
We shall now show that under the metric pi, Vk fails to 1-bound—and

therefore to null bound—in R. Assume F*~i0. Then for almost all m,

(x) z"m ~i 0.

Now for m>m(W), Zm projects into a cycle irZl, of U such that 7rZ£~Z*(U)

in U. Choose m to satisfy this condition and also condition (x), and let Yk+l

be a point chain of mesh less than 1 which is bounded by Z„. Then from

(ix), Yk+1 can be projected into U, and clearly its projection is bounded by

7rZ„. Therefore

Z*(U) ~ *zl ~ 0 in U.

But we chose U originally so that Zk(VL) is not ~0 in U, which gives a contra-

diction.

Theorem 2'. Let Bbea closed subset (not necessarily compact) of a separable

metric space R, C a compact Cech cycle on B, and V a counterpart Vietoris

cycle. Then a necessary and sufficient condition that C*~0 on B is that Vk~fl

on B under every homeomorphic remetrization of R.

This theorem follows from Theorem 2 and the isomorphism between the
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"external" and "internal" homology groups for closed subsets of R.

3. Neighborhood coverings. As we stated in §2, the Cech homology groups

of a closed subset A of a topological space R are the same whether defined by

external or internal coverings. If A is not closed, however, the groups obtained

in these two ways are in general different. Indeed, the homology properties

of A given by external coverings need not be topologically invariant. For ex-

ample, the open interval 0<#<1 is homeomorphic to the circle x2-\-y2 = l

minus the point (0, 1). But the 1-dimensional homology groups of the two

given by external coverings in the plane are different, that of the former hav-

ing the single element zero while that of the latter is the same as that of the

circle. The trouble lies in the fact that the external coverings of A actually

give the homology properties of A, and the latter set differs with different

imbeddings of A in R.

Thus, if we wish to obtain invariant homology properties of A by cover-

ings made up of open subsets of R, we shall have to modify our coverings. We

now proceed to do this. Let A be an arbitrary subset of a topological space R,

and G be any neighborhood of A (that is, an open subset of R containing A).

Then a covering U(G) = { £/} of G by open subsets U of G will be called a

neighborhood covering oí A. If 93(H) = { V\ is another neighborhood covering

of A such that each V is contained in some U, then 93 (H) will be called a

refinement of U(G) and written 93(if) >U(G). Note that %(H)>U(G) implies

HCG.
Under the above definition of refinement, we can define Cech cycles on

the set of all neighborhood coverings and obtain homology groups in the usual

manner. Our aim in the present section is to show that the homology groups

so obtained are not only topologically invariant; they are in fact the actual

Cech homology groups of A. We do this in Theorem 3 below. First, however,

we require two preliminary properties.

(3.1) Let Rbe a completely normal(u) space, A a subset of R, and VL = { Ui}

a countable star-finite internal covering of A. Then there is a neighborhood cover-

ing of A, U'(G) = { U{ }, such that U[C\A = Ui and U'(G) is isomorphic to \X
under the correspondence U¿—>U{ (12).

Proof. We shall need the following lemma of Cech's.

Lemma. If U\, • • ■ , U?, are open subsets of A such that Oj-iíT» = 0, then there

exist open subsets Vi, ■ • ■ , Vh of R such that VjC\A = U¡ (ji— 1, • • • , h) and

n;.,Fy=oe8).

(u) A space R is completely normal if every two separated subsets of R lie in disjoint open

sets of R. All metric spaces are completely normal.

(u) This is an extension of a theorem of Cech for finite coverings. Cf. [3, chap. 3, §21 ].

(u) Cf. [3, chap. 3, §20]. Cech's lemma has simply V¡ Z)í/,\ but our form follows easily

from it.
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We now proceed to the proof of the theorem. For each i, Ui and

7\ = U [U,\ UiC\ Uj = 0] are separate. Therefore, since R is completely normal,

there are two disjoint open sets Af¿ and Ni of R such that Af.O Ui and iVO 77.

Now let {Em} be the set of all finite subsets of {Z7<} which have the fol-

lowing property: If Em= { Um)} (j=l, • • • , h(m)), then:

(i)  Each Um) intersects all the other Um)'s 0 = 1, ' " ' , h(m))

(n) n uiU) = o.
1=1

From the lemma, for each Em, there are open sets F(1m), ■ • ■ , V%$,) of R such

that VJm)I^A = Uta) (i = l, • • • , Af»), and C\f?¡V)m) = 0. Consider any Ui.

From (i) and the star-finiteness of U, Ui appears in only a finite number of

the Em. Let V\, ■ ■ ■ , V„ be the V¡m)'s corresponding to it. We define

us =M{n(r\N,)n(¿vt

where j runs through the natural numbers less than i for which Uj(~\Ui = 0.

If we let G = U41if/,-, W(G) = { Ui } has the required properties.

We shall call a neighborhood covering which is related to an internal cov-

ering in the above manner an elementary neighborhood covering. Although

this definition is general, we shall consider only countable star-finite elemen-

tary neighborhood coverings, and we shall restrict the meaning of the word

elementary to such kind. In general, to each countable star-finite internal

covering there correspond many elementary neighborhood coverings, all iso-

morphic to each other.

(3.2) If R is a separable metric space and A is a subset of R, then every

neighborhood covering of A has an elementary neighborhood covering of A as a

refinement.

Proof. Suppose VL(G) is a neighborhood covering of A. Since R is separable

metric, we can assume U(G) is countable star-finite and write it U(G) = { J/,-}.

Let {Um)} be the set of all t/.-'s which intersect A, and set V,= Um)C\A.

Then 33 = { V¡} is a countable star-finite internal covering of A. Let

93'(iï) = { V'j } be an elementary neighborhood covering obtained from 33

by (3.1) with the additional condition that VfCUiU) for all j. Then 93'(i7)
is the required refinement of 11(G).

We now prove the principal theorem of this section.

Theorem 3. If R is a separable metric space(u) and A is an arbitrary sub-

set of R, then the Cech homology groups determined by neighborhood coverings

of A are isomorphic to those given by internal coverings.

(") All we need is that R be completely normal and the countable star-finite coverings form

a complete family for all subsets.

)•
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Proof. All the coverings in this proof will be countable star-finite. From

(3.2) the elementary neighborhood coverings form a complete family. We

shall therefore restrict ourselves to them and omit the adjective elementary.

Let C'*= {Z*(U'(G))} be a C-fe-cycle defined on the neighborhood coverings

of A. For each internal covering U, choose any neighborhood covering U'(G)

corresponding to it (that is, related to it as in (3.1)), and let Z*(U) be the

image of Z*(U'(G)). Now suppose that 93>tl, 93'(iï) is a neighborhood cover-

ing corresponding to 93 such that 93'(i7)>tT(G), and Z*(93) is the image of

Z*(93'(i?)). If ir is any projection from 93 to 11 and w' the corresponding projec-

tion from W(H) to U'(G), it follows from ir'Z*(93'(if))~Z*(U'(G)) in U'(G)

that

(i) tZ*(SB)~Z*(U) inU.

If we should pick a different neighborhood covering Uí* (Gi) corresponding to

U, we might get a different cycle ZÏ(tl) in U. But we need only choose %$'(H)

to be a refinement of both tl'(G) and Uí* (Gi), and then from (i) we would have

Z*(U)'~Z*(tl) in U. It follows that Z*(tl) is uniquely determined up to a

homology. It also follows from (i) that {Z*(tl)} is a Cech cycle Ck.

Since Z*(U)~0 in U if and only if Z*(U'(G))~0 in U'(G), we have that

C*<~0 if and only if C'*~0. We thus have defined an isomorphism of the

"neighborhood" Cech-ß-homology group into the "internal" one. To complete

the proof, we shall show that every "internal" Cech-&-cycle corresponds to a

"neighborhood" one. Let Ck= {Zk(VL)} be a C-k-cycle defined on the internal

coverings. For each neighborhood covering U'(G), let U be the internal cover-

ing corresponding to it and let Z*(U'(G)) be the image of Z*(U). Suppose

93'(i2)>U'(G), tt' is a projection from W(H) into U'(G), and ir is the corre-

sponding projection from 93 into U. Then since 7rZ*(93)'~Z*(tl) in U, it follows

that ir'Z*(93'(iï))~Z*(tl'(G)) in U'(G). Therefore {Z*(U'(G))} is a Cech
cycle, and clearly it goes into Ck under our isomorphism. This completes the

proof.

4. Polyhedral complexes. By a polyhedral complex K, we shall mean a

star-finite polyhedral complex in the classical sense, with possibly an infinite

number of simplexes. A subdivision of K will, in this paper, always mean a

simplicial subdivision, and we shall omit the adjective "simplicial" hereafter.

We shall denote subdivisions of K by the small German letters u, b, to, and

their vertices by the small italic letters «<, n,-, w,-. Given a subdivision u

of K with the vertices {w¿}, we shall denote the star of each «< by ¿7<. Then

U= { Ui} is a countable star-finite covering of K isomorphic to u. We shall

call it the subdivision covering derived from u.

(4.1) If K is a polyhedral complex, the subdivision coverings form a com-

plete family for K. In fact, if Uo is a given subdivision, we may limit ourselves to

the subdivision coverings derived from subdivisions of lto.

Proof. If K is finite, it is compact. Therefore every covering of K has a
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finite refinement. This has a Lebesgue number r¡, and by repeated barycentric

subdivision of Uo, we can obtain a subdivision of mesh less than jj/3. Then the

covering derived from this subdivision is the required refinement.

Suppose K is infinite. Then it is the union of a sequence \Km} of finite

subcomplexes of Uo such that each Km meets only Km~x and Km+i. Now given

any covering U of K, we proceed inductively. Since K\ is finite, we can sub-

divide it until we get a subdivision whose derived covering is a refinement

of U on K\. Extend this subdivision to those simplexes of K2 whose faces meet

Ki. Assume that we have a subdivision of \JfJiKj whose derived covering is a

refinement of U and that this subdivision has been extended to those simplexes

of K~m whose faces meet ÜTm_i. Then subdivide Km in the same manner and

extend the subdivision to those simplexes of Km^ and Km+i whose faces

meet Km. In this way each Km has its final subdivision after the (»i + l)th

stage, and we thus obtain a well defined subdivision of Uo which satisfies the

theorem.

By the ¿-dimensional homology group of a subdivision u, we shall mean

the homology group obtained by using simplexes of u. In this paper we shall

consider only finite chains and cycles of subdivisions.

We now show the equivalence of the Cech theory with the classical theory

for polyhedral complexes.

Theorem 4. If K is a polyhedral complex and Uo is any subdivision of K,

the k-dimensional Cech homology group of K, the k-dimensional Vietoris ho-

mology group of K, and the k-dimensional homology group of Uo are all isomorphic,

for all k.

Proof. The isomorphism of the Cech-¿-homology group of K and the ho-

mology group of Uo follows directly from (4.1) and the fact that every subdivi-

sion of Uo has the same ¿-homology group as u0.

Now every cycle of u0 is in a finite subcomplex* of Uo, and if it bounds,

bounds a chain of a finite subcomplex of Uo- Therefore, since finite complexes

are compact, every Cech cycle is homologous to a compact Cech cycle, and

if it bounds, bounds compactly. Hence the Cech-fe-homology group obtained

by using compact cycles and compact bounding is also isomorphic to the

fe-homology group of Uo. But this last group is the same as the Vietoris-fe-

homology group, which completes the proof.

Corollary. The general k-dimensional Cech homology group of a poly-

hedral complex is isomorphic to the homology group obtained by using compact

cycles and compact bounding.

We shall denote a ¿-dimensional singular cycle(u) of K by zk. A cycle of

any subdivision u of K is, of course, also a singular cycle. We shall denote it

by zk(u). In what follows we shall have need of two theorems which are proved

(») Cf. [2, chap. VIII, §5 and chap. IX, §§1 and 2].
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by the well known fundamental deformation process for polyhedral com-

plexes(15). We state them here without proof.

(4.2) Let z* be a singular cycle of a polyhedral complex K. If u is any sub-

division of K, there is a cycle zk(u) of u such that z*~z*(u) in K(u). Further, if

z*~0 in K(ie), z*(u)~0 in u, and conversely.

Corollary. The k-dimensional homology group given by singular cycles of

K is isomorphic to the k-dimensional homology group of any subdivision of K.

Before stating the second theorem, we make some preliminary remarks.

An open subset of a polyhedral complex is itself a polyhedral complex. Let u

be a subdivision of K and tl its derived subdivision covering(17). If G is an

open subset of K, we can apply (4.1) to G and obtain a subdivision b of G

whose derived subdivision covering 93 is a refinement of U in G. We shall de-

note this by 93 >U.

(4.3) Given an open subset G of a polyhedral complex K, let u be a subdivi-

sion of K, b a subdivision of G, and U and 93 their derived subdivision coverings,

with 95 >U. Suppose z*(b) and z*(u) are cycles of b and it respectively, and denote

their images in 93 and tl by Z*(93) and Z*(tl). Then, if tt is a projection from 93

into U, a necessary and sufficient condition that 7rZ*(93)'~Z*(tl) in VL is that

z*(b)~z*(u) in K.

Now let A be an arbitrary subset of K. A geometric Cech-k-cycle of A will

be defined as a collection C = {zk(G)}, where G runs through all the neighbor-

hoods of A, zk(G) is a singular cycle in G, and for every neighborhood H oí A

such that HCG, zk(H)~zk(G) in G. If z*(G)~0 in G for all G, we shall say

that Ck bounds in A or C*~0 in A. The geometric Cech cycles define homology

groups in the usual manner. Again, these homology groups are not only topo-

logical invariants of A ; they are the actual Cech homology groups of A. That

is, we have the following theorem.

(4.4) If A is an arbitrary subset of a polyhedral complex, the k-dimensional

homology group defined by the geometric Cech-k-cycles of A is isomorphic to the

Cech-k-homology group of A, for all k.

Proof. From Theorem 3, we need only consider neighborhood coverings

of A, and from (4.1) we may confine ourselves to those derived from subdivi-

sions of the neighborhoods. Hence we shall assume in this proof that all our

coverings are of the latter sort. Consider a Cech-£-cycle Ck= {Z*(U(G))} of

A. Given any 11(G), denote the subdivision from which it was derived by

u(G) and the image(18) of Z*(U(G)) there by z*(u(G)). If 93(H)>U(G) and ir

is a projection from 93(i?) into tl(G), it follows from ttZ*(93(JÎ))~Z*(U(G))

in tl(G) and from (4.3), that

(u) That is, their difference bounds a singular chain.

(") See the opening paragraph of this section.

(l8) Under the isomorphism of U and it.
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(i) «*(»(#)) ~ 2*(u(G)) inG.

Now we make correspond to Ck a geometric Cech-¿-cycle C*= {zk(G)} in

the following manner: For each neighborhood G of A, choose any 11(G) and

let z*(u(G)) be zk(G). By letting H=G in (i), it is readily shown that zk(G)

is uniquely determined up to a homology. It also follows from (i) that

{z*(G)}, where G runs through all the neighborhoods of A, is a geometric

Cech-¿-cycle. We denote it by Cf. Since z*(G)~0 in G if and only if

Z*(U(G))~0 in U(G), we have that CÎ~0 if and only if C*<~0. We thus have

defined an isomorphism of the Cech-¿-homology group of A into the ¿-dimen-

sional homology group given by the geometric Cech-¿-cycles. To complete

the proof, we shall show that to every geometric Cech-¿-cycle there corre-

sponds a Cech-¿-cycle. Let C* = {z*(G)} be a geometric Cech-¿-cycle. For

every neighborhood G and subdivision u(G) of G, choose z*(u(G))~z*(G) by

(4.2), and let Z*(U(G)) be the image of z*(u(G)) in the derived covering U(G).

Then {Z*(U(G))} is a Cech-¿-cycle Ck. For %(H)>U(G) implies that

zk(t>(H)) ~ zk(H) ~ z*(G) ~ z*(u(G)) in G;

hence, from (4.3), irZk(%(H))~Zk(VL(G)) in G. It is easily seen that Ck maps

into a geometric Cech-¿-cydle which is homologous to C\. This completes the

proof.

Theorem 5. If A is an arbitrary subset of a polyhedral complex K, and Ck

is a compact Cech cycle in A, then a necessary and sufficient condition that C*'~0

in A is that C*=0 in every neighborhood of A.

Theorem 5 follows from the more general Theorem 5' which we prove

below. First we shall demonstrate a lemma. In what follows, we shall use the

single word independent to mean linearly independent relative to homologies.

(4.5) If the Cech cycles C\= \Z\(W)} (i=l, • • • , h) in a topological space

R are independent there, then there is a covering U such that Z\(\X) (i = 1, • • -, A)

are independent in U.

Proof. Given a Cech cycle C*= {Z*(U)} and a covering U, if Z*(U)~0

in U, we shall write C*~0 in U. Assume there is no covering satisfying the

theorem. Then for each covering U, there is a linear combination Ck(\X)

— 2?-ia«(U)Gf which is ~0 in U. Choose any covering Uo- Since the C*

(*«"1, • • • , A) are independent, there is a Ui>Uo such that C*(Uo) is not ~0

in Ui. Similarly, there is a U2>Ui such that C*(Ui) is not ~0 in Ul Proceeding,

we obtain « + 1 linear combinations Ck(U0), • • • , Ck(Uh) such that

U* > lU-i > • • • > Uo,

Ck(\h) ~0    in   U,-, j = 0,    - -, A,

Ck(\Xj) is not ~ 0    in   Ui+i, j = 0, ■ ■ ■ , h - \.
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Since we have A + l linear forms in k quantities, one of the linear forms must

be a linear combination of the rest(19). Let C*(Uy) be the first such. Then

C*(U,) = ft3+1C*(tly+i) + • • ■ + bhCk(\Xh).

Since each term on the right bounds in a refinement of Uy+i, it bounds in Uy+i.

Hence C*(Uy) bounds in tly+i. But Uy+i was picked so that C*(tly) is not ~0

there, which gives a contradiction.

Theorem 5'. If A is an arbitrary subset of a polyhedral complex K and Cf

(t = l, • • -, h) are compact Cech cycles in A, then a necessary and sufficient

condition that they be independent relative to general homologies in A is that there

exist a neighborhood G of A in which they are independent relative to compact

homologies.

Proof. Assume Cf (i = 1, • • • , h) are not independent in A relative to gen-

eral homologies, that is, some linear combination of them, C*=Z?-iffl«GÎ>is ~0

in A. Consider any neighborhood G oí A. Since C*~0 in every neighborhood

covering of A, it is ~0 in every covering of G. Therefore, from the corollary

of Theorem 4, Ck9ÉQ in G.

Now assume Cf (* = 1, • • • , h) are independent in A. Then, from (4.5)

above, there is a covering U of A in which they are independent. The neigh-

borhood coverings form a complete family, hence we may assume U is ac-

tually a neighborhood covering tl(G). Since tl(G) is a covering of G, this

means the Cf (i = l, • • • , h) are independent in G relative to general hom-

ologies (hence, of course, independent relative to compact homologies there).

Corollary 1. Let A be an arbitrary subset of a polyhedral complex K,

Cti(i = \, • ■ • , h) be compact Cech cycles in A, and Vt be a counterpart Vietoris

cycle to Cf (i = 1, • • • , h). Then a necessary and sufficient condition that the Cf

be independent relative to general homologies in A is that there exist a neighbor-

hood G of A in which the V* are independent^).

Corollary 2. If A is an arbitrary subset of a polyhedral complex K and

Ck and Vk are counterpart compact Cech and Vietoris cycles in A, then a neces-

sary and sufficient condition that C*~0 in A is that F*~0 in every neighborhood

of An.

5. Duality theorems. Let F be a closed subset of the »-sphere S". As is

well known, for a Vietoris cycle Vn~k~1 of F and a singular cycle z* of Sn — F

a linking number v(zk, V~k~l) may be defined(21). The linking number can

be  defined  in  the  same  manner  between  z*  and  a   Cech  cycle   Cn~k~l

(") We recall that our coefficients are in a field.

(") Cf. footnote 7.
(") Cf., for instance, [l, chap. 4].
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= \zn~k~l(G)} on F (G running through all the neighborhoods of F). We

let Go be a neighborhood of F not meeting zk and restrict G to neighborhoods

contained in Go. Then v(zk, z"~k~l(G)) is defined and is clearly independent

of G. We can therefore take it as our v(zk, C"~k~1). It is easily shown that if

z\~zk outside of F,

(5.1) v(zuC        ) = v(z,C        ).

We note, also, that if Vn~k~'1 is a Vietoris counterpart of Cn~k~l,

(5.2) ,(g,C        )=Kz,F        ).

Now suppose .4 is an arbitrary subset of S". We can extend our definition

of linking number to one between a general Cech cycle of A and a compact

Cech cycle of S"—A. Suppose Ck = {zk(G)} is a general Cech cycle of A and

Çn-k-\ a compact Cech cycle in S"—A. Let F be a compact subset of Sn— A

containing Cn~k~l, and restrict all the neighborhoods G of A to lie in Sn — F.

Then v(zk(G), C"~k~1) is defined, as we have shown above, and since for H(ZG,

zk(H)^'zk(G) in G, this linking number is independent of G. We can therefore

take it as our v(Ck, C"~k~l). If both C and Cn~*-1 are compact, we have the

following immediate theorem.

(5.3) // Ck and Cn~k~1 are compact Cech cycles in disjoint subsets of S",

and Vk and Vn~k~l are their respective Vietoris counterparts, then

v(Ck',C"-k-1) = v(Vk, ï>-»-*-i)(M).

We shall now prove a generalization of the Alexander duality theorem to

arbitrary subsets of the »-sphere S". We first demonstrate a lemma.

(5.4) Lemma. Let A be an arbitrary subset of Sn and C\ (* = 1, • ■ • , h) be

compact Cech cycles in A. If the Cf (i= 1, • • • , A) are independent relative to

compact homologies in some neighborhood of A, then Sn—A contains compact

Cech cycles C"-1-1 (i = \, ■ ■ ■ , h) which are independent relative to compact

homologies in some neighborhood of S"—A. The latter cycles can be chosen so that

"(Ci, C"      ) = Sa (¿,.7=1, • • • , A),

where 5,-,- is the Kronecker 8.

Proof. Let F be a compact subset of A containing the C\(i—\,---,h),

and let them be independent relative to compact homologies in the neigh-

borhood G of A. Then by the duality for closed sets and (5.3) above, Sn — G,

which is a closed set, contains C¡~t~1 (¿=1, • • • , A) such that

(i) "(C„ C,       ) = 8ij (i,j = 1, • • • , h).

Because of (i), the Cj1-*-1 are independent relative to compact homologies in
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Sn — F. But Sn — F is an open set containing Sn— A, therefore a neighborhood

of Sn—A, which completes the proof.

Theorem 6. A necessary and sufficient condition that an arbitrary subset A

of S" contain h compact Cech-k-cycles which are independent relative to general

homologies in A is that Sn—A contain h compact Cech-(n — k — l)-cycles which

are independent relative to general homologies in S"—A.

Proof. Since A is arbitrary, the theorem is symmetric in A and Sn— A.

Hence we need only prove the necessity. This follows directly from Theo-

rem 5'and (5.4) above.

If we remove the condition that a space R be compact, a multiplicity of

homology properties may immediately be defined which do not appear, or

rather are not distinct, in the compact case. Perhaps the strongest of these is

that R contain a compact Cech cycle which fails to bound generally. This is

the property we assumed on A in Theorem 6 above—we are now stating it in

terms of a single cycle for the sake of clarity—and, as we saw there, it implies

the same property for Sn—A. We list five additional properties below, three

obtained by weakening the conditions on the cycle and two by weakening

the conditions on the non-bounding. (We could list others, but these will

suffice for our purpose.) As we shall show, varying the conditions on the cycle

in a subset of Sn seems to be dual to varying the conditions on the bounding

in the complement. We therefore list the properties obtained by the former

process as properties of A and those obtained by the latter as properties of

S"—A. This is simply for our discussion of duality; all the properties can of

course be defined for any topological space. We also list the above strong

property of Theorem 6 in both A and Sn— A so that the other properties may

be compared with it.

A S"-A

I. There is a compact C in A not

~0 in A.

II. There is a general C in A not

~0 in A.

III. There is a covering of A every

refinement of which has an es-

sen tial(2*) non-bounding ¿-cycle.

IV. There is a covering U of R every

refinement of which has a ¿-cycle

which projects into a non-bound-

ing cycle of U.

I'. There is a compact C-*-1 ¡n

Sn-A not ~0 in Sn-A.

III'. There is a compact Cn_*_1 in

Sn-A not ^0 in Sn-A.

IV. There is a compact subset Fo

of S"—A such that for every

compact subset F of A contain-

ing Fo, some Cn~k~l of Fo is not

^0 in F

(B) A cycle Z(U) of a covering U is essential if every refinement of U has a cycle which

projects into a cycle of U which is ~Z(U).
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Note that in each column, each property is weaker than the one above. Also,

for a compact space, if the dimensions in the two columns were the same,

all six properties would reduce to the same one.

We showed in Theorem 6 that I and I' are dual, that is, each implies the

other. Properties IV and IV are also dual. Before showing this, we make a

definition. If a space R has property IV we shall say it is k-disconnected;

otherwise it will be called k-connected.

Theorem 7. Let A be an arbitrary subset of Sn. A necessary and sufficient

condition that A be k-disconnected is that Sn—A contain a compact subset Fa

such that for every compact subset F of Sn—A containing Fo, some Cech-

(» —¿ —1) -cycle of Fo fails to bound in F.

Proof. Assume A is ¿-disconnected. In terms of neighborhoods and singu-

lar cycles this is equivalent to the following statement : There is a neighbor-

hood G of A such that every neighborhood Hof A, HÇZG, has a zk(H) not ~0

in G. Then Fo = Sn — G has the required properties. For assume FoCFC.Sn—A,

F compact. Sn — F is a neighborhood Hoi A and it is contained in G. Hence it

contains a zk(H) not ~0 in G. Therefore, by the duality for closed sets, Fo con-

tains a C**-*-1 not ^0 in F.

Conversely, assume we are given Fo in Sn— A satisfying the hypothesis.

Let G = Sn — Fo. Then if H is a neighborhood of A, H CG, Fo contains a

Cn_*_1 not ^0 in S" — H. Hence H contains a zk(H) not ~0 in G. This com-

pletes the proof.

Corollary. If A is an arbitrary subset of Sn, and Sn—A contains a compact

Cech-(n — k — \)-cycle which fails to bound compactly there, then A is k-discon-

nected.

This follows from the fact that property III' implies property IV.

Concerning the other properties in our list, we can show that property III

implies property III':

Theorem 8. Let A be an arbitrary subset of Sn. If there is a covering of A

every refinement of which has an essential nonbounding k-cycle, then Sn—A has

a compact Cech-(n — k — \)-cycle which fails to bound compactly in S"—A.

Proof. In terms of neighborhoods and singular cycles, the hypothesis on A

implies the following property : There is a neighborhood G of A with a singular

cycle zk(G) not ~0 in G such that if ii is a neighborhood of A, HQ.G, there

is a zk(H)~zk(G) in G. By the duality for closed sets, Fo = Sn — G contains a

C"-*-1 linked with zk(G). Then Cn~k-1 is not ^0 in Sn-A. For assume it is,

that is, FoCFCSn-A, F compact, such that Cn~k-1 bounds in F. Sn — Fis a

neighborhood H of A contained in G. Hence there is a zk(H)~zk(G) in G.

Therefore Cn~k~l is linked with zk(H), contradicting the assumption that it

bounds in F.
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Corollary. If an arbitrary subset A of S" contains a general Cech-k-cycle

which fails to bound in A, Sn—A contains a compact Cech-(n — k — l)-cycle

which fails to bound compactly in Sn—A.

This follows from the fact that property II implies property III.

The converse of Theorem 8 is not true, as is shown by the following ex-

ample : In the Cartesian plane, let M be the curve y = sin 1/x, 0<x<2/3ir,

and N an arc from (0, —1) to (2/3-k, —1) not meeting M and, except for its

end point, lying entirely in the fourth quadrant. Then, if A = M\JN, the

complement of A has compact Cech-0-cycles which fail to bound there rela-

tive to compact homologies, and yet given any covering U of A, there are

refinements of U which have no essential 1-cycles. (Hence, of course, A has

no non-bounding Cech-1-cycle. It is, however, 1-disconnected, as can be seen

from the corollary of Theorem 7.)

The blank space opposite property II is significant. We have had consid-

erable difficulty in finding conditions on Sn—A (short of condition I') which

will imply the existence of (non-bounding) Cech cycles in A. The problem

seems to be closely linked with an important general question :

Can there actually exist, in a separable metric space, Cech cycles which are

not compact or homologous to compact cycles?

We do not know the answer to this question.

Before leaving the discussion of our list of properties, we demonstrate the

remarkable fact that for the dimension n — 1, properties I' and III' are equiv-

alent, that is, general bounding is equivalent to compact bounding.

Theorem 9. Let B be an arbitrary subset of S" and Cn~l a compact Cech-

(n-l)-cycle of B. Then if C"-1~0 in B, it is ^0 in B(23).

Proof. Let Fo be a compact subset of B containing Cn_1, and assume

Cn_1 is not =0 in B. Let F be the compact subset of B obtained by adding

to Fo all the components of its complement containing no point of Sn — B.

From the remaining components, choose a set of points {x,} of S" — B, one

from each component. Now from the duality for closed sets and (5.3), Cn~l

must be linked with the Cech-0-cycle on two of these points, say x0 and xi.

But then Sn — (xoKJxi) is a neighborhood of B in which C"-1 is not ==0. There-

fore, from Theorem 5, Cn_1 is not ~0 in B.

Corollary 1. Let B be an arbitrary subset of Sn. If the compact Cech cycles

Cf~l (i = l, • • ■ , h) are independent relative to compact homologies in B, they

are independent relative to general homologies in B.

Corollary 2. Let A be an arbitrary subset of S", and let Sn—A contain h

compact Cech-(n — l)-cycles independent there relative to compact homologies.

Then A contains h compact Cech-0-cycles independent in A relative to general

(**) This is actually a corollary of a theorem of Eilenberg. Cf. [S].
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homologies (or, what is the same thing, A contains at least A+1 quasi-compo-

nents)(2*).

We close this section with some miscellaneous theorems. Our dimensions

in the following are Menger-Urysohn dimensions.

(5.5) If a separable metric space R is of dimension not greater than k, every

covering of R has a countable star-finite refinement of dimension not greater

than k.

For a proof of this, see [8, Theorem VI ]. The proof there is for finite cover-

ings, but it easily extends to the countable star-finite case.

Theorem 10. If an arbitrary subset A of Sn is of dimension not greater than

k, every compact Cech-(n — k — 2)-cycle in Sn—A is =0 there. In fact, for every

compact subset Fo of S"—A, there is a compact F, Fo(ZFC.Sn—A, such that all

the Cech-(n — k — 2)-cycles of Fo bound in F.

Proof. From (5.5) above, every covering of A has a refinement with no

(¿ + l)-simplexes and therefore no (¿ + l)-cycles. Therefore A is (¿ +^-con-

nected and the theorem follows from Theorem 7.

(5.6) // A is homeomorphic to a subset of the Euclidean k-space Rk, A is

k-connected. In fact, every covering of A has a refinement with no k-cycles.

Proof. We can assume A C.Rk. Let U be an arbitrary internal covering of

A and U'(G) a derived neighborhood covering. Choose a subdivision covering

23'(G) = {F4'} which is >U'(G). 93'(G) has no ¿-cycles, since each of its

cycles is the image of an actual polyhedral cycle in G, and the latter con-

tains none. Then 33= { V' C~\A } is an internal covering of A which is >Uand

has no ¿-cycles.

Theorem 11. If an arbitrary subset A of Sn is homeomorphic to a subset

of the Euclidean k-space Rk, then for j^n — k — l, every compact Cech-j-cycle of

S"—A is =0 outside of A. In fact, for every compact subset Fo of S"— A, there

is a compact F, FodF(ZSn—A, such that all the Cech-j-cycles of F0 bound in F.

This follows from (5.6) above and Theorem 7.

We shall call A (ZSn Cech-k-accessible relative to compact homologies at a

point x of A, if every Cech-¿-cycle in Sn — A is ^0 in (Sn—A)VJx.

(5.7) If A is an arbitrary subset of S" and every proper subset of A is

k-connected, then A is Cech-(n — k — \)-accessible relative to compact homologies

at every point.

This follows from Theorem 7. From Theorem 10 we have:

(*) Cf. [5].
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(5.8) An arbitrary subset of Sn of dimension not greater than k is Cech-j-

accessible relative to compact homologies at every point,forj^n — k — 2.

And from Theorem 11 :

(5.9) If an arbitrary subset A of S" is homeomorphic to a subset of Rk, A is

Cech-j-accessible relative to compact homologies at every point, for j^n — k — 1.

6. Some homology properties of finite coverings. In Theorem 9, we

showed that if B is an arbitrary subset of Sn, then for the compact Cech-

(» — l)-cycles of B, bounding in the family of all coverings (that is, general

bounding) is equivalent to compact bounding. We shall now show that we can

restrict ourselves to finite coverings for this dimension. We first prove a pre-

liminary theorem.

Theorem 12. Let K be a (k-\-1)-dimensional polyhedral complex and Ck a

Cech cycle on K. If C*~0 in all finite coverings of K, it is ~0 in all coverings

ofK.

Proof. Assume Ck is not ~0 in K. We shall produce a finite covering in

which Ck fails to bound. Let Ck= {Z*(tl)}. If u is any subdivision of K, then

byz*(u) we shall mean the image in uof Zk(U), where tlis the subdivision cov-

ering derived from u and Zk(VL) is the coordinate of Ck in U.

Lemma. Let X>bea subdivision of the k-sphere Sk and z^(b) the essential k-cycle

of b. Then there is a subdivision u of K which can be mapped simplicially into b

so that the map of z*(u) is z^(b).

Proof. Hopf has proved this for a finite polyhedral complex [6], but his

proof applies directly to an infinite one, and we repeat it here, adapted to our

purpose. Since C* is not ~0 in K, there is a subdivision covering Uo such that

Z*(tU) is not ~0 in Uo- Let U0 be the subdivision from which tlo is derived ;

then z*(uo) is not ~0 in Uo-

Let yï(lto) (i = l, 2, ■ • • ) be a homology basis for the non-bounding

k-chains of Uo- That is, no finite linear combination of the yî(Uo) bounds and

every ¿-chain yk(vLa) of Uo is homologous to a unique linear combination of

them: y*(Uo)~Zcoi(uo) (only a finite number of the c< different from 0).

We can choose z*(u0) for our yï(u0). We now define a homomorphism H of

the ¿-chains of Uo into the integers modulo 2 as follows:

^       fc (1     if    Ci 5* 0,

1.0    if   C\ = 0.

H has the following two properties :

(i) H(yï(Uo)) = l,
(ii) If yk(Uo) is a bounding cycle, H(yk(u<>)) =0.

Let Kk be the subcomplex of K obtained by dropping out all the (¿+1)-
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simplexes. We define a mapping fo of Kk into Sk as follows : Choose one of the

vertices p of the subdivision to of Sk and let the boundary of each ¿-simplex

ek of K be mapped into p. If H(ek) =0, map the interior of ek also into p; if

H(ek) = \, map the interior homeomorphically into Sk—p. In this way, the

degree of mapping of ek is exactly H(ek). Now every ¿-chain y*(uo) is a finite

linear combination of the ek : yk =2°/^• Hence

77(/(uo)) = £T(2 **4) = 2 *iB{¿¡)-

Since the degrees of mapping add algebraically in this same fashion, it follows

that the degree of mapping of yk(u0) is exactly H(yk(uo)). In particular,

from (i):

(iii) yî(uo) maps into Sk with degree 1.

We extend /0 to all of K as follows. Let ek+1 be any (¿ + l)-simplex of Uo and

de*+1 its boundary. From (ii), H(dek+1) =0. Therefore dek+1 maps into Sk with

degree zero, and hence fo can be extended to ek+1.

We now vary/o slightly to obtain our required mapping/. By the funda-

mental deformation theorem, there is a refinement u of Uo and a homotopic

deformation of fo over Sk such that no point leaves the closed simplex of to

containing it and such that when we are through, we have a simplicial map-

ping of u into to. This is our final mapping /. Under it, the part of K which

was mapped into p remains there, and the degree of mapping of each chain

remains unchanged. In particular, if yk(u) is the refinement in u of yî(Uo),

then, from (iii), yk(u) maps into Sk with degree 1. But, since ;yî(uo) =z*(u0),

we must have y*(u)~z*(u) in u. Therefore z*(u) maps into Sk with degree 1.

It follows that

(iv) /(Att)) = z*(to),

which completes the proof of the lemma.

Returning to the theorem, let 93= { Vi} be the subdivision covering of Sk

derived from to, and denote the image of zf(to) by ZÎ(S3). Since Sk is a finite

complex, 93 is finite. Then 93-1 = { Vr1}, where Vr1 is the complete inverse

of Vi under/, is a finite covering of K. Further, U, the subdivision covering

of K derived from u, is a refinement of S3-1. For, since/ maps u simplicially

into to, the star of each vertex of u maps into the star of some vertex of to;

that is, each element of U maps into some element of 93. It follows that each

element of U lies in some element of 93_1. If we denote the inverse of Zf(93)

by ZÎ(93-1), it is easily shown from (iv) that Z*(U) projects into Z)(^~l).

But ZÎ(33_1) is not ~0 in S3-1. Hence Ck fails to bound in the finite covering

93_1, and the theorem is proved.

Theorem 13. Let B be an arbitrary subset of Sn and Cn~l a Cech-(n — l)-

cycle of B. Then if Cn_1'~0 in all finite converings of B, Cn_1<~0 in all coverings

ofB.
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Proof. We need only consider neighborhood coverings of B. Let G be a

neighborhood of B. Since C"-1~0 in all finite coverings of G, we have from

Theorem 12 that Cn-1~0 in all coverings of G. But G is any neighborhood of

B. Therefore Cn_1~0 in all neighborhood coverings of B.

Theorem 14. Let B be an arbitrary subset of Sn and C"~l a compact Cech-

(n — l)-cycle of B. Then if Cn-1~0 in all finite coverings of B, Cn_,^0 in B.

This follows from Theorem 13 and Theorem 9.

In Theorem 2 we gave a necessary and sufficient condition that a compact

Cech cycle Ck in a separable metric space R bound in all coverings of R,

namely, if Vk is a Vietoris counterpart of Ck, Vk null-bounds under all homeo-

morphic remetrizations of R. We shall now give an analogous equivalent con-

dition for Ck to bound in all finite coverings of R.

Theorem 15. Let R be a separable metric space, C*= {Z*(ll)} a compact

Cech cycle in R, and Vk= {Zm\ a counterpart Vietoris cycle. Then a necessary

and sufficient condition that C*~0 in all finite coverings of R is that F*~00 under

all totally bounded metrics imposed on R (which do not change the topology).

Proof. Assume C^-^O in all finite coverings and suppose R has a totally

bounded metric. To show that F*~o0 in R, we need to show that for arbitrary

e>0, F*~,0 in R. Given «>0, from the total boundedness, there is a finite

e/3-covering of R. We then proceed exactly as we did in proving the necessity

in Theorem 2.

Now assume there is some finite covering U= { U,} such that Z*(U) is

not ~0 in tl. From (1.1) we can assume tl is a closure-isomorphic covering.

Since we can take R imbedded in the Hubert cube, we can assume that its

given metric is totally bounded. We shall obtain a new metric, also totally

bounded, in which Vk is not ~oO. We shall use the following theorem of

Hurewicz [7].

(6.1) Let R be a metric space and let {Em\ be a finite collection of closed

sets, Em = F[m\ ■ ■ ■ , Fim) (m = l, • • • , M), suchthat nht(?ÍF¡m) = 0for each m.

Then for every «>0, we can remetrize R so that:

(a) 0^pi(x, y) —p(x, y) 5¡ e, where p is the original and pi the new metric;

(b) For each Em, there is a 8m>0 such that every set of points XiC.F¡m)

(i=í, ■ ■ • , h(m)) is of diameter greater than 8m;

(c) If R is totally bounded under p, it is totally bounded under px.

Let {Em} (m = l, ■ • • , M) be the collection of_all (¿ + 2)-tuples of { Ui],

such that if Em= { UiU)} (j = 0, • • ■ , ¿+1), D^F.o) = 0. Since U is finite,

there are only a finite number of the E„, so we can apply (6.1) and obtain a

new metric p\. Take 5<min(5i, • ■ • , 5m). Then, as in Theorem 2 (see (ix)

there), we have the following property :
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If the points x0, ■ ■ ■ , *t+i form a set of diameter less than Ô and *,£ Um)

(j = 0, • ■ • , ¿ + 1), then ní+JUící) 9*0.
Then proceeding as we did in Theorem 2, we can show that Vk is not ~oO.
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