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1. Methods for generating stream functions of two-dimensional flows

of a compressible fluid. The consideration of physical phenomena, in particu-

lar the study of electric and magnetic fields, was one of the starting points

from which Riemann developed his approach to the theory of integrals of

algebraic functions.

In particular the consideration of two-dimensional electric and magnetic

fields without singularities or with such singularities as vortices, sinks,

sources, doublets, and so on, suggests the introduction of integrals of the first,

second, and third kinds.

The investigation of certain phenomena in fluid dynamics, namely the

consideration of two-dimensional, irrotational, steady flow patterns of an

incompressible fluid, leads to the same mathematical notions as those men-

tioned above since these flows are, from an abstract mathematical point of

view, not essentially different from electric and magnetic fields.

Generalizing this approach, one can introduce flow patterns "of a compres-

sible fluid with corresponding singularities and investigate relations between

potentials and stream functions of these flows.

The compressibility equation is, however, much more complicated

than Laplace's equation, and it is very questionable whether such an im-

mediate generalization would lead to results comparable with those in the

theory of functions of a complex variable.

It seems that it is preferable in this case to use the hodograph method

(see below) and to link this approach with the theory of operators which

transform solutions of one partial differential equation into solutions of

another one.

A two-dimensional steady irrotational flow of a perfect fluid can be de-

scribed either by its potential (in the following denoted by p) or by the stream

function, p. In the case of an incompressible fluid p and p are connected by

the Cauchy-Riemann equations, so that p+ip is an analytic function,/, of

a complex variable. Taking the real and imaginary part of / we obtain </>'and

p, respectively. This process can obviously be interpreted as an operation
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transforming analytic functions of a complex variable into solutions of the

equation arising in the theory of an incompressible fluid (that is, Laplace's

equation).

A much more complicated situation occurs in the compressible fluid case.

A flow of a fluid is initially defined in the so-called physical plane (2),

that is, in the plane where the motion occurs. At every point x, y of this

plane at which the flow is defined, the velocity vector is determined. See fig.

1. The pair of functions [u(x, y),  — v(x, y)], where u and ».are cartesian

h y

Fig. 1. A streamline in the physical plane.

components of the velocity vector, determines a mapping of the domain of

the (x, y)-plane in which the motion takes place into a (not necessarily

schlicht) domain of the (m,— z»)-plane, the so-called hodograph of the flow.

See figs. 1, 2, 3, 4, 6, 7, pp. 454, 463, 464, 465.
The potential, <p, and the stream function, \p, can be investigated in

either of these planes; that is, one can investigate either directly <p(x, y),

yp(x, y) or primarily <pw(u, v) =<p[x(u, v),y(u, v) ], \pm(u, v) =\p[x(u, v),y(u, v) ]

(the hodograph method), and from these results make conclusions concern-

ing the flow in the physical plane.

In the case of an incompressible fluid, <p(x, y) and \j/(x, y), as well as

(2) An exact description of the physical plane, as well as of the hodograph plane, will be

given in §2.
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0(1)(m, v) and \[/m(u, v), satisfy Laplace's equation and, except in some

special problems, are investigated directly in the physical plane. In the case

of a compressible fluid, <j>(x, y) and ip(x, y) satisfy a system of complicated

nonlinear equations, while <pw(u, v) and \J/a)(u, v) satisfy a system of linear

equations. See §2 for details. Therefore, in order that the operators which

transform functions / of one variable into potentials or stream functions of a

compressible fluid should be linear, we have to consider <b and ^ in the hodo-

graph (or an allied) plane.

—-

b

Fig. 2. The image in the hodograph plane of the streamline indicated in Fig. 1.

Several procedures for generating <j>m and \f/(l) from functions of one vari-

able are known.

1. Chaplygin(3) [13], who introduced the hodograph method into the

theory of compressible fluids, applied the method of separation of variables

in order to obtain solutions of this equation. If, in the power series develop-

ment for the stream function of an incompressible fluid, the powers of the

speed, q, are replaced by certain hypergeometric functions of q, then, as

Chaplygin has shown, the series obtained in this manner is a solution of the

compressibility equation(4). (We designate this procedure as the Chaplygin

operator, Pi.)

2. In [3, pp. 23-24] and [5, §2] the author of the present paper intro-

duced a new operator which generates solutions <£(1) and ^(1) of the com-

pressibility equations. The main idea of this method is as follows.

(') The numbers in brackets refer to the bibliography at the end of the paper. Acquaint-

ance with the contents of these publications is not assumed in the present paper.

(4) Recently several authors, for example, Ringleb [19], Kraft and Dibble [15], and so on,

using Chaplygin's method, have given a number of highly interesting flow patterns.

Here and hereafter we understand by the somewhat vague expression "compressibility

equation" either the equation for the potential function, that is, (2.11a), or that for the stream

function, that is, (2.11b), or the system (2.8) connecting these two functions.

■»H



(1.1a)

(1.1b)
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Let 8 and H denote cartesian coordinates! Functions p and p defined by

P + ip = (8 + ÏH) [»1

=  j|~0" - 2!Cn,20"-2 f   l(lh)dlhf\Ki +•••"!

+ i|"l!Cn,ie"-1 f   ¿Hi

-3!Cn,30"-3 J*   dH3f   '/(H2)dH2f   \ffl, + . . .11 ,

P+ ip = i O (8+ ¿H)l")

=  -ílllCn.iO^f   l(Ri)dBl

- 3!C„,3Ô"-3 P   l(Ei)dü3 f   'dlh f   2/(Hi)¿Hi + • • • 1
•'O oí o of o -l

- iUn - 2!Cn,20"-2 f   d H2 f   \( Hi)á Hx + • • • 11

are, in the special case where ¿(H) = 1, connected by the Cauchy-Rie-

mann equations, and can be interpreted as the potential and the stream

function of an incompressible fluid flow. In the case of an arbitrary /(H), <¡>

and p are connected by the equations

1.2) Pe = pn, Pu = - l(H)pe, Pe = dp/dd, ■ ■ ■

and if we choose E.=ft~1pdq, /(H) = (1 — Af2)/p2 where p=p(q) is the density

and M the local Mach number, then p and p can be interpreted as the po-

tential and the stream function of a compressible fluid. For details see [5, §2].

Let us denote as indicated above by (0+iH)^ and í'O(0+¿H)1b> the ex-

pressions (1.1a) and (1.1b), respectively, obtained from (0+¿H)B by the above

procedure. We defined in general the operation P2 by the relation

(1.3) f2[22 («« + ißn)(e + my] = 22 [«.(• + ¿h)'"1 + * o ßn(e + íH)i"i]

where an, ßn are real constants. (P2 can obviously be applied to finite sums

and in some cases to infinite ones, producing potentials and stream functions

of a compressible fluid flow.)

In a joint investigation, Bers and Gelbart [ll], independently of the

author of the present paper, found the same operator, which they then in-

vestigated in a subsequent publication [12]. They term the functions obtained

S-monogenic. Recently Diaz [14] generalized this procedure to the case of

equations of a higher order.
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3. The Operators Pi and P2 can be applied only to a power series develop-

ment of an analytic function of a complex variable; they transform these

series into potentials and stream functions of both subsonic and supersonic

flows(6). Operators (to be denoted henceforth as Ps,«) introduced recently in

the general theory of partial differential equations (see for example [9]), when

specialized to the case of functions tp and >p which satisfy the compressibility

equations, have the advantage that they can be applied directly to functions

(and not only to their power series developments) and they generate solutions

which are defined in an arbitrary simply-connected domain (and not neces-

sarily in a circle with the center at the origin). They transform analytic

functions of a complex variable into stream functions (or potential functions)

of subsonic flows and differentiable functions of one real variable into stream

functions of supersonic flows, in both cases preserving many properties of

the functions to which the operator has been applied, thus serving as a useful

tool in the investigation of flow patterns of a compressible fluid (6).

In the case of the compressibility equation, operators P3,, can be repre-

sented in the following form. Let Z = 8+i\(q), Z = 8—i\(q), where X(g) is a

certain (fixed) function of the speed q=(u2+v2)112 (see formula (2.7)). Let

further F(Z, Z) (see (2.14), (2.16b)) and R.(Z, Z) be some (fixed) functions

of Z, Z and let Q^1 be a set of functions connected by the recurrence

relations

(1) (n+l) in) in) in) (n)      _

iQ,,. + 2P = 0, ¿(2« + l)QK.z    + 2(Q,,zz + FQ ) = 0,   Q.,z m dQK   /dZ.

Then the expression

* - Im [Pi„(f)],

r »    r(2» +1)    (B)

a.4.,   "-»-H^ + SfW+w-
g(Zn)dZn ■■■ dZi\

z„ Jz0 J

where g is an arbitrary analytic function of a complex variable, which func-

tion is regular at Zo, represents a possible stream function of a subsonic com-

pressible fluid flow. In particular, two operators, that of the first kind and

(6) The potential and stream function of a supersonic flow each satisfy an equation of

hyperbolic type. Thus Pi and P2 transform solutions of an equation of elliptic type (Laplace's

equation) into solutions of a hyperbolic one. It is well known that the solutions of both equa-

tions have a quite different character, and therefore these operators can not preserve various

properties of the functions upon which they act.

(4) In contrast to operators of type PJr, (which mainly have been introduced in order to

"translate" properties of solutions of simpler equations into properties of more complicated

ones), Pi and Pj can be used only in a few cases as a tool for investigation of properties of the

functions which they generate.
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that of the second kind, have been investigated in detail. In the case of the

operator of the first kind (k=1), i?i and QÍfl) are determined by the initial

conditions, Ri(Z—Z0,0) = 1, Q1'\Z — Zo, 0) =0. In the case of the operator of

the second kind (k = 2), the corresponding conditions are R2(Z, Z — 2Zo) = l,

Ql2\Z, Z-2Zo)=0, where iZ0 is now a real number;R2=H(2\) and Q2tt)(2X)

are functions of X alone.

We remark that the operator P3i, can be represented also in the form

ñ(1.4b) P3,„(g) =   f      E,(Z, Z, t)f[Z(l - f)/2]dt/(l -
J i=_i

where E» = Jr?,[j_+ 22ñ-iZnt2nQ^], and /is connected with g by the relation(T)

g(Z)=fi_lf[Z(l-t*)/2]dt/(l-P)1i\
We note further that operator P3,i (integral operator of the first kind)

can also be written in the form

(1.4c)

P3,i(g) = Ri\g- fZ [ZFgdZidZi
L       J*„ of z„

+  f     (-   (F f  l f   lFgdZidZi\dZidZ1 +•••!.
J z0 J za\   Jz„ J za } J

See [9] pp. 317-318.
In the case of the integral operator of the second kind the representation

(1.4b) holds for \z\ <2|X|, as does formula (1.4). For 2|X| <\z\ the gen-
erating function of the integral operator of the second kind can be repre-

sented in the form

2    rZ(l - j*)-|2Ce-i)/* » ?(».e>

h L   2   J      A" h (- <*iz)-wi+«M/i
(1.5) E2 = Hi2\)

where Aß are constants, and

,.    ,. («.»0 ^      (n.ji) n-l/2+2((i+»)/»
(1.6) q        = 2-,C>     (- x)

are connected by equations

<0,/O     , (0,m)

g       + 4Fq        =0,

2(« + 2p/3)qx      + gxx        + 4Fg = 0,

n = 1, 2, 3, • • • ; p = 1, 2.

(') In the case of the operator of the first kind, Ps,i, the connection between ^(Z, Z) and

function g(Z) can be defined also as follows. Let us continue \p to complex values of the argu-

ments X and 6, that is, let us consider that Z, Z are two independent variables which are not

necessarily conjugate to each other; $(Z—Zo, 0) is then the value which this function assumes

in the "characteristic'' plane Z = 0. (See [9 p. 317].) We have then i(Z-Z„, 0)=g(Z) +

R,(0, Z) const. (See [9, p. 303].)
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Here F is the function introduced in (2.15b). F can be represented in the

neighborhood of X = 0 in the form

1   °°
(1.8) F = — 2Z a>(- *)2"3,    «o = 5/36, ai = 0, • • • .

X2 _o

We wish to add that the representation (1.5) of E2 can be used to obtain

"mixed" flow patterns. In the supersonic region X has to be replaced by

»A, where A is a real variable, see (49) of [7].

If we choose in (1.5) the complex constants A, so that Im \i~wA{Äi] 9*0,

and if we assume that the integration in (1.4b) is carried out along a curve S

in the complex /-plane which connects t= —1 and t = 1 and lies in | /1 > 1, then

the following inversion formula holds. Let

00

lim   f(M, 6) = Xi(ff) =  £ «"V,
M—l ,=0

limJcWôM) = xi(6) = 31,32t/S(k + 1)_2/3 22 Ä
AÍ—1 ,_0

then (in the case of the integral operator (1.4b) with E2 given by (1.5)) we

have

/(f) = 31/2[2^Im {DoDiW'K- 2it)V% ( \'i(a)r~mdr
J o

+ (- 2¿f)1/6¿ D, f ' [x.(a) - «i°](l - r)"V"\fr
«=i      J o

--(- 2it)-Vti D. f\%) - S-ftl - r)-4V2V
3 «_i      J o

+ (-2¿r)1/,[z?0«r)-¿ZJ»a:")]

(1.10)

where

X«(<r) =   I     ùr-2/3x«(co)aw,
J o

e = - 2it(l - r),

Dq = — 21'2<*-1>+4/337/6i3'2(yfe + l)-i/!(Hi)-i/i^2i

Z»i = 5-l2l*3r*ity*(h + l)~ll3(2k + S)AU

D2= - 21'2(-k~^+1i33-1"lillt(k + lJ-wtHD-i/c^j,

Remark 1.1. In the case where the pressure density relation has the form

p=a/p+A, a and A being constants, that is, in the case of Chaplygin-von

Kármán-Tsien, ¿2 = 1, Q(n) = 0 for » = 1. The same holds in the incompressible

fluid case; in the latter case X(g)=X(g)=lg g.
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Remark 1.2. We wish to indicate another possible simplification of the

theory which consists in replacing the aforementioned function F (see

(2.16b)) by F=Cfk2, where Cis a constant. It is possible in this case to over-

come mathematical difficulties, and to develop a relatively simple theory,

which includes also transsonic and supersonic cases. The aforementioned

functions E, can be expressed in this case in a closed form by hypergeo-

metric functions of a suitably chosen variable, which is a combination of 8, X

and t. For example E2 = H F [1/6, 5/6, 1/2, (iPZ/-2X) ], where F is the hyper-
geometric function, and H is given by (2.14). Let us add that if instead of

X we introduce the variable H = cX2", where c is a suitably chosen constant,

then the compressibility equation, see (2.11b), assumes the form   — Kpu

+lrVHH = 0.

Investigations in fluid dynamics require in addition to the study of

regular solutions the investigation of singularities, for example, sources,

sinks, vortices, doublets, and so on. Since, further, the image in the hodograph

(or an allied) plane of a flow pattern is not necessarily schlicht, various aero-

dynamical problems lead to the study of branch points of functions satisfy-

ing the compressibility equation as well as to the study of the corresponding

Riemann surfaces in the large.

As has been indicated in [9, §5] the operator(8) P3 transforms branch

points of analytic functions of a complex variable into branch points of the

same order of functions satisfying the linear differential equation, so that the

operator P3 can be used successfully for generating and investigating these

singularities.

On the other hand, the operator P3 when applied to analytic functions

g(Z) of a complex variable which possess a pole yields solutions of differential

equations which are infinite of the same order as g(Z) and at the same point,

but which are no longer single-valued. If we apply the operator P3 to functions

(s) It should be indicated in this connection that by using the Chaplygin operator Pi it is

possible to obtain various important types of singularities of supersonic flows, and various

singularities at stagnation points. On the other hand certain singularities which can be obtained

easily by using Pj and the methods indicated in §5 of the present paper cannot be directly ob-

tained by Chaplygin's method. If we wish to represent these functions using Chaplygin's hyper-

geometric functions, we need several series developments, each of which represents the function

in another part of the neighborhood of the singular point. It should be stressed that in con-

sidering the potentials, 4>, and stream functions, ^, in the large, there exists a basic difference

between the incompressible and compressible fluid case: In the first case these functions are in

general defined in the whole logarithmic plane, that is, for all values of X and 6; while in the

case of compressible fluids, it we limit ourselves to the subsonic case, then 4> and 4/ are defined

only for X<0. To the values X = 0 there corresponds M=i{M\s the Mach number). For M>1

the flow becomes supersonic, the equations for <j> and $i become hyperbolic, and the functions

have basically different properties. If one wishes to apply operators to the theory of flows which

are partially subsonic and partially supersonic, it is useful to introduce as the class of functions

to which the operator is to be applied functions g(J), Ç=6+i\(M), defined in the ($, li)-plane.

For M<1, f is complex and for M>\ it becomes real.
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with logarithmic singularity whose real part is single-valued, we obtain

functions whose real as well as imaginary parts are multi-valued.

On the other hand, in connection with the transition to the physical

plane the question of single-valuedness of at least one of the quantities

0(0 or \pw is of great importance, and therefore the question arises of defin-

ing procedures which generate real solutions of the compressibility equations

which are logarithmic or infinite of the »th order and single-valued.

Developing the method of attack used in §17 of [3], §14 of [7] and in

Appendix II of [10], we introduce and investigate in the present paper solu-

tions of the compressibility equations, see (2.11a) and (2.11b), with singu-

larities of the required type. As we shall see, they yield sinks, sources, vortices,

and doublets at infinity in the physical plane.

In §2 we review some results obtained in previous papers and needed in

the following, concerning the form which the compressibility equations as-

sume in different planes, that is, when they are considered as functions of dif-

ferent arguments; in §3 we determine singularities in the logarithmic plane

for an incompressible fluid, singularities which in the physical plane lead to

sinks, sources, vortices, doublets, and so on, at infinity.

In §4 we discuss in more detail some properties (in the hodograph plane)

of singularities in general as well as of special types of singularities in which

we are mainly interested in the present paper. In §5 we determine these

singularities. In §6 necessary and sufficient conditions are derived in order

that a hodograph possessing the singularities under consideration leads to a

flow in the physical plane around a closed contour, and in §7 we derive a

formula (similar to the Cauchy integral formula) for expressing the values of

the potential and stream function in a domain in terms of their values on the

boundary curve.

In §8 we show that the transition from the physical to the hodograph (or

an allied) plane represents in the subsonic case a quasi-conformal mapping.

Finally, in §9 we indicate a system of equations in three variables which can

be obtained from solutions of equations considered in the present paper.

I should like to take this opportunity to thank Dr. Bernard Epstein for

his helpful advice and valuable assistance in connection with the present

paper.

2. Differential equations of the steady motion of a compressible fluid.

Physical, hodograph, logarithmic, and pseudo-logarithmic planes. In this

section we shall describe in a more exact way certain notions mentioned in §1,

such as physical, hodograph, logarithmic and pseudo-logarithmic planes,

and indicate tne partial differential equations which the potential and stream

functions satisfy in each of these planes. Finally, we shall determine the func-

tion pair representing the mapping of the pseudo-logarithmic plane into the

physical one.

Any actual flow of a fluid takes place in three-dimensional space. How-
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ever, a large class of problems possesses the special character that the velocity

vector has the same magnitude and direction at corresponding points of all

planes parallel to some fixed plane('). Evidently in this case it is sufficient to

study the motion in one representative plane, denoted as the physical plane.

Let the fluid motion be referred to a system of orthogonal cartesian co-

ordinates in this plane, denoted by x, y, or using complex notation, by

z = x+iy. The velocity vector q at any point (x, y) lies in this plane, and its

components are denoted by u and v respectively. The magnitude of the

velocity (the speed) is q; the angle between the positive x-axis and the

direction of the velocity vector is called 8. The assumption of the law of

conservation of matter leads in the case of a steady flow to the continuity

equation

d(pu)       d(pv)
(2.1) _^i+_^L»0.

dx by

Here p is the density. The assumption that the flow is irrotational is expressed

by the equation

du      dv
(2.2) -= 0.

dy     dx

It follows from (2.1) and (2.2) that for every flow we can introduce a

potential p and a streamfunction p, such that

dp      I   dp dp I   dp

dx       P   dy dy p   dx

Remark 2.1. The potential and streamfunction, p and p, will in the fol-

lowing be denoted as components of the flow. Henceforth we shall consider

only adiabatic flows for which the thermodynamical equation of state may

be expressed in the form

(2.4) p = apt + ß

where <r, ß and y are constants. By combining the Bernoulli equation

q2/2+fp0 dp/p(p) =0 (where po is the pressure at a stagnation point) with

the equation of state, we can eliminate the pressure, and we obtain

/       7-1    \Uti-»
(2.5) p = ^l--_g2j

where the units of mass and velocity are so chosen that at a stagnation point

p = l, and (dp/dp) = 1.

(') Turbulent flows are evidently excluded by these assumptions. According to the von

Mises hydraulic hypothesis [21], this is admissible for a rather large class of flows.
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Since q2=<t>l+<t>l, <px=d<p/dx, • ■ • the equations (2.3) and (2.5) represent

a system of three (nonlinear) partial differential equations for <j>, \p and p.

An important simplification in the study of the motion of a compressible

fluid has been achieved by Molenbroek [18] and Chaplygin [13]. They

showed that if <f> and \p are considered as functions of q and 8 instead of x

and y (see figs. 1 and 2, pp. 453, 454) they satisfy the system

d<t>      q   d\f>         d<¡>            1 - M2 cty<
(2.6) -Z-JLÏZ,       _Z =-Z

d6       p   dq dq pq       dd

where JlZ = g/[l — (7— l)g2/2]1/2 is the Mach number. Since p is a known

function of q—see (2.5)—equation (2.6) represents now a system of two

linear partial differential equations.

In order to simplify the form of the equation (2.6) it is convenient to in-

troduce in the subsonic case instead of g a new variable

(2.7)

1     ri - (1 - M2y'2/i + k(i - iiz2)i/2y"'i

~~2  g Li + (i - M2y~2\i - h(l - M2)1'2)   _T

" \t + 1/

1/2

h = [—   7)    »   T>1.

The plane whose cartesian coordinates are 8 and X will be denoted as the

pseudo-logarithmic plane(10).

In the pseudo-logarithmic plane equations (2.6) assume the form

(2.8) 4, - W» = 0, ¿x + W1/2 - 0, <t>, m d<b/dd,

where

1 - M2
(2.9) l = l(\) =-—.

P2

It is convenient in the following to use the complex notation,

Z = 8 + i\, Z = 8 - iX,

d        1/d d\ d        I/o d\
(2.10) -= —(-i— ),       -=•-— ( — +i— ),

dZ       2 \d8        d\J dZ       2 \d0        d\/

that is

(10) In the present paper the potential and the stream function, $ and \p, as well as some other

quantities, are considered in different planes; that is, they are considered as functions of dif-

ferent pairs of variables. In passing from one plane to another, new symbols should be intro-

duced for <t> and <¡/, since they are different functions of their respective arguments. For instance,

when passing from the physical plane to the (9, X)-plane, we should write <t>0)(6, \)^<f>[x(6, X),

y(0. ^)]i and so on. However, for the sake of brevity we omit the superscript and in the follow-

ing always write <t>, <l>, and so on, no matter in which plane the functions are considered.
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d        d 3

ae ~ dz    dz'

Equations (2.8) can now be written

(2.11) pz - illl2Pz = 0,

±,i(±-±).
d\     \dz    az/

Pz + il1,2pz = o.

Eliminating p and p respectively, we obtain for p and p the equations

(2.12a) pzz - iN(Pz - Pz) = 0, (2.12b) Pzz + iN(pz - Pz) = 0,

Y+l M*
(2.12c) N = -

8      (1 - M2)3'2

FlG. 3. A flow (in the physical plane) around a circle.

Fig. 4. The image in the hodograph plane of a flow around a circle.

Remark 2.2. We note that in the pseudo-logarithmic plane the equations

for the potential and stream functions appear in the cannonical form.
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Instead of p and p, it is often more convenient to consider the "reduced"

potential and stream functions,

(2.13a) p* = Hp, (2.13b) p* = H~V,

where

(2.14)

[/• (Z-Z)H "I

-   I N(r)dr

= [1 - M2]-1'4!! + (y - l)^2^]-1'2^-1'.

Fig. 5. The image in the logarithmic plane of a flow around a circle.

Fig. 6. A flow (in the physical plane) around a Joukowski profile.

The functions p* and p* satisfy the equations

(2.15a)     Pzz + PP* = 0,

where

(2.15b)      Pzz+Fp* = 0



1947] SUBSONIC FLOWS OF A COMPRESSIBLE FLUID 465

(7 + 1)M4T (7 - 3)M4 + (12 - &y)M2 - 16 "I
" 64 L (1 - JZ2)3 ~J '

F =   (7 + 1)M* r- (37 - l)Jf« - 4(3 - 2y)M2 + 161

64 L (1 - ÜZ2)8 J'

The plane whose cartesian coordinates are the velocity components u and

— v (or polar coordinates g and —6) is denoted as the hodograph plane(n).

By the transformation

(2.17) 2 = i log q,        q" = U — iv = qe*®

we pass from the hodograph plane to the logarithmic plane, whose cartesian

coordinates are 6 and

(2.17a) A = lgg.

Fig. 7. The image in the hodograph plane of a flow around a Joukowski profile.

Examples. In figs. 3, 4, 5 a flow around a circle in the physical plane, and

its images in the hodograph and logarithmic planes are indicated. In figs. 6,

7, 8 the corresponding images for a flow around a Joukowski profile are given.

We note that figs. 4 and 5 are doubly covered: the images lie on two sheets,

the points 2, 3, 4 lying on one, the points 6, 7, 8 lying on the other sheet.

Figs. 7 and 8 are partially doubly covered. The point Vn corresponds to

z= =0.

(u) In figs. 1 and 2 a stream line in the physical plane and its image in the hodograph plane

are indicated.
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If the potential or the stream function is known in the pseudo-logarithmic

plane, we can express it in the physical plane by the use of the following rela-

Fig. 8. The image in the logarithmic plane of a flow around a Joukowski profile.

tionships between the two pairs of independent variables:

(1 - 3f2)1'2cos9

"SHr
sin 6

Pe-^x \d\
Q

.}

(2.18a)

= 2 Re

r(i - M2yi2cose       sin e   n  )
I-Px-PeUeV

- sinö + ¿(1 - M2)1'2 cosd{/F ?p 1 HdzX ,
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Jl  ir     (1 - M2)1/2sin0          coso    "I

lL-*> +-*J
r(l - ilZ2)1'2 sin 8         cosö    "1    )

(2.18b) + I-fc+"-*»UJ

mcosô+i(l-ilZ2)1/2sine-|        )-H—M?p
(Re = Real part) ; or, replacing the derivatives of \p by those of <p, see (2.8), by

r    1    (r(l - M2y'2cos6 sine    "I

"-)Ml—;—*>-v*.j*
r(l - M2)1/2cosö         sino    "I    )

(2.19a) + I-<t>,+-*x]<»>

( rr(l - M2)1 >2 cos 8+ i sin 81        )

r    1    <;r(i - ÜZ2)1/2sinÖ coso    "1

y-JMl—-,—*"+—"r
r(l - M2)1'2 sin 8         cos 8    1    )

(2.19b) +-4»-4x \dB\

H(l - M2)1'2 sin0 -i cos 8-]        )

-^r--M-
Definition 2.1. A flow (a vector function) J= (<p, ip) is said to be regular

in the domain 25 of a plane "iß if the quantities (<p, \p) are functions of two

real variables (representing the cartesian coordinates of ^3), which functions

are regular in 35.

3. The duality between the flows of an incompressible and a compressible

fluid. In considering the two-dimensional flows of a perfect fluid, it is con-

venient to introduce a certain correspondence principle between subsonic

flows of a compressible fluid and flows of an incompressible fluid. Naturally

such a correspondence can be defined in various ways. On the other hand,

one can formulate certain requirements which will simplify the form of this

correspondence.

First, it is convenient to consider the flows in a plane where <p and yp satisfy

a linear homogeneous equation, since in this case the principle of superposition

holds. Second it is natural to require that the equations for <p and \p have the

simplest form possible, which for linear equations is the canonical form.

In the case of a compressible fluid, these requirements lead to considering
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the potential and the stream function in the pseudo-logarithmic plane. In the

case of an incompressible fluid, p and p satisfy in various planes (that is, in

the physical, hodograph, logarithmic planes) the same equation, namely

Laplace's. Since, however, we consider the compressible fluid motion in the

pseudo-logarithmic plane, it is natural to introduce the correspondence with

incompressible fluid flows defined in the logarithmic plane, since in this case

the equations for p and p have the canonical form, and the transition from

the pseudo-logarithmic plane to the logarithmic plane means only a stretch-

ing: one of the coordinates, 8, is the same, and for the second coordinate we

take in the case of the incompressible fluid

(3.1) A = lgg

and in the case of the compressible fluid the quantity X, which is defined by

(2.7) and which reduces to lg g as the compressibility effect goes to zero.

Each of the operators mentioned in §1 can be interpreted as a correspond-

ence rule which associates with the complex potential of an incompressible

fluid flow (defined in a domain 33) a stream function of a compressible fluid

flow which is defined in a domain S3'. However, as we mentioned before,

operators Pi and P2 act only on power series developments, and therefore can

be applied only to functions which (in the hodograph plane) are defined in a

circle with the center at the origin(l2).

The operator P3,« (k=1 or 2) generates solutions which are defined in

any simply-connected domain which includes the origin. All three operators

act primarily on functions which are regular in the domain in which they

are considered, and they produce solutions which are regular in the domain in

which they are defined. It is, however, possible to extend the operator Pi so

that it produces functions which have singularities in the supersonic region

and/or in the subsonic region at stagnation points. (For details see [15, 19].)

On the other hand, in applications we also need other types of singulari-

ties. As we shall see in §4, complex potentials of an incompressible fluid flow

have branch points(13), poles and logarithmic singularities, around points

other than the origin, in the hodograph plane.

(u) We note that we are often interested in considering stream functions in domains

different from a circle. The methods for analytic continuation of solutions obtained in this

manner are comparatively little studied. A method of this kind has been indicated in [7, §17]

where a representation in a domain (of the hodograph plane) which is bounded by two arcs of

concentric circles with center at the origin, and by two rays from the origin, is derived.

(13) For instance, the complex potential in the physical plane around a curve of oval shape

is w{z) = Uz—m\g (z—a)+mlg (z+a) where U (speed at infinity), m and a are real constants.

We obtain for the corresponding potential g(z) = w[z(Z)], Z=0+ik, X=lg q, in the logarithmic

plane g(Z) = U[a*+2am(U-ei^(-iz))-i]l"-m lg { [(a»-r-2a«(r/-exp (-iZ))"1 ]"*-»}

+m lg {[(a?+2am(U—exp ( —£Z))-1]"2+a}. Examples of complex potentials in the logarithmic

plane which lead to flows in the physical plane around curves of other shapes can be found in

[8] and [10, Appendix IV].
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Operators P3,« can be easily extended so as to act on functions possessing

these singularities; see [9, §5]. However, as we shall explain, it is con-

venient to use operators P3i« only in the case of branch points, defining the

correspondence in the case of poles and logarithmic singularities in a different

way(u).

It is natural to require that, insofar as possible, the stream functions and

the potential functions of compressible fluid flows behave in the pseudo-logarithmic

plane at singular points in the same manner as the corresponding functions for

incompressible fluids in the logarithmic plane; that is, they become infinite of

the same order, the geometrical structure of the stream lines and potential

lines in a sufficiently small neighborhood of the singularity is essentially the

same, and so on.

As has been shown in §5 of [9j, operators P3,«, k= 1, 2, preserve the loca-

tion of the singular point as well as the order of infinity. In the case of branch

points the generated solution has a branch point of the same order; however,

in the case of poles, instead of single-valued solutions we obtain solutions of

which both components are many-valued. See, for example, (5.2) of [9]. In

the case where / has a logarithmic singularity but one of the components is

single-valued, both components of Y3iK(f) are many-valued.

Let us now explain why single-valuedness of at least one of the com-

ponents (that is, of the potential or stream function) is of importance for our

purposes.

Poles and logarithmic singularities in the logarithmic plane are, as a rule,

images of doublets, vortices, sinks and sources at infinity in the physical plane.

See §4. It is natural to require for compressible fluids that at infinity the

speed is constant and that the motion has the same character as in the case

of an incompressible fluid.

It follows from (2.18a), (2.18b) and (2 ;9a), (2.19b) that if the derivatives

of at least one of the functions, <p or \p, are single-valued, then, if we move

around the singular point, the functions x = x(u, v), y = y(u, v) can each in-

crease at most by a constant, say X, Y. In most cases we have at infinity a

linear combination with constant coefficients of these singularities, and the

constants have to be so chosen that the quantities X and Y vanish, and there-

fore x(u, v) and y(M, v) are single-valued. This is the case for an incompressible

fluid, and if this property were not preserved, the flow would completely

change its character: indeed suppose that x(u, v) and y(M, v) are multi-

valued; then the functions u(x, y) and v(x, y) are periodic, that is, in the

(") This means that if a complex potential g is given which possesses poles and logarithmic

singularities, we decompose it, writing g=g*-r-22a,.g(''), where g* possesses as its only singu-

larities algebraic branch points; a, are constants and g("> functions (normalized in a certain

manner) each of which possesses a pole or a logarithmic singularity. The stream function ^ of

a compressible fluid flow corresponding to g will be ^ = Im [Ps,«(i*)]+2Za1^('') where t1") are

certain stream functions with singularities introduced in §5.
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physical plane every value of u, v is assumed infinitely often.

Remark 3.1. The question whether other types of singularities—in par-

ticular those for which both components are multi-valued—are of interest

in hydrodynamical applications remains open. The first step in answering this

question would consist of studying the behavior of flow patterns in the

logarithmic and physical planes in the neighborhood of these singularities.

4. The behavior of certain types of flows in the case of an incompressible

fluid. Following the line of our approach, that is, applying the principle of

correspondence described in §3, we have at first to describe the behavior in

the logarithmic plane of various types of flows of an incompressible fluid,

and in particular those possessing singularities such as sinks, sources, vortices,

and so on.

Let us consider the flow of an incompressible fluid around a closed curve,

say an air wing profile (see fig. 6), and let us assume that neither the velocity

vector nor the circulation vanish at infinity.

The complex potential in the physical plane (2-plane) may be expressed,

for \z\ sufficiently large, in the form:

M

(4.1) w(z) = q0z + m log z + 22 0nZ~", <?o 9a 0, m t¿ 0,
n-l

where qo = <Zo exp (ißi) is the velocity vector at infinity and the real constant

= m/i is the strength of the vortex at infinity.

For the velocity vector q we obtain by differentiation

m       "
(4.2) g = g(z) = g0 H-22 nanz-n-\       q = q exp (- id).

Z n-l

Let f = l/z, so that for |f| sufficiently small:

(4.3) w(z) = — - wilogf + ¿a„r
r n-l

and

00

(4.4) q(z) =~o + mt-22 nant«+\
n-l

Since îmî^O, series (4.4) can be inverted, in some sufficiently small neigh-

borhoods of the points f = 0, and we obtain

q~ — äo        "    b„
(4.5) f =-+ 22—-r(g-So)^1

m n_i mn+1
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where the b„ may be expressed in terms of the an and m.

Inserting (4.5) into (4.3), there results:

mqo       . r _ A bn "1
w[z(q)\ = -— - wtlog \(q - g0) + 2-, ~ (3 - Qo)n+1

(4.6) 5-Qo L n-l W J

+ Power series in (<? — ~"0).

For \q — q0\ sufficiently small, the second term in (4.6) may be written:

- m log    (c? - qi) + 22 -7 (9 - 9o)n+1    = - » log (Ç - $„)
(4.7) L mn J

+ Power series in (q — <?0).

Therefore, for \q — qô\ sufficiently small :

mqo .
(4.8) w[z(q)\ =-—-— m log (q — t?0) + Power series in (q — q"0).

<?- Qo

As before let Z = 0+¿\, X = lg q, Z0 = 8o+i'ko, Ao = lg go- For sufficiently

small |g—g0| and therefore for sufficiently small \2 — Z0\, (4.8) becomes:

r   _ , m exp (— j'Zo)
Wi(Z) = w[«(2)] =-—§±-'——-

exp (— iZ) — exp (— iZo)

— m log (exp (— iZ) — exp (— ¿Z0))

+ Power series in exp (— iïi) — exp (—i20).

Since exp(—¿Z)—exp(—120) has a simple zero at Z = 20, (4.9) may be

written :

_ 9M _ _
(4.10)     TFi(Z) = —-m log (Z - Z0) + Power series in (Z - Z0).

Z — Zo

This is the expression for the complex potential in the logarithmic plane.

It is clear that the singular part of (4.10) is not influenced by the regular part

of (4.1), but depends only on the velocity vector and vortex-strength at in-

finity.

Writing m = u§' +irto2>, we have for the potential and the stream function

in a sufficiently small neighborhood of Z = ZÜ the expressions

P =

(.»,„ . (2)._ -   .

Po   (9 — do) Pa   (A — Ao)

(A - A„)2 +(9- e0)2       (A - A„) + (6 - do)2

— tm arctan I-1 + • • • ,
\e-e0J
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Mo   (A — Ao) wo   (8 — do)
Wf = -^-, ,„   .   T.-ZZ +

(4.11b)
(a - Xo)2 + (e - e0)2     (a - Xo)2 + (e - e0)2

+ yig [(A-Ao)2+(e-e„)2]+--.,

(4.11c) Mo    = 0,       p = (m/i)pn

where dots indicate terms which go to zero as 2.^>Zo and therefore can be

neglected in considering the behavior of <p~ and $' in a sufficiently small

neighborhood of Z = Za.

It is possible to get the same result in a somewhat different way: namely

we write <f>~ and^ in the forms (4.11a) and (4.11b), respectively, and then

determine the constants Uo\ u02) so that x = x(0, h)=x+iy (which can be

obtained using the formulas analogous to (2.18a), (2.18b)) is single-valued at

the singular point 80, X0. A formal computation yields (4.11c). We shall use

this last procedure in a compressible fluid case.

Following our principle of introducing (in the pseudo-logarithmic plane)

for the compressible fluid case functions which have a behavior similar to

that of the corresponding functions in the logarithmic plane for the incom-

pressible fluid case, we shall consider flow patterns whose stream functions ^

possess, as singularity at Z=Z0, a linear combination of a logarithmic singu-

larity and two independent singularities of the first order.

Definition 4.1. Suppose a flow J(<j>, lA) (of a compressible or incompres-

sible fluid) has a singularity at the point (dg, X0). If at least one of the func-

tions, <f> or \p, is single-valued at this point, the singularity of J at (B0, Xo) will

be said to be of type S •

The flow 5 = log [(0-0o)2+(a-ao)2]/2, ^ = arctan ((0-0o)/(a-a)) repre-

sents an example of a flow possessing a singularity of type S.

As we indicated in §3, the above property plays an essential role for our

purposes. In the following sections we shall describe a method of generating

required singularities of type S •

5. Flows with singularities of type S. Classical methods in the theory of

partial differential equations yield almost immediately two independent flows

with logarithmic singularities of type S •

Let us denote by \piL-l) and <p(I"2) the fundamental solutions of (2.11b)

and (2.11a), respectively.

We shall show that

(5.1) ycL.«^.« ^«.*))f ft »1,2,

define two linearly independent flows. (The superscript L symbolizes that

either the stream function or the potential function has a logarithmic singu-

larity.)
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An analytical representation for p<-L<1'> and #<L'2) can be given immedi-

ately. We have

(5. 2a) *«•" = A (log f + log f )/2 + B,

(5.2b) *<£>2' = C(log f + log f)/2 + D,

where f = Z-Z„, f = Z-Z0, Z = 8+ik (see (2.10)), Zo = 0o+iXo, - » <X0<0,

A = H\l -  f     f   FdZidZi
(5.3a) L       JZ°^°

/, z p z   / p z, c z, \ _        -i
I    F(   I FdZniZ»)dZidZx - • •   ,

z0 J.z0    Wz„  ^z0 / J

Lof z„ of z,

f Z   (-Z    /   n Z,   (• Z, V _ -i
- I      l_ .p-f   I       I     G¿Z2¿Z2)áZi¿Z2 H-,

z c z
j    GdZi«

Z,
(5.3b)

1   d{H~lA)       1   ¿(tf-M)

f        dZ f        dZ

(see (2.13)), and

(5.4a) L       J'-Jz'

+ 1      \-   P[   \       |_   PdZ2dZi)dZidZ1--- • •],
of Z„   of Z„ \of Z0     J Z„ / J

i»=h-1 r r r Kdzjzi
{-Jz0 Jz„

/'z cz   i czi c*o       _\        n
(5.4b)

Z  f z
C = E-1\ \    PdZidZi

1   d(HC)       1   5(£?C)

f      ÔZ f      dZ

By (2.11) we obtain that the first component of y(t,1) and the second com-

ponent of J<-L-2ï are given, respectively, by

(5.5) p^^ifd^Pz^dZ-rpz^dZ),

<5.6) piL" = - if (rmpzL"dz - f1,2pzL'2)dZ).
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Remark 5.1. It follows from (2.11) that the integrands of the right-hand

sides of (5.5) and (5.6) are complete differentials. Clearly, 7<£'«(<£<£.*>, ̂<¿.*>),

£ = 1,2, are flows with singularities of type S. The coefficients of system (2.11)

are independent of 0, and therefore if we differentiate the components of the

y(£.*) with respect to 0 we obtain new flows

/dn¿iL,k) ßnJ,iL,k)\

(5.7) 7(».*>(-^—-,   -^-—), ¿=1,2,
\   ae» aen   /

whose components are infinite of »th order at the point (0o, Xo).

Remark 5.2. We note that when the coefficients of the equation depend

upon both variables, we obtain singularities of higher order by taking partial

derivatives with respect to parameters Xo or 0O.

Every J^n'k), k = l, 2, has a singularity of type S , since at least one of the

components (being a derivative of a single-valued function) is itself single-

valued. In the case where I in (2.8) equals 1 and X = X, that is, when equations

(2.8) reduce to the Cauchy-Riemann equations, the expressions

/A - A„\
(5.8) <b«-» = V(L'2) = arctan (-)

V e - e0 /

[see (4.4) and (4.5a)] are infinitely-many-valued functions, while

(5.9) *<"■»> = Re [(e + ¿X)-»],       V"™ = Im [i(8 + i\)~n], « = 1, 2, 3, • • -,

are single-valued. (Therefore in this case both components of the y<n*>'s are

single-valued.) We shall show that a similar situation holds in the general

case, considered in the present paper.

We prove at first the following lemma.

Lemma 5.1. Let (as before) Ç = Z — Za, f = Z — Z0, and I, be a circle of radius

e and center at (0O, X0). Then

(5.10) lim   f f "f "¿f =0        (for m - n + 1 ¿¿ 0 or m + n + 1 > 0)

(5.11) = 2« (form = — 1 and n = 0).

(5.12) lim   I   ff» lg fdf =   lim   f f «f » lg fd{ = 0    (for m + n + 1 > 0)
i->0   J i e->0   J i

where m and n are supposed to be integers.

Proof. (5.10) follows immediately from

(5.13) j   f"fndf = iem+"+1 |      e^m-n+1)*d<p, f = «e**

(5.12) can be derived analogously.
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Lemma 5.2. The increments A^^-1' and A^(L-2) if we move along a simple

closed curve, counterclockwise, surrounding (0O, X0) are

(5.14) A*u>.H-27r[i'(Ao)]1/2ZZ(2Ao)

and

(5.15) A^-2> = - 2*-p'(Ao)]1/2/ZZ(2Ao)

respectively, where I and H are the functions defined in (2.9) and (2.13) respec-

tively.

Proof. We have by (2.8)

(5.16) A¿LA) = if t'Vr'dt - féfí = - 2 Im [y* WV],

(5.17) A*"" =-ij>   ll%?Mâ! - ^df) = 2 Im y fXW]

(Im = imaginary part of), where <f means integration in the counterclockwise

sense along a smooth simple closed curve which surrounds f = 0, that is, the

point (0o, Xo).
Remark 5.3. The integrands of (5.17) and (5.18) are, naturally, com-

plete differentials. Note that these integrands are single-valued in the schlicht

0X plane.

Since l1'2 and A are regular at (0o, X0), we can develop /1'2^r<t'1> in the

neighborhood of f = 0 in a series of f and f. By (5.2a), (5.3a), (2.9), (2.13)
we obtain

L\ ¿I La La ¿O

(5.18) l^ = lo + -f - -f - -f2 + -tf- T?2+--- ,
2t 2i 4 2 4

1 l—l i_l i_2 l—2 I—i _
(5.19) /-1/2 -. _+        f _ f _        fi +        tf _ _-f» + . . . ,

/o        2i 2t 4 2 4

Ai Ai hi (hi \ _      Â2.
(5.20)    ii = A„ + -r--?--r2 + (-+M,i)tf--?2+---)

2t 2i 4 \2 / 4

1       A_i A_i .      A_2 /A-2      Cii\
c = - + —f- — ?-—f2+ (—- + —)f?

Ao       2t 2* 4 \ 2 Ao /
(5.21)

4   f  +

where(16) /„ and A„ are rea/ constants which depend upon Xo, and Amn and

(") Note that the power series development of the expression in the bracket on the right-

hand side of (5.3a) has the form 1 + Cnff-r- • • • .
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Cmn are real constants which depend upon 0O and Xo.

According to (5.2a)

im y ** w]

= Im iy   I1'2 \j- + J ¿rdog f + log f) + J5r] df.

In a sufficiently small neighborhood 5Î of f = 0, the expressions /1/2.<4,

/1/2.<4f, /1/25f, and so on, can be represented in the form of uniformly con-

vergent series in f and f.

If we choose I« for the integration curve and assume that e is so small

that IíCíK, then the integration can be carried out termwise. After carrying

out the integration, we pass to the limit e—»0.

By (5.18) and (5.20)

r 1   A       1 1       höh
(5.23)      i1'2 \ — —+ -¿f(igr + ig?) + £f = —+•••.

L.2    f       2 J       2f

where dots represent terms of the form 7mnfm?" or 7mnf*,?"0g f+lg f) for

which m+n + l>0 and which according to Lemma 5.1 (after the integration

is carried out and e—»0) converge to 0, and therefore can be neglected.

According to (5.12)

T f   1   Wo    1
(5.24) - 2 Im     ®-dn = - 2icloho

which yields the first relation of (5.14), since Zo= [¿(Xo)]1'2, ho = H(2\o)-

The second relation, (5.15), can be proved analogously.

Lemma 5.3. $(lil) is a single-valued function (in the schlicht 8\ plane.)

Proof. In order to prove the above statement, we shall compute the

increment A0(1,1) in a manner similar to that used in Lemma 5.2, and show

that this increment equals 0. By (2.8)

(5.25)        AVM>--2to[yr*r<4

By definition, see (5.7), (2.10),

(i,i)    a^«"1'     í A     i a     i
(5.26) *   =-^- = T7+Ty+T(^ + ^)(lgf + lg?)

+ Br+ B},

and
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a.«      At      1   A        1   A}       1   A{       1
(5.27) *   -f-7?+7-5?+77+Tu..+-a*f+w>

+ B[( + Aff.

Now we proceed as before, that is, develop the above expressions in power

series, integrate termwise along I«, and then pass to the limit e = 0. It is clear

that only the first three terms of the right-hand side of (5.27) can contribute

terms which do not vanish. According to (5.18) and (5.20)

— +
(1   A      Ar       1   A? \ l0ho      hoh   1

-+ -J+—[+...)_s_!Lí_jü:_
2   f2       f        2    f              / 2f2       4*    f

where dots again mean terms whose contribution will be 0. According to

Lemma 5.1

r//     loho      hoh   1 \    1
(5.29) -2te[f(--+-7+...)«\-0,

«
which means by (5.25) that Ar/>(1>1) = 0, that is, that 0a-1' is a single-valued

function in the schlicht 0X plane.

Lemma 5.4. ^<'.2> is a single-valued function (in the schlicht 0X plane).

The proof of Lemma 5.4 proceeds exactly in the same manner as that of

Lemma 5.3. As before,

(5.30) »** — *$?"{£*«-#**l\

for z'-1/2^1,2) we obtain a development similar to that of Z1/^1,1' with the

difference that l0 and A0 have to be replaced by l//0 and 1/A0, and ln and An,

»>0, by /_„ and A_n. As before we obtain finally

(5.31) A«p.2> = 0

which means that \p^-2) is single-valued. The ^"-^'s and \p^n-2)'s, n = 2, 3, • • -,

being derivatives of single-valued functions, see (5.7), are also single-valued,

so that both components of the flows J(n'k), « = 1, 2, • • -, k = 1, 2, are single-

valued.

Remark 5.4. We note that Lemmas (5.3) and (5.4) can be obtained as

follows: since by going around the singularity ^f*"1', <p<-LM increase by con-

stants, their derivatives are single-valued at the singular point.

By adding to 0<B'*> or ^<».*> solutions of (2.12a) or (2.12b) which are

regular in a given domain 53 (situated in the region 8 = E[X<0]), we obtain

flows with the above singularities and satisfying the given boundary condi-

tions. For instance, by an appropriate choice of ypi, we obtain a flow for
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which

(5.32) p = p(L.v + p1

vanishes on the boundary b of the given domain S3 and which has at (80, Xo)

a logarithmic singularity (b is supposed to be sufficiently smooth). Similarly

we can determine a function

(5.33) p = p<L-» + Pi

such that dp/dn = 0 on b.

The existence of pi and px follows easily from classical theorems concern-

ing the existence of regular solutions with prescribed boundary values of

linear partial differential equations.

The flows 7<i'« and 7<£>2> are defined by the equations (5.2a), (5.2b),

(5.5) and (5.6). The flows ?<»•« and J<-n-2> for w = l, 2, 3, • • • are obtained, as

indicated in (5.7), by differentiating n times, with respect to 6, the functions

^(¿,i)j 0(£.i) and p(L'2\ p<-L'2> respectively. The question may arise as to

whether for some index n (and hence of all higher indices) the two flows 5f(n,1)

and 7(B,2) are not essentially the same—that is, whether functions ^-(n-1)

and ^<B'2> (and likewise pt"-1) and pln-2>) are not linearly dependent.

To show(16) that the flows 7(B,1) and Jin-V are always distinct, we may

proceed as follows : The flows 7(i,1) and J^L-2'> are surely distinct, for in one

case the stream function is single-valued and in the other case multi-valued

(and likewise for the potential). Now, the potential functions of the flows

yu.n anc] ya.2) are given as follows:

(5.34)

(5.35)

(1,1) (L.l) (L.l)    ,        (L.l) 1/2      (Z.,1) .(¿.1\
p = pe = pr + pf =  ll     (p( — p}        )

= il1'2 [j A (j - j\ + j (A{ - Ai) lg GÍ) + (Bf - 3r)],

(1,2) (L,2) (L,2) (L,2)
P        — Pe       = pt       + P;

\ C(y + y) + y (Q + Q) lg (ff) + (Z?f + D).

If these two flows, or any of the higher-order flows obtained from them

by the aforementioned differentiation procedure, were linearly dependent, it

is clear that the most strongly singular terms would have to be proportional ;

that is, the following equality would have to hold:

wàqt1 - f-1)
(5.36) -= constant.

c«-1 + r1)

Taking account of the definitions of f and f, this may be written:

(") The author's original proof has been simplified by Dr. Bernard Epstein.



1947] SUBSONIC FLOWS OF A COMPRESSIBLE FLUID 479

ill'2A(- 2t(X - Xo))
(5.37) -= constant.

C(2(0 - e„))

Now, since I, A, and C each approach limits (t^O), it would follow that

limj„j0,x_xo [(X—Xo)/(0—0o)] exists with X and 0 approaching their respective

limits independently. Since such a limit does not exist, it follows that the as-

sumption that the potentials <£(n-,) and <£(n'2) are linearly dependent is in-

correct. Similarly, the flows 7(B,1) an^ 7<B,2> are distinct for all ».

6. The transition from the pseudo-logarithmic to the physical plane.

Conditions that \p(0, X) defines in the physical plane a flow around a closed

curve. As has been indicated in §5, the introduction of singularities of type S

enables us to define flow patterns, see (5.34), in the pseudo-logarithmic plane,

which have in this plane a behavior similar (in the sense indicated in §3) to

that of the flow patterns of an incompressible fluid in the logarithmic plane.

As we have also stressed, the problem arises to determine the conditions

that the flow defined in this manner in the pseudo-logarithmic plane will

represent a flow around a closed curve in the physical plane.

In the following discussion we shall derive necessary and sufficient con-

ditions to assure this.

Lemma 6.1. Let the flow J be regular in a bounded simply-connected domain

S3,S3C8 = E[X<0]. The image ty(b)ofthe boundary curve bofSß in the physical
plane is a closed curve.

The statement of the lemma follows immediately from the fact that the

integrands of (2.18a) and (2.18b) are exact differentials; see §15 of [7].

If a flow has a singularity of type S at (0O, X0) then either <p or ip is a single-

valued function and, according to (2.19) or (2.18), x and y increase by con-

stants if we go around the singular point (0O, X0).

Definition 6.1. The constants X, Y by which the functions x(8, X) and

y(0,X)—see (2.19a), (2.19b) or (2.18a), (2.18b)—increase if we move once

counterclockwise around a singularity of type S of a flow J will be denoted

as T-periods. (The letter T is suggested by the expression "transition to the

physical plane.")

We proceed now to the determination of the T-periods of the singularities

of the flows J<-LA), ya-k), k=l, 2, introduced in §5. Since the integrands of

(2.19a) and (2.19b) and of (2.18a), (2.18b) are complete differentials and

therefore the integration can be carried out along an arbitrary simple

closed curve which surrounds (0O, Xo) and has the desired orientation, we

choose for the integration curve again the circle I, with center at (0O, Xo) and

radius «; in the course of our further discussion we shall assume that e—»0.

Thus our considerations will represent a repetition of the method applied in

§5, with the difference that the factor I112 of (5.16) has to be replaced by

( — sin 8+i(l — AZ2)1'2 cos 8)/qp or similar factors, and that we have to take
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the real part of the integral <f> instead of its imaginary part. Let

- sin 8 + i(l - M2)1'2 cos 8

(6.1) q~P

= («oo + ißoo) + (an + ißn)C + (au + ißn)f + ■ ■ • ,

cos 8 + i(l - M2)1'2 sin 8

(6.2) qp

= (a*o + ißoo) + (au + iß*i)C + (a*2 + iß*u)f + • • •

be the series developments of the above functions; amn, ßmn, aZn, ßZn are

supposed to be real constants which depend on 0O and Xo.

Lemma 6.2. The T-periods of the flow 7(L,1) are

(6.3) X<L-» = - 27TÄO0OO,        F««« = - 2t*o/S?o

where ho=H(2\o) is the quantity introduced in (5.20) andßoo andßo\ are defined

in (6.1) and (6.2).

Proof. As we have indicated, we have to compute the power series de-

velopment of the integrands of (2.17a) and (2.17b), assuming that \\i(z,y>

is substituted for pz-

According to (5.2a) and (5.20)

(L.i)       1   A       1 /l   ho \
(6.4) Pz= -- + -Az(lgï + lg?) + Bz = [j j + ■ ■ ■ j

and therefore

- sin 6 + i(l - M2)1'2 cos 8    a,i)       1   ^o(«oo + ißoo)
(6.5)    -Pz      =—-+••••

qp 2 Ç

By (2.17a)

(           r r 1   h0(aoo + ißoo) 1     )
X<*-» = 2 Re ^ lim   I-— + ■••  \dt}

(6.6) Ip^o J, I  2 f J   Sj■p
= - 2rh0ß 00,

that is, the first formula of (6.3). The second formula can be derived in an

analogous manner.

Lemma 6.3. The T-periods of the flow 7(1,1) are

(6.7) X«-» = 2tAo0u,       F«1-1» = 2whtßU.
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Proof. The determination of the periods proceeds as before, except that

instead of ^f1"1' we now substitute ^i1-1); see (5.26). According to (5.27)

(i.i) A       2At     At     A~t

WZ 2t2 T 2f      2?     2f(6.8) s j i        i

Ao       Ai   1       Ait   f

2f2      4i   f "     4    f2

Therefore

- sin e + ¿(1 - M2)112 cos e    (ljl)        - A0(aoo + ißoo)
4>z

qp 2f2
(6.9) , .    i

Ao(«n + ißu)

27 +""

Applying Lemma 5.1, we obtain the first formula of (6.7). The second formula

is derived analogously.

Lemma 6.4. The T-periods of the flow Ja-2) are

(6.10) A(1,î) = - ttAo"^-,^ + 2anü\    F<1,2) = - irhö'[l-iß*o + 2anÍ¡¡1].

Proof.   We   proceed  as   before,   using  (2.19a)   and   (2.19b)  instead of

(2.18a) and (2.18b). From (5.4a) we obtain

(6.11) <t>™ = 1£- + j + (C, + CfXlg f + lg f) + • • •]

and by (5.21)
.-i

o,«   i r  ct    c    q i     i r    Ao "I
(6.12)     <£ = -   2 --- + -+ •••     =---+-..    .

2 L   f    r2    f J    2 L   f2        J

Thus by (5.19)

(1 - M2)112 cos e + i sin e    (1,2,    1 / 1       l-i \
BU1-^-*-"7(-%+«f+ "O

r   Ao"1       i
• [(«.o + i«3oo) + («ii + tfu)? +•••)- tJ + • • •

which by Lemma 5.1 yields the first relations of (6.10). The second relation

can be obtained analogously.

The T-periods of the singularities of higher order can be obtained

analogously.

Following the principle of correspondence explained in §3, we shall intro-
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duce stream functions which in the pseudo-logarithmic plane have a be-

havior similar to that of stream functions of an incompressible fluid in the

logarithmic plane.

In this connection it will be necessary to investigate the behavior of solu-

tions of equation (2.12b) at branch points.

Suppose that Z = a, Z — 8+üK, is a branch-point of the Riemann surface

of the function p(/L) such that by the transformation

(6.14) t-(z-ayi*

(k a positive integer) a neighborhood of a will be transformed into a schlicht

neighborhood of the origin.

We now introduce a representation of solutions p of (2.12b) at such a

branch point which can be considered as an analogue of the representation

22n-o [lm (an(Z — a)nl')] of a harmonic function at a branch point.

Definition 6.2. If a solution p of (2.11b) can be represented in a neigh-

borhood of a branch-point Z = a of the type described above in the form of a

uniformly convergent series

00

(6.15) P = 22 Im kP,.i((Z - a)»'')]
n=0

(k a positive integer), the function p will be said to be K-regular at this branch

point.

Lemma 6.5. Let Z = abe K-regular at the point Z=a, and let I« = E [Z = a+eew,

0 fLp-^2nir] be a simple closed curve on the Riemann surface of the function p,

e being sufficiently small so that the curve I, (a K-fold covered circle) encloses no

other singularities of p.

Then the T-periods of the flow defined by the stream function p vanish when

the integrals (2.18) (17) are evaluated along any curve which is (on the Riemann

surface) isomorphic to I,.

Proof. Since the integrands of (2.18) satisfy, except at the singular points

of p, the integrability conditions, it follows that the path of integration may

be shrunk continuously in any manner, providing only that no singular

points of p are crossed. Thus from the hypotheses, it suffices to consider the

integrals (2.18) taken around I,. Since by hypothesis series (6.15) is uniformly

convergent for t (the radius of I«) sufficiently small, it is permissible to invert

the order of summation and integration, and it therefore suffices to show that

each term of the series (6.15) contributes zero to the transition periods. Now,

for \Z—a\ sufficiently small, the expansion (1.4) of P3[(Z—a)B/"] is uni-

formly convergent, so that it is once again permitted to invert the order of

summation and integration. Therefore, it suffices to show that each term of

(17) Here and hereafter we write (2.18) instead of (2.18a) and (2.18b).
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the expansion P8[(Z—a)n'*] yields 0 when inserted into equations (2.18) in

place of p.

From (1.4) it is easily seen that each such term contains (Z—a) only to

a non-negative power; therefore, pz, which appears as a factor in the inte-

grands of (2.18a) and (2.18b), contains (Z—a) only to powers greater than

— 1. Since the term pz is multiplied in the integrands of (2.18) by functions

which are continuous at Z = a, and since the length of the path of integration

is 2k7té, it follows that each integral can be made less in absolute value than

any preassigned quantity by choosing e sufficiently small.

The image of a flow of an incompressible fluid in the logarithmic plane

and that of a compressible fluid in the pseudo-logarithmic plane extend in

general to infinity, since at a stagnation point g = 0 and therefore X = lg q and X

(see 2.7) become — <».

In the following we shall consider only flows satisfying the following con-

ditions :

(1) The stagnation point (or points), if any, lies on the boundary (but

not in the interior) of the flow.

(2) The flow (that is, the stream and potential functions) possesses only

a finite number of singularities (including branch points), so that there exists

a finite number R such that for \Z\ ^R the stream function is regular at

every point of ^5.

(3) The stream function p as well as pz and pz exist and are continuous

on the boundary except perhaps at a finite number of points, say ß„

The integration over (2.18) will be carried out in the following along the

boundary curve p. In this connection it is necessary to make certain conven-

tions.

(1) The integration in the neighborhood of a point ß. Will be understood

as follows: we draw a circle of a sufficiently small radius « around ß„ denote

by S, the part of this circle (assumed to consist of a single arc) which lies in

$, and replace the arc piß,p2 of p by (£«, pi and p2 being the intersections of p

with S«.
(2) As we mentioned before, the boundary curve p of *$ extends to in-

finity. Let I denote a part of it which is situated in \Z\ ^ R and which together

with a corresponding arc of \Z\ =R bounds a simply-connected part, say fyi,

of fy, which extends to infinity.

The integrals (2.18) taken over I are understood again in the improper

sense, namely, we connect by a curve 2 two points, say pi and p2, which lie

on two different branches of I, which branches meet at infinity. The integra-

tion along pi*>p2 is replaced by integration along the curve (5.

Remark 6.1. Note that the value of the integrals are independent of the

choice of (S, since, by assumption, no singularities of p are situated in the

domain bounded by pi(S.p2p2il'pip.

In analogy to  (4.11b) we assume that the stream function p of J is de-
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fined in a (not necessarily schlicht) domain ^ß of the pseudo-logarithmic

plane and can be represented there by

(1)    0,1) (2)    (1,2) (¿,1)
(6.16) yp = po yp       + Pa $       + P*P        + ^i

where \pi is »z-regular in "iß, and satisfies hypotheses (1), (2), (3). ipw,

^(i,2)( -¡piL.i) are stream functions possessing at the point 0o, Xo singularities

described in §5. 0O, X0 is the point which corresponds to z= «>.

Theorem 6.1. The necessary and sufficient condition in order that the stream

function (6.16) defined in a simply-connected domain Iß represents a flow in the

physical plane around a closed curve is that

(i)    (i.i) 00    U.î)  ,     „(¿.i)
Po   X        + po   X        + pX =0,

(0-17) (1)      (1.1) (2)      (1,2) (L,l)

Po   Y        + po   Y        + pY =0,

(X<i.'), F1-") being the T-periods of J^-'\ k=1, 2, (X<L-l\ F<£'») those of
7(£,i)(i8).

Proof. Let

(6.18) x=x(8,\),        y=y(8,\)

(see (2.18)) represent the function pair which maps the domain 'iß into the

domain in which the flow is defined in the physical plane. These integrals

have been defined initially along curves which lie within 'iß; however, since

\pi satisfies the hypotheses (1), (2), (3), the integration can be carried out along

the boundary curve p (understood with the conventions stated above).

The image in the physical plane of the boundary p of $ will be a closed curve

if and only if the functions x(8, X), y(8, X) return to their initial values when

we move once along p. According to our hypotheses (see in particular (3))

and our conventions, we can replace the integration curve p by another curve

p* which (except perhaps at Z= — =o) differs sufficiently little from p, so that

the values of the integrals (2.18) over p and those over p* differ by a quantity

e, which can be made arbitrarily small, p* is assumed to lie inside 'iß.

Since the function \pi is m-regular in "iß, and ^o,i)> ^,(i.2)j ^,(¿,1) are regular

except at the point (0o,Xo), the integrals (2.18) taken along p* are equal to the

same integrals taken over a sufficiently small circle with center at (0O, X0).

According to Lemmas 6.1, 6.2 and 6.3, the values of these integrals equal the

left-hand sides of (6.17), respectively. Thus these integrals will vanish if and

only if the left-hand sides of (6.17) vanish.

A generalization of the Blasius formula. As is well known, see [23, pp. 36

(18) It should be remarked that the image of 1? in the physical plane is not necessarily

schlicht, so that the question whether the flow given by (6.16) in the ÔX-plane has a physical

significance requires a separate investigation.
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ff. ], the behavior of the flow at infinity determines the force and the moment

acting upon a profile immersed in the flow.

As we shall show, the results of the present section enable us to obtain for

the force F and the moment M^ about a given point z0 = (x0, yi) formulas

analogous to those holding in the incompressible case. For an incompressible

fluid these quantities are given by the formulas of Blasius [23, p. 35]:

ipo   C (dw \ 2
(6.19a) F=^T      (-J-)     dz<

2  J K \ dz /

(6.19b) M,, = - Re ï—f (z - z0) (—\ dz~\.

Here po is the density of the fluid and w is the complex potential of the

flow, S a control contour. The above formulas can be expressed in terms

of the coordinates of 8, a of the logarithmic plane. We proceed to the deriva-

tion of formula (6.28), a generalization to the compressible fluid case of the

formula which one obtains from (6.19a), using the classicial considerations.

According to [23, p. 23 (29)] in the case of a steady two-dimensional flow in

the absence of external forces, we have :

(6.20) F= -  \  pqqnds -  I  pnds
J a of <s.

where S (the control contour) is any simple closed curve which surrounds the

immersed profile. Here n is the unit outward normal to S, g„ the component

along n of q, and ds the line element of Ê. We have

(6.21)

Thus

dy — idx idz
q = qeie,        n = - =->

ds ds

(u, v) ■ (dy, — dx)       udy — vdx
Qn =-

ds ds

F = — I  pqei6 [udy — vdx] + i I  pdz
of IS J S

(6.22)
/Vdp         dp    H        rqe%e   — dy -\-dx\ + i I   pdz.

E       Lay   "       dx     A        of a..dy

Since, see (2.3), (2.5),

(6.23)      pu = —;     pv =->
dy dx -.[.-*&]
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(here it is assumed that in (2.4), ß = 0).

i C V      (y - 1)   T/(w>
(6.24) F = -  j   qei6dyp + io- j      1~ —-' ?2 dz.

According to [7, formula (137), p. 50],

1       VI     1 - M2      dq       %\ /    d\      hp»\    \
(6.25) dz = —.ei»\l-<Pe~ +-)dX + (*x — +-)d0).

P       L\ q2 d\        q / \    dq        q  /     /

Since p= [l —2_1(7 —l)g2]1/(T_1', we obtain by using the last formula of (6.23),

(6.26)
r/      1 - M2      dq      wpx\ (    d\      if,\    1

Since \p is single-valued at infinity, the first integral on the right-hand side of

(6.24) can be transformed, by integration by parts, as follows:

(6.27) -  I   qeiediP =   f yfife" — d\ + iqeied8).
J g J e   \     dX /

Now, according to (6.16):

(1)    (1,1) (2)    (1,2) (_.«

^ = ¿"o f      + po yp      + pyy       + vu

where ypi is regular at the point (0O, Xo) corresponding to z = ». If we choose,

therefore, for E a sufficiently small circle I, of radius e and center at (0O, Xo),

that is, if we write I« = E(0=0o+e cos <p, X=Xo+e sin 0, 0^<f»^2ir) and then

proceed to the limit, e—»0, then we can neglect terms corresponding to xpi,

60 that we obtain

(6.28) F = po1)FllA)(8o, X.) + w VM,(#„ X„) + pFaA\do, X.)

where F<I-15(0o, X0), F(1-2>(0O, X0), F'-L^(80, X0) are expressions (6.24) cor-

responding to \f/ = yp(l-1'>, \p^<i\ ^<£.i)( respectively. These quantities can be

computed, using (5.2a), (5.2b) and so on, and the relations,

d\ = — « sin <t>d<t>,        d8 = e cos <¡>d<b,

«-"+Ê)„(x-x',+îi(S).(x-x')"+

HS).+(S-.).(x-x,)+----
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where

/^g \ m / d.q(\) \

\¿X«/o    \   ¿X,   A-Xo

In a similar manner the moment MK can be determined.

7. An integral formula representing a subsonic flow inside a domain in

terms of its values on the boundary. The Cauchy integral formula is one of

the most powerful tools in the study of analytic functions of a complex vari-

able. As we shall show, there exists in the subsonic case an analogue of this

formula which enables us to express the values of p and p inside a domain SB

of the (0, X)-plane in terms of the values of p and p on the boundary of S3.

Theorem 7.1. Let JiP, p) be a flow which is regular in the bounded domain

93 (lying entirely within the subsonic region) whose boundary <S is a simple

closed curve. Then at every point (0O, Xo) o/(19) 58:

,    r r dpw       aoeW1"»)!
(7.1) 2*4,(00, Xo) = [B(2\i)]~1 I      - H2p-+ p~- \ds,

J œ L dn ds J

r r dpw      d(H-2i-i'2p<i"i'>)-[
(7.2) 2^(00, Xo) = tf(2Xo) I      - H-2p— + p- \ds

J el_ dn ds J

where d/dn indicates differentiation in the direction of the inward normal, and

</><L-2> and p^-1) are the fundamental solutions introduced in (5.2b) and (5.2a)

respectively, and H is given by (2.14).

Proof. Applying Green's formula to the domain obtained by deleting from

93 a small circle with center at (0O, Xo), and taking account of equations (2.12),

(2.13), (2.14), (5.2), (5.3), and (5.4), we have:

H2p—-ds+ I   H2pw—ds.
6 dn J s dn

Now dp/dn = (dp/d\)(d\/dn) + (dp/d8)(d8/dn) = -T'2dp/ds (see equations
(2.8)). Inserting this into the last term of equation (7.3), we have:

(7.4)       2irH(2\o)p(80, Xo) = -  |  H2p—-ds - \  HH1^1-™ — ds.
J s dn J $ ds

Performing integration by parts on the last term and multiplying both sides

of the resulting equation by [i?(2Xo) ]-1, we obtain equation (7.1). Equation

(7.2) is obtained by a completely analogous procedure.

Remark 7.1. p(8o, X0) and ^(0o, X0) can be represented in a slightly dif-

ferent form which is of interest for some purposes. The first term in the

integrand of (7.1) may be expressed as follows:

(") The relation (7.2) in a slightly different form has been indicated in [3, pp. 16-18].
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r        d<b<-L'2) r
(7.5) - j  H2<t>-ds =  I   H2<pl

J s dn Je
•il2—-ds.

ds

If the right-hand side of (7.5) is integrated by parts, beginning and ending at

a point P on the curve @, the result obtained is(20) :

I #2^1/2-ds _, a^l^(6o, Xo) [HW^p
1 <z ds

(7.6)
d(HHli2<t>)

fiL.i) _±-ZL ds.
ds■s¿

The reason that the integrated part does not vanish is, of course, that ^(Z"2)

is multiple-valued, and after describing the curve S once (in the positive

sense), beginning at any point, the function ^<L.2) increases by the amount

A^(L2)(0O, Xo). In the integral on the right-hand side of (7.6) it is also neces-

sary to take account of the multiple-valuedness of \p(~L-2\ It is apparent that a

concept quite analogous to that of a Riemann surface may be employed here.

The function ^(Z"2)(0, X; 0o, X0) is to be considered defined on a multi-sheeted

surface with branch points at (0O, Xo) and », and then ^<i.2' is rendered

single-valued by a cut joining (0O, Xo) to <» and cutting the curve S at the

point P; now the curve b, although closed in the "schlicht" (0, X)-plane, is

open on the Riemann surface, beginning at P in one sheet and ending at P in

the next sheet.

Taking account of equations (7.5) and (7.6) we may write (7.1) as follows:

2-*(0o,Xo) =  [ZZ^Xo)]-^^2^, \0)[HV^]t

0 ' 7) +   f  U   ̂ ^^ - „CM, dmm^ ds\
JaL ds ds      J    j

A completely analogous expression may be found for 2inp(8o, X0), involving

the period of <£<L-1).

As was mentioned in §1, the approach developed in the present paper may

be considered as a generalization of methods used in the theory of analytic

functions of a complex variable, in particular in the theory of integrals of

algebraic functions. It will perhaps be of interest to discuss analogues in this

direction.

An analytic function /=</>+iyp of a complex variable can be interpreted

as a flow of an incompressible fluid, the flow being in either the physical

(x, y)-plane or the logarithmic (0, X)-plane, X = lg q.

As we have seen in §2, functions which are defined on Riemann surfaces

arise in a quite natural manner, representing flows in the physical plane which

(20) [ ]p means the value of the expression in brackets at the point P.
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have physical significance. If we attempt to develop in the (0, X)-plane a

theory for compressible flows analogous to the theory of analytic functions of

a complex variable, and in particular to develop an analogue to the theory

of algebraic functions and their integrals, there arises a fundamental differ-

ence. In the first case (that is, incompressible flows) the functions can be de-

fined for all values of 0 and X, while in the second case (compressible flows),

the functions are defined only for X<0, if we restrict ourselves to subsonic

flows.

On the other hand, in analogy to the integrals of the second and third

kinds, we can introduce flows which will be characterized by their singularities

and their behavior on the boundary of the domain. For instance, we can

consider flows J^*1 = Ju-»+Jk,k = l, 2 (see (5.1)), where Jh are flows which

are w-regular in 'iß (see definition 6.1) and determined in such a way that the

stream function p<-L^ or the potential function 0(L'2) vanish on the boundary

of(21) ty. Jy'k) can be considered as analogues of integrals of the third kind.

Similarly, normalized flows Jy'k) = J(1,k) +Jk can be considered as an-

alogues of integrals of the second kind.

We note that the above singularities admit a simple physical interpreta-

tion. y^'1' yields in the physical plane a vortex at infinity z= =o, J<-L.» a

source or sink at z= », J(1'H, k = l, 2, yield doublets at z= <».

Remark 7.2. An essential role in the theory of integrals of algebraic func-

tions is played by the relations which exist between the periods of these

integrals. Applying the procedure in the proof of Theorem 7.1 and in Remark

7.1, we can obtain formulas which can be considered as a kind of generaliza-

tion of results in the classical theory, concerning the relations which exist

between the periods of normal integrals of the first, second and third kinds and

the values of these integrals at singular points of integrals of the third kind.

8. A property of the transition from the physical plane to the hodograph

and allied planes. The theory of two-dimensional steady motion of an incom-

pressible fluid, and in particular the study of relations which exist between the

flow in the physical plane and its images in the hodograph and logarithmic

planes, is an interesting field for application of the theory of schlicht func-

tions and that of value distribution of analytic functions of a complex vari-

able. Most of the abstract notions in these theories admit a natural physical

interpretation, so that many mathematical theorems may be formulated as

relations between quantities which have a physical significance.

It is of importance that these relations can be generalized to the case of

subsonic flows, since, as we shall show, the transformation of a flow pattern in

the physical plane into its image in the hodograph or pseudo-logarithmic

plane is a quasi-conformal mapping. As is well known, this latter mapping '

has many properties in common with conformai transformation. Sec [l, 2, 4].

(21) 'P'S'" and (¿Kg'2' will be Green's functions, with respect to the domain ^ß, of equations

(2.11b) and (2.11a) respectively.
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Remark 8.1. 0 and yp in the hodograph and pseudo-logarithmic planes are

solutions of a system of linear partial differential equations. See (2.6) and

(2.8)'. These equations represent a generalization of those of Cauchy-Rie-

mann, and one can expect that by using the theory of operators and some

other tools of investigation, it will be possible to obtain for the function-pair

[r/>(0, X), ^(0, X)] various theorems similar to those found in the theory of

analytic functions. Using, then, the above-mentioned correspondence be-

tween the images of the flow in the pseudo-logarithmic and in the physical

planes, that is, the correspondence between

[<t>(8, X), yp(8, X)] -» [0<»(*, y), *<»>(*, y)],

*(1)(*, y) - <t>[8(x, y), \(x, y)],       *<»(*, y) = *[«(*, y), \(x, y)],

we may expect to obtain theorems for 0(1) and ypm, that is, for solutions of a

system (2.3), (2.5) of nonlinear equations(22).

The first part of the present section will be devoted to the proof that the

transition from the physical to the hodograph or allied (that is, logarithmic

and pseudo-logarithmic) planes represents a quasi-conformal mapping. In

the second part, Theorem 8.2 will be proved, which by the use of well-estab-

lished methods yields a certain result which follows from the pseudo-con-

formality of the transformation. We shall return in a later publication to a

more systematic exploitation of Theorem 8.1.

Definition 8.1. Let M be a one-to-one mapping of a (closed) domain 83

into 33* such that if P* denotes the image of P, an infinitesimal circle of radius

ds around P goes into an infinitesimal ellipse

(8.1) Gn(P*)dx*2 + 2Gn(P*)dx*dy* + G22(P*)dy*2 = ds2

around P*. If there exists a fixed constant A, 1 = A < oo, which is independent

of P*, such that for all P*G33*

(8.2) S(P*) £ 2KDl<t

where

(8.3) S(P*) - Gn(P*) + GM(P*),       D(P*) = Gii(P*)Gn(P*) - g\í(P*),

then the mapping M is said to be quasi-conformal in 33.

Lemma 8.1. Let <p(a, ß) and \p(a, ß) be two continuously differentiate func-

tions defined in a (closed) domain ® of the (a, ß)-plane, whose derivatives are

connected by the relations

(8.4) 4>a = A (a, ß)ypß,        <fc = - B(a, ß)xpa

(a) Despite the fact that (2.3), (2.5) represent a very special system of equations, these

results are of considerable theoretical interest as the few examples of theorems in the theory

of nonlinear partial differential equations, about which comparatively little is known.
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where

(8.5) 0 < a £A(a, ß) Ú b < »,       0 < a g B(a, ß) ^ b < «,

a and b being conveniently chosen constants.

If at every point P of & the inequality

(8.6) |*.| + |to|>0

holds, then the transformation M,

(8.7) p = p(a,ß),        p = p(a,ß),

is quasi-conformal in ©.

Proof. Let ds be the radius of an infinitesimal circle in  the a/3-plane

with center at P*. A formal computation yields that

ds2 = dp2 + dp2 = (Poda + pßdß)2 + (pa da + Pßdß)2

- (Apßda - Bpadß)2 + (Poda + pxdß)2

- (A Vî + pl)dc? + 2(1 - AB)papßdadß + (ßV. + P*ß)dß2

and

(8.8)
(A2+l)p¡+(Bi+l)pl

2D1'2 2(AP¡ + Bp'a)

pa and pß are continuous and therefore bounded in the closed domain @,

say pa uM,pß^M, M being a conveniently chosen constant. Since | pa \ + \ opß \

is positive and continuous in a closed domain, there exists a constant, say m,

such that \pa\+\pß\^m>0in®. Therefore pl+pl^m*/3. (Were pl+p%

<m2/3, then we would have

(I *«| + | to I )2 = (il + Pl+ 2 | ̂ | ) < 3(pl + pi) < m*).
Therefore

,     , S (b2 + 1)M2
(8.9) - <.2--—-= K,

2D1!2 am*

which proves our assertion.

The simplest procedure to show that the transformations above-men-

tioned are quasi-conformal is to show that the transformation of the physical

plane into the potential plane (that is, the plane whose cartesian coordinates

are p and p), as well as of the hodograph plane into the potential plane, is

quasi-conformal. Since any one-to-one mapping inverse to a quasi-conformal

transformation, as well as a combination of two quasi-conformal transforma-

tions, is again quasi-conformal, we obtain in this manner the desired results.
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Lemma 8.2. Let J be a flow-pattern defined in a bounded domain @ of the

physical plane, and ^3 its image in the potential plane. Assuming that the domain

in which J is defined does not include any stagnation point, the mapping of ®

into <ß, defined by the correspondence

(8.10) [x,y]^[<b(x,y),yp(x, y)],

is quasi-conformal.

Proof. (<j>, yp) and (x, y) are connected by the relations (2.3). On the other

hand, if we replace a, ß by x, y, and choose A=B = l/p>0, the system (8.4)

becomes (2.3). Our assertion follows, therefore, from Lemma 8.1.

Lemma 8.3. Let © be the image of @ in the pseudo-logarithmic plane. Assum-

ing that © is bounded and schlicht, that no stagnation points lie in @, and that

the flow J is subsonic, the mapping of © onto 'iß, defined by the correspondence

(8.11) [e,x]->[«(e,x),^(e,x)],

is quasi-conformal.

Proof. (<p, yp) and (0, X) afe connected by relation (2.8). Replacing a, ß

by 0, X and substituting A=B=T12, (8.4) becomes (2.8). In the subsonic

case

(8.12) l(X) = (1 - M2)/p2 > 0,

and therefore the inequalities (8.5) hold. A fortiori, the assertion of Lemma

8.3 is a direct consequence of Lemma 8.1.

The transition from the pseudo-logarithmic plane (whose cartesian co-

ordinates are 0, X) to the logarithmic plane (whose cartesian coordinates are

0, X) means a stretching of the X-axis. See (2.7) and (2.7.a). Since for

0<Xi=X=Xo>0,

1       ¿X
(8.13) 0 < — = — = (1 - M2)1'2 =■ a < oo

a      d\

(see (45) of [7]), this mapping is also quasi-conformal. As previously re-

marked, the combination of a number of quasi-conformal mappings (in

particular that of a quasi-conformal and a conformai mapping), as well as

the inverse of a quasi-conformal mapping, is again quasi-conformal.

From Lemmas 8.1, 8.2, and 8.3, therefore, there follows the theorem:

Theorem 8.1. Let J be a subsonic flow defined in a bounded and schlicht

domain ©, and let @i, ©2, ©3 be the images of ® in the hodograph, logarithmic,

and pseudo-logarithmic planes. If © does not include any stagnation point and

if ©*, k = l, 2, 3, is bounded and schlicht, then the mapping of ® into ©* is

quasi-conformal.



1947] SUBSONIC FLOWS OF A COMPRESSIBLE FLUID 493

As we mentioned before, we shall now give a simple application of

Theorem 8.1.

Theorem 8.2. Let

(8.14) @i = E[t»i á«> áíi, 0 < n g r ^ r2 < w]

¿>e a domain in the physical plane in which a subsonic flow J is defined, r, §

being polar coordinates. We assume that no stagnation points lie in ®j.

Let ®i, the image of ®t in the hodograph plane, be bounded and schlicht. Let

us further assume that on each of the arcs

(8.15) a* - E[»?i g û á 0î, r - r*], t - 1, 2,

£&e s^eed g varies in the range

(8.16) 0 < qk á g gß* < =o, <2i < ?2,

and that in the whole domain @i the angle which the velocity vector q(x, y) =qe'e

forms with the positive x-axis varies in the range

(8.17) E[O^0^0i], 0i ¿ 2t.

Then for the above quantities the inequality

(lgq2-lgQi)2   _    2Ä-01
(8.18)

lg Qi - ig ?i
(lg r2 - lg ri)

lo 4

-i--Í
lg 'i lg r2

Fig. 9. The domain ®,+.

ÄoZds. (Here .rv is the constant characterizing the "quasi-conformality" [see (8.2) ]

of the mapping of &t into ®t, domains to be defined later.)

Remarks 8.2. A bound for K can be obtained by use of (8.9).
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Proof. Inequality (8.18) follows immediately by well known considera-

tions. See [3], in particular (8.9) and papers cited there. Let

(8.19) ®í" = E[lgriáí ¡S lg ft, ¿i Sí - = #2]

be the domain obtained from ®x by the logarithmic transformation

(8.20) f = lg z,       f - Ç + i-,       z = x + iy = re»,

and let ®2~ be the domain obtained by the logarithmic transformation

<8.21) Z* = lg q,        q = qg-«,       Z* = E + ¿H

B
*-'—■->-1— s
lg ?i    IgÇi 'g?2    lg&

FlG. 10. The domain ©*.

from the hodograph ®2 of J, that is, of the image of ®i in the hodograph plane.

Since ®! does not include any stagnation point and ®2 is assumed to be

schlicht, ®2 is bounded and schlicht.

According to Theorem 8.1 and previous remarks on combination of quasi-

conformal transformations, the mapping

(8.22) Z* = g(t)

which maps ©i1" onto ®£ is quasi-conformal. Let L(r¡o) be the length of the

image in the Z*-plane of the line segment E[lg n^Ç^lg r2, ~ = w0]. Since the

end points of the above segments lie on the images (in the f-plane) of arcs

tti and 02,

(8.23) (lg q2 - lg 00 = ¿to-

Integrating the left- and right-hand sides of (8.23) from n =âi to 17 =t?t and

applying the inequalities of Schwarz-Bouniakowsky, we obtain
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[Og 9i - lg QoWi - ¿i)]2 á [ J"*£(,)*,]

where Gn is the first coefficient of the quadratic form for the line element

(8.25) da2 m dS2 + dH2 = Gnd? + 2Gi2dl-dr, + G22dv\

Using the notation explained in (8.3), the inequality of Schwarz-Bounia-

kowsky, and (8.2), we obtain

r    fô,       /»lera    1/2 -\i       r    /•*,       /»Igr, -12ÍL LG"d¥vKL J,../"H
Jo ¿2    ro lg r, râ'    rlg r>

*,      •' lg r, of a,      of lg r,

/. tf2   /. ig r2 ra*  rl'r*

^ 2Z I        I D^Ht.d-n-  I        I        d&fy
•J »,       v  lg n of g,       J igr,

= 2KA(®i)-A(®2)

g 22T(lg r2 - lg n)(0, - *,)(lg <?2 - lg gi)0i

where A(©*) denotes the area of ©*. (8.24) and (8.26) imply (8.18).

9. Pseudo-harmonic vectors(M). As has been indicated in [6] and in

papers cited there, it is possible by means of suitably chosen operators to

generate from analytic functions of a complex variable (that is, from a pair

of real functions connected by the Cauchy-Riemann equations) harmonic

vectors, H, whose components are connected by relations

(9.1) VH=0,        VXH=0.

These vectors possess the property that

(9.2) fHdX = 0, ffffrfo = 0

where

S = E[X = X(u), Y = Y(u), Z = Z(u), 0 g « ^ 1],

93 = E[X = X(u, v), Y = Y(u, v), Z = Z(«, v), 0 á » £ 1, 0 £ v ¡g l]

represent any closed sufficiently smooth curve and surface, respectively,

which can be reduced to a point by a continuous one-to-one transformation

(») Bull. Amer. Math. Soc. Abstract 51-9-155.
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in the regularity domain of H. Here

VdX dY dZ    "I
dX =    -i'i -|-i2 H-fi   du,

Ldu du du    J

j       [â(Y,Z)  .       Ô(Z, X) .        Ô(F,Z)    1do =   •-/i H-î2 + ■—;-— is
L d(u, v) â(u, v) d(u, v)     J

dudv.

As we shall show, the same operator generates from a pair of functions

which are connected by the generalized Cauchy-Riemann equations (2.8)

vectors S which possess similar properties.

Lemma 9.1. Letf=f(x, iy, t) = <p (x, y, t)+iyp(x, y, t) be an analytic function

of two real variables x and y, and a continuous function of x, y and t (t real),

whose components are connected (identically in t) by the relations

(2.8) 4>x = ypy,       ix= - *(*)*».

Now let

S(X, Y, Z) = S™(X, Y, Z) + iS™(X, F, Z)

= P(/)A + Y(if cos t)i2 + Y(if sin t)it,

where

i r2T
(9.4) Y(g) = — I     g(X,iY cos t+iZ sin t,t)dt

2ir J (=o

represents a pair of (real) vectors in the three-dimensional (XYZ)-space.

Then the components S(n-k\ w = l, 2, 3, of the vectors Sm, k = l, 2, are con-

nected by the relations

(9.5) S¿M) = l(X)S™,   S?» = KX)S(z1A\   S?" - S?A\    V-S(1)=0,

(9.6)      v x sw = o, s™+jwir+¿n = 0.
Proof. We have

5(1,1) = (2t)-i f ¿dt,       5<2-1' = - (2*-)-1 f yp cos t dt,

5(3,1) = _ (2-)-i j ip sin tdt,

5(1.2) = (2„.)-l f ^dt,        5C2-2) = (27T)-1 f <t> cos t" o7,

2) = (2t)-1 C <)> sin tdt, f m f    ,

(9.7)

(9.8)

5(3
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and therefore if we write

S*<" = l(X)S«»ii + S<2-»i2 + S<M>i»,

S*<« = S<l-»ii + l(X)S«-*>i, + l(X)S«-»i3

then

V X S*<» = - (27T)-1 J   {[f, - /(*)<*>„] cos tii + [Pr - l(x)py] sin ti2

(9-10) . . ,
+ vPy — iv] sm t cos / d/i3} dt = 0,

(9.11)        VS(1) = (2t)-1 f [px - py cos2 Í - py sin2 í]¿¿ = 0,

V X S<2> = (27T)-1 j { [px - pv] cos tii + [P. - py\ sin ti2

— [py — py] sin t cos ti3\dt = 0,

(9.13) VS*<2) = i2ir)~1f [px + l(x)pv cos2 / + l(x)Py sin2 í]¿¿ = 0,

which yields (9.5) and (9.6).

Corollary 9.1. It follows from (9.7) and (9.8) that

(9.14) fs*<1'¿X = 0, ff   S™-do = 0,

(9.15) f   S<2><fX=0, ffs*m-do = 0.
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