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Introduction

1. Methods employed. In the theory of analytic functions of one com-

plex variable it is possible to obtain many results of far-reaching importance

by means of relatively few general theorems, for example, Riemann's map-

ping theorem and the lemma of Schwarz.

The existence of a non-Euclidean metric which is invariant with respect to

conformai mapping follows from Riemann's mapping theorem and is in many

instances equivalent to it. In the case of a simply-connected domain B with

more than one boundary point, the distance (in this sense) between two

points a and b of B is defined as the hyperbolic distance between the images

of a and b ín the unit circle. By means of this metric it is possible to give to

Schwarz's lemma a new and useful formulation, the lemma of Schwarz-Pick.

Completely avoiding Riemann's theorem, Bergman succeeded in showing

that an invariant Hermitian metric can be derived from a quite different

approach and can be generalized to the case of several complex variables. This

is important, since Poincaré has shown that it is not in general possible to

map one domain in 2«-dimensional space on another by means of n analytic

functions of n complex variables (pseudo-conformal mapping), so that an

immediate generalization of classical function theoretic methods is not pos-

sible. Further, in the case of mappings into schlicht domains, Bergman has

obtained results which include the lemma of Schwarz-Pick but which can

also be applied to the case of several complex variables.

However, if those methods originally employed to provide results in

pseudo-conformal mapping are specialized to the theory of analytic func-

tions of one complex variable, they do more than merely provide known

results: they constitute methods for the investigation of many questions in

conformai mapping of multiply-connected domains. Further, theorems that

we may obtain in the case of one variable by these methods suggest analogous

theorems for pseudo-conformal mapping. It is this dual role which makes both

the theorems obtained and the methods employed take on added importance (').

Presented to the Society, September 15, 1945, and February 23, 1946; received by the

editors February 25, 1946, and, in revised form, December 14, 1946.

(') (Added in proof.) The general character of the present approach has been clarified still

more by the recently established fact (see Duke Math. J. vol. 14 (1947) pp. 609-638, in particu-

lar (66'); see also Schiffer [l]) that there exists quite a simple connection between the kernel

functions on one side and Green's and Neumann's functions on the other side so that the present

method can be considered as a direct generalization to the case of functions of several complex

variables of classical procedures used in the case of one variable.

125



126 LEONARD GREENSTONE [January

2. Results obtained. In §1 we prove that if {Bn} is a sequence of bounded

domains, subject to certain restrictions, which converges in the sense of

Carathéodory to a bounded domain B, then the curvature of the invariant

metric of Bn converges uniformly to the curvature of the metric of B; in §11,

bounds are obtained for the distortion, under conformai mapping by rather

general classes of functions, of the Euclidean length of an arc; in §111 we

obtain a mean value theorem for the curvature; and in §IV we prove a gen-

eralized Poisson integral theorem for multiply-connected domains.

In Part II generalization of the results obtained in §11 to pseudo-con-

formal mapping is discussed as an illustration of the dual nature of these

theorems mentioned above.

3. Previously obtained results. In the following we shall frequently em-

ploy the notation

±.i(±-.±\     •_•/£.+., 2\
dz      2\dx dy/ dz      2 Vox dy}

(0.01)
di I/o"2        d2\       A

4\dx2     ~dy2) "   4'dzdz     4\ôx2      dy2

where z=x+iy, z=x — iy, x, y real; further, we employ the abbreviation

df df
/io = /» = — '        foi = fi = —>        and in general,

dz dz
(0.02)

_ d'+'f(z, z)

' dzfdz'

If B is a domain in the z-plane whose closure we denote by B+ and whose

area shall be assumed to be finite unless the contrary be specified, then

fE^O(B) shall be taken to mean that:

/.
f\2dco <  00

where the integral is taken in the Lebesgue sense;

(2) fis an analytic function which is regular in B.

Note that to avoid possible ambiguity fB • dco will occasionally be written

fs'dco,; the subscript z has been added to indicate the plane of integration.

Let {<£„} be a sequence of functions orthonormal with respect to the

domain B; that is,

(0.03) |   pmpndco = 6mn = the Kronecker delta.

We shall indicate this property by writing {</>„} B, that is, by adding the

subscript B to the brace.
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The "kernel function" associated with the domain B is defined as

00

(0.04) KB(z,l) = Z <Pn(z)iW),
n=l

where {ç6„}b is closed with respect to jQ(B) (see §IV). The kernel function

is defined for every domain B and is an analytic function of z and t for

zEB, tEB. It further possesses the property that if z = z(z*) is a conformai

mapping of B into B*,

(0.05) KB-(z*, 2*) | dz* |2 = KB(z, z) \ dz |2.

The kernel function depends only on the domain with respect to which

it is defined and is independent of the particular choice of sequence {<^n}«

employed in definition (0.04) provided that {c¿>„}b is closed with respect to

jQ(B); however compare (2.11) with Bergman [l; equation (6.3), p. 43](2).

For the circle \z\ <r, such a sequence of orthonormal functions is

(0.06) |(—j      -—J- , n = 1, 2, • • • ,

and the kernel function is given by

(0.07) K(z,t)=        '*        ■
ir(rl — zty

A non-Euclidean metric for B may be introduced by setting

(0.08) dsl = KB(z, z)\dz\\

and consequently by defining the length of a rectifiable Jordan curve z=z(t),

to=%t^ti, situated in the domain B, by

(0.09) f ,ldsB(z(t)) = f '\KB(z(t), IT?))"21 dz(t) | ;

this length will be invariant under conformai transformation and is defined

for any multiply-connected domain, as is the "Gaussian" curvature, 23B,

given by

2 d2
23B(z, z) = - ——--.—— log KB(z, z)

KB(z, z)   dzdz
(0-10) „    ,

Aoo    Aoi2

Aoo Aio    An
K = KB

The results stated here are only those which will be employed in the body

(2) The numbers in square brackets preceding the semicolon refer to the bibliography, q.v.
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of the paper. For a complete exposition, we refer to Bergman [1, 2], especially

Chapters VI-IX of the former; in both of these books there are extensive

bibliographies as well as detailed references to original papers.

I. A CONVERGENCE THEOREM FOR THE CURVATURE

1. Definitions and previous results. Given a domain(8) B, let

(1.01) \l(t) = min U/Hl < », /G j(Z\b),

where ||/||b = /js|/] 2dco and / has been normalized so that for one fixed tEB,

f(t) = l.
The validity of this definition follows from the fact that, as Bergman

[l ; p. 60] has shown, there exists a unique minimizing function /o, fo(z)

= l+ai(z — t)+ • • • , possessing the property that

(1.02) Xki) - ||/4|b ¿ iwi*

for all/G-C2(P) which possess the development f(z) = l+Ai(z — t)+ • • • .

Further, define

(1.03) Xr-'X"W=min||/||], / G J¿(B),

where / has been normalized so that for one fixed tEB, f(t) =0, and

d'f(z)
— Xj, j = 1, 2, • • • , n,

dz'

Xj real or complex numbers.

In fact, there exists a unique minimizing function f0, fo(z) =Xi{z — t)

+Xt(z-t)2+ ■ ■ ■ +X„(z-t)n+bi(z-t)n+1+bi(z-t)n+2+ ■ ■ • possessing the

property that

xr-*" = ii/oiiiá iwi;
for all fE-CJ(B) which possess the development

f(z) = Xi(z -t) + Xi(z - t)2 + ■ ■ ■ + Xn(z - t)"+ Bi(z - <)«+»

+ b2(z - ty+2 + ■■■.

(See Bergman [l; p. 65].)

The minima defined in (1.01), (1.02) possess the property that if G is a

domain such that GEB, then

(1.04) *kOSA¿(*),        I™1'"*"® áXaXl""X"(0. 'GG.

The inequalities of (1.04) are the generalization of the lemma of Schwarz-

(3) Unless the contrary be specified, all domains are supposed schlicht.
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Pick obtained by Bergman cited in the introduction. See Bergman [l;

chap. IX].
It may be shown that

(ICS) x-(,)=^¡b'

which proves the assertion made earlier that for closed orthonormal systems

{</>n}s the kernel function depends only on the domain and not on the

choice of the particular sequence {<£„}b.

The other minima VbXi"'Xb(4) may be obtained similarly in terms of the

kernel function and its derivatives; we shall write them down later as they

are needed, referring the reader to Bergman [l] for the general formula.

However, we note that

(1.06) AB   —
A„

LOO A 10

Ani    Ai

A = As,

(see (0.02)).

The Gaussian curvature 23b, given by (0.10), may then be written in the

form

(1.07) 23B =
- 2(\Bf

As \B, \0b are always positive, it follows that 3B is always negative, and

therefore, as may be seen from the definition of 3g or from a result of Becken-

bach and Radó [l], KB is a function whose logarithm is subharmonic in B,

so that KB is also subharmonic in B.

2. Statement of the theorem. The main result of this section is:

Theorem 1. Given a sequence of domains \Bn\ñ-i,BX = B, such that (1)

BnEB, for all n, B bounded, (2) Bn converges in the sense of Carathéodory to

the limit domain B(6), and (3) every Bn satisfies the condition^) (1.09), then in

every closed subdomain of B the curvature 23b„ converges uniformly to 23B.

Yetfn, n = l,2, ■ ■ -, be the unique function defined in (1.01) with respect

(*) When there is no danger of ambiguity, we shall omit the argument of the functions

^.sAfl. ' ' " • Kb, and so on.

(6) Given a sequence of domains {G„}, all lying in the same plane and all possessing

at least the point a in common, then the sequence {G„} is said to converge in the sense of

Carathéodory to G if G is the greatest domain such that every closed subset of G«, n^N, lies

in G. If there does not exist some neighborhood of a common to all G„, n^N, N sufficiently

large, then G is just the point a.

(6) It is necessary to assume this only for some subsequence \Bn.) ; however, for the sake

of simplicity we shall retain the more restrictive assumption.
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to the domain BH;fo is the minimum function with respect to B. It is supposed

that/n, w = 0, 1, 2, • • • , have all been normalized with respect to the same

point t, tEB.
As we wish to deal with a set of increasing domains, instead of employing

{5„}, we shall use the sequence J5*¡°,j, where

(1.08) B*m = B  (J^bX «=1, 2, ....

We suppose that the sets {Bn\ are so restricted that:

Given an integer p, then for all n sufficiently great

(1.09) B*pCBn.

Note the following properties of {B*} :

(1.10) B*mCB*m+iCB;

(1.11) {Pn*} possesses the same limit domain B as does {Pn}-

It follows from (1.07) that it will be sufficient to prove that XB„, \°B\ con-

verge uniformly to \B, Xb, respectively, for {Xsn(i)} cannot be a null sequence

unless t is a boundary point of B.

3. Convergence of X1. In the remainder of the proof we shall suppose

that, given P*, « is any integer sufficiently large so that P*C5/, j = n,

n + l, • • ■ (see (1.09)).

Lemma 1

(1.12) mu á unk á iwt, * iwf»
The first inequality is immediate, since, by hypothesis, P*,CPn and

therefore

(1.13) f    |/„|2dco g  f    \fn\2dco.

The second inequality follows from the fact that/„ is the unique function

among all fE¿Q?(B„), f(t) = 1, tEBn, which minimizes ||/|||„; but since P„CP,

/oG-COB«). therefore ||/n||Lá||/o||Bn.
The third inequality holds by the argument that validated the first.

Lemma 2. {/P}"_n forms a normal family in the sense of Montel in B*.

That is, in every partial set {fP,}?.i there exists a subsequence which converges

uniformly in every closed subdomain of B%.

(We note from Lemma 1 that {||/j,}!£;}£.„ is uniformly bounded in 73*.)

A proof of this lemma is given in Bergman [3].
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Lemma 3. \fn)Z-i forms a normal family in B.

Let {fp,}y.i be a subsequence of {/„}"_i. Since {/,,}"_„ forms a normal

family in 2?j¡¡, we can select a subsequence of {fP,}T-i which converges uni-

formly in every closed subdomain of B^. Call this subsequence for B%,

[fm,¿}r_o- Delete from {fm.i\T-o all fp which are not regular in BZ+i- (Since

Bm+iEBr for all r sufficiently great (see (1.09)), and since, from (1.10),

-BmC-Bm+i. it follows that there are infinitely many/, regular in 5^+1.) From

this "deleted" subsequence of {/»>,<}<"0 we can then pick a subsequence

which converges uniformly in every closed subdomain of BZ+i- This pro-

cedure is then repeated ad. inf.

Construct the diagonal sequence {fn+p,p}n-Z'p-ô> which will then con-

verge uniformly in every closed subdomain of B.

Lemma 4. In every closed subdomain of B, every uniformly convergent sub-

sequence of [f} converges tofo.

Let/y, p^m, he a member of some subsequence described in the hy-

pothesis, and let/* be the limit of this subsequence.

By(1.12):

ll/Jfe = IWIi.
Let p—* » ; then

Now let m—» °° ; hence

a.!*) \\ñ\l = H/Jii,
since the measure of B — B* con verges to zero and therefore ||/*||25*, converges

to ||/*||b; fofi by a classical result of Lebesgue theory, if / is an L-integrable

function and {Em} a sequence of sets whose measure tends to zero, then the

integral of / over Em tends to zero.

But/o minimizes ||/|||, for all/G-0(-^), normalized so that for some tEB,

f(t) = 1 ; clearly/* possesses all these properties, so that

(1.15) 11/olH = H/*I|b.
Comparing (1.14) and (1.15), we see that

II/-IIÏ = llrlli;
however, we know that there exists a unique function /0 minimizing ||/||b

so that /o =/*.

Lemma 5. /„ converges uniformly tofo in every closed subdomain of B.
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Every subsequence of {/„} will contain a uniformly convergent subse-

quence, and thus {/„} will be uniformly convergent, since, by Lemma 4,

the limit will be the same for all uniformly convergent subsequences.

Lemma 6. X^„ converges uniformly to X# in every closed subdomain of B.

By (1.03) and the definition of/o,/„:

(1.16) xl - \l - uA - IWfc
Suppose BmEBn; then by the first inequality of (1.12)

Xb -  XSn  á  ||/o||b -   ||/n||k

(1 17) = ll/ollLrf + (||/»lk - ll/n||k)

ú\\fo\\l-B*m +    |Jj/o2-/„2|^}-

Applying Schwarz' inequality to the term in braces in (1.17), and using

the fact that Pm*CP»>, we have

i        i
(i. is)        \B - Xb„ =s ||/o||b-b* + {||/o + /-|k-||/o - /.Ik}-

The successive use of Minkowski's inequality, the second and third in-

equalities of (1.12), yields

(i. 19)    ||/0 + /„||b„ =s ||/o||b„ + ||/n|k ú 2||/o||b„ ú 2||/„||b = 2C, c1 = ||/o||b.

Substituting (1.19) into (1.18), we have

(i• 20) x] - xi á ||/o||Lb,: + 2c||/o - /„Ik

We recall that the measure of B—B% converges to zero as m tends to

infinity and therefore, as in Lemma 4, we may choose m so large that

||/o||B-ß£iüe/2. Clearly, by Lemma 5, it is now possible to choose n so large

that n^m, ||/o-/„||b* ^í/4C; hence, by (1.20), X¿-X¿.£«-

However, from (1.04) and the hypothesis of Theorem 1, we know that

^b—XbJ is positive; Lemma 6 follows.

4. Convergence of the curvature.

Lemma 7. X^1 "'**• converges uniformly to \BXl " 'Xm in every closed subdo-

main of B.

The proof is exactly the same as for Lemma 6, once the necessary changes

in the definition of/0,/„, » = 1, 2, • • ; , have been made.

We then construct the sequence { — (XbJ2Ab«} '. Irom Lemmas 6 and 7

and the remarks following the statement of the theorem, it follows that this



1948] MAPPING BY ANALYTIC FUNCTIONS 133

sequence will converge uniformly to — (Xb)2/Xb=3b, and hence the theorem.

5. Generalization to the case of two complex variables. As we stressed in

the introduction, the main interest of our proof consists in its generality: in-

deed we make nowhere the assumption that the/are functions of one complex

variable. Therefore, Theorem 1 can be immediately generalized to the case

of two complex variables and will yield there similar results concerning any

quantity which can be represented as a combination of finitely many X'"'.

In particular, in the case of two complex variables there appear two in-

variants, Rb and JB, which are connected in a simple manner with the curva-

ture tensor of a metric invariant with respect to pseudo-conformal mappings.

In analogy to (1.07), JB can be represented in the form X^Xb'/M)3 where

X¿" are minimum values of fB\f\2du under suitably chosen conditions; a

similar representation holds for RB. (See, for details, Bergman [2; p. 55].)

Therefore, Theorem 1 holds if B, B„ mean domains of four-dimensional space,

and 3b„, 3b are replaced by JBn, RBn and JB, RB, respectively.

6. An application of the results of paragraph 3. As an application of

Lemma 6 it would, for example, be possible to prove the following well

known theorem (see Bieberbach [l; vol. 2, p. 12]) by making use of (0.05)

and (1.05).

Theorem 2. Consider a sequence {An} of schlicht domains^) in the z-plane,

all of which contain s = 0; let w=fn(z), where fn(0) =0 and fi (0) =1, map An

into a schlicht domain^) Bn in the w-plane. If An converges to a limit domain

A in the sense of Carathéodory, then the necessary and sufficient condition that B„

converge (Carathéodory) to a limit domain B is that fn converge uniformly to f

in every closed subdomain of A. f is the schlicht mapping of A on B.

II. Distortion theorem

1. Introduction. In this section we establish the following inequalities for

the distortion of the Euclidean length of an arc subject to conformai trans-

formation.

Let the arc a lie entirely in some finitely connected domain G, G fixed,

and let G be mapped conformally on a domain B so that a is mapped into

pEB. Suppose that the outer boundary bi of B is sufficiently smooth so that

a circle C+ of radius t, exterior to B, can roll freely along bi for some segment

b*Qbi (see condition (ii) below), and that no point of p is further from b*

than r\ (see condition (i) below) ; then there exists a constant c independent

of B such that if L(p) is the Euclidean length of p, L(p) ^2ir1/V(l+?7/2r) ;

in particular, if the tangent at each point qEb* is a line of support for B and

intersects b* in no point other than q (unless qEb** Eb* and b** is a segment

of a straight line, in which case the tangent's only intersection with b* is

&**), then Z,(^)^2tt1'V.

O Subject to the hypotheses of Theorem 1.
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If, instead of the first of these conditions, we merely assume that for at

least one point of b* (see condition (iii) below) it is possible to place a circle

C+ of radius r tangent to £>i which lies outside B, then, if h is the diameter of p,

L(p)^2ir1l2c(V+h + ((r, + h)2 + h2)/2r).

2. Inequalities for the case of a multiply-connected domain. With the

notation of the introduction in force, we suppose that the arc a is rectifiable,

and that the non-Euclidean length of a with respect to G, which is invariant

under conformai transformation, equals

(2.01) c = Sa(a) = f (Ka(z, z))1'2 \dz\.

(See (0.09).)
Map G into some domain B of the same connectivity and let p be the image

in B of a, b is the boundary of B and b\ the outer boundary of B. This mapping

will then be supposed to satisfy the following conditions :

(i)  The distance of any point of p from b* (see below) is less than r).

(ii) At every point q of some connected subset b* of ¿>i (to be described pres-

ently), it is possible to construct a circle C+ of radius of at least t, tangent at q

to b\ and situated entirely outside B+ — q; that is, there is no intersection of C+

with bi other than the point of tangency q.

Choose the coordinate frame so that the y-axis is the line of tangency of

C+ with ¿>i and the x-axis is the extension of the radius perpendicular to this

line. The positive directions of the x- and y-axes are chosen along the direc-

tion of the inner normal at q and that part of the tangent line which forms an

angle of +ir/2 with it, respectively. We suppose further that the x-axis inter-

sects p, say, in the point t\\ and also that the part of the axis lying between zi

and q lies entirely within B.

Let 2i range over p; then to each 2i there will correspond some point q of

bi, described above, although, perhaps, several points of p may correspond

to the same qEbu Call one of the connected sets of all such q, b*.

Combining relations (1.04) and (1.05) and calling the complement of C+

with respect to the whole plane T, we note that as BET,

(2.02) KB(zi, zi) ^ KT(zi, zi), z, G B;

while from (0.05) and (0.06) it follows that

1 1
(2.03) KT =-

x   (z + z + zz/r)2

Now, from (0.04) we know that the non-Euclidean length, (0.09), is in-

variant with respect to conformai transformation. Hence if we denote the

non-Euclidean length of p with respect to B by Sß(p), we have

(2.04) ScHa) = Sb(P) = c.
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From (2.02) and (2.03),

Sb(P) = f (KB(z, z)y2 \dz\zf (KT(z, -z)y21 dz I

(2.05) .     .

"    TT^2J p    (z + Z + ZZ/t)

Now, for each point ziEp, we choose T, so that zi always lies on the cor-

responding ¡c-axis. Consequently we may then employ condition (i) to obtain

(2.06) SB(p) ̂  (   f I dz I  )-
WP'      ¡ J *"2(2r, + v2/r)

Denoting by L(p) the Euclidean length of p and employing (2.04), we

then obtain the following bound for L(p) :

,"v(i + ¿),(2.07) L(p) á 2

where c is a constant independent of B, defined by (2.01).

Now, let t—»oo ; that is, suppose that there exists a sufficiently large seg-

ment of bi, b**, which is a smooth convex curve containing b*; then the fol-

lowing inequality holds for L(p):

(2.08) L(p) g 2t11 V.

However, suppose, instead of condition (ii), we assume:

(iii) At one point of b* it is possible to place a circle C+ with the properties

described in (i) (all other requirements and conventions of (i) holding).

Then, calling the diameter of p, h, we have from (2.05)

HP)
Sb(P) è

t»'»(2(i, + h) + (h2 + (r, + h)2)/r)

or

(2.09) L(p) é 2xV*c(i + h + ((r, + Â)2 + Ä2)/2r).

Summing up, we obtain the following theorem.

Theorem 3. Given the n-tuply-connected domain G, and an arc aEG; let

G be mapped conformally on a domain B and a be mapped into pEB; suppose

that this mapping is suck thatp, B+ satisfy conditions (i), (ii) (above), then if

L(p) is the Euclidean length of p, (2.07) holds where c is a constant independent

of B, defined by (2.01).
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// only conditions (i), (iii) hold on p, B+, then, if h is the diameter of p,

(2.09) holds.

Again it is possible to formulate the above theorem in the case of two

complex variables, considering, instead of the length of a curve, the 5-area

of a segment of a surface (see Bergman [l, pp. S III, 4 and 5]), and using

instead of a circle the complement to the product of the exteriors of two

suitably chosen circles or certain other auxiliary domains. This will be carried

out in detail in Part II.

3. Inequalities for the case of a ring. The sequence

(2.10) <(-)      ->,      «=•••,- 3, - 2,0, 1, 2,
l\    7T    /      (1 - r2<»+i>)i/2j

is a set of functions which are orthonormal with respect to the ring C(2) = R(r).

Inserting this value for <j>n in formula (0.04), we obtain the kernel function

for R(r), As(r), in closed form in terms of elliptic functions (see Zarankiewicz

[1]):

(2.11)

1     *        nr"     /zntn       rn \

AÄ(r)(z, i)=-I --(-+ —- )
rcztt^i   1 - r2n\r"       z"tnJ

i    co r~T7i "i
=-:•—   — + P(u + u';u, co')    ,

TTZt    Ö1T1 L CO J

where

/iiru\      zt

(2.12) exp\V j = 7'

g> is the Weierstrass p-function with semi-periods u, u', and rji is the

"period" of the elliptic integral of the second kind corresponding to u.

If t is taken equal to z and p2 set equal to zz, then it is clear that AÄ(r)

is a function of p alone and hence that it is constant along every circle

\z\ =po, r<p0<l; thus if a is some arc of the circle \z\ =p0 with Euclidean

length 2irp0y, 0<y <1, then replacing G in (2.01) by R(r),

(2.13) c = SBiT)(a) = 27rpo7(AÄ(r)(po))1/2.

If (2.11)-(2.13) are then substituted into (2.07)-(2.09), explicit inequali-

ties are obtained.

III. A MEAN VALUE THEOREM FOR THE CURVATURE

Hitherto the only inequality which had been obtained for the curvature

3b of the metric of a domain B was the following which was given by Berg-

man [l ; p. 83]. Employing the formula for 3b given in (1.07) and making use

of (1.04), we see that if / and A are domains such that IEBEA,
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(3.01)
(Xj(x, y)) (XA(x, y))
-TÔÏ7-T ^ - 3*(*> y) á —ön-r-

X¿ (x, y) X, (x, y)

We shall now establish the following theorem on the values of SB at the

center of a circle C+EB in terms of the values both it and the kernel function

KB assume on the boundary c of C.

Theorem 4. Let I, B, and A be domains of finite connectivity such that

IEBEA; suppose further that the circle C+, whose center is (x0, yi), lies en-

tirely in B, then
010

(3.02a)   3b(*o, yi) á ( f kUsY'Ï f K&b^ ds + 4 f   ̂ ~i gcdcol,

where gc is the Green's function for C, n the inner normal and s the arc length.

Let

(3.03) U = - kIsb;

then from (1.05) and (1.06),

7£oo    Kio

Koi    Kn

AÍ//4, (see (0.01)), will then be given by

0

TsToo    Kio

(3.04) U K = KB(S).

(3.05) U.. =
Ko2   K2

Koo

Koi

K~oi

1

Kio

kn

Ku

0

Kio

Kn

Kn

Now, from Bergman [1 ; (4.6), p. 64], we have

(3.06)

where

(3.07)

010

Ab   — —

0

7£"oo

1

Kio

Koi   Kn

Koi   Ki2

0

Kio

Kn

K22

AB =

Koo Kio K2o

Koi Ku K2i

Koi   Ku   K22

(8) In the remainder of this section we shall occasionally omit the subscript in Kb, writing

only K.
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also

(3.08)
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001

Xb   =

0

Koo

K0i

7^02

0

Kio

Ku

Ku

1

Kio

K2i

K22

Ab.

Employing (1.05) and (1.06) again, we see that

(3.09) U..=

ox, x„

010 010

Xb Xb
XWV01 = u X»«1

B   BnB B

are positive.

5;

5>0 since c/andallX^

Further, let gc be the Green's function (for Laplace's equation) for the

circle C, then by classical results of the theory of elliptic equations we have,

since U satisfies the equation AZ7/4 — S = 0,

(3.10) U(x0, yi) = ~f
dgc

U— ds
dn

l-fsgt
Tof c

dco.

Let A, I be domains of finite connectivity such that IEBEA ; the struc-

ture of I and A can be specified later and will vary depending on the type of

results one wishes to obtain.

From (1.04)

(3.11)

so that from (3.09)

(3.12)

010

X/
010

Xb
010

Xx
xooiAoiXi = xooiXOiX1

A      A   A B      B B
Xooixoixi

III

010

Xr
XOoiXoixi

A      A   A

<,S g

010

Xa
X0oiaoiXi

ill

The integrand for each of the integrals of (3.10) is positive; hence, em-

ploying (3.10), (3.11), and (3.12), we can write the inequalities

010

(3.13)

{iI/^ds-^IÁ^v)gcd<"}
010

But, as has been remarked in §1, K is a function whose logarithm is sub-

harmonic, so that K as well as all positive powers of K are also subharmonic,

therefore
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(3.14) KB(x0, yo) Ú— ( kUs.
2irJ c

Using (3.14) together with the left-hand side of (3.13), we have (3.02).

IV. A GENERALIZED POISSON INTEGRAL THEOREM FOR

MULTIPLY-CONNECTED DOMAINS

1. Formulation of the problem. In this section we shall derive an integral

representation for an analytic function for interior points of a domain in

terms of the values its real part assumes on the boundary of that domain.

This is obtained as a consequence of a result of M. Schiffer [l ] which identifies

the kernel function with the second derivative of the Green's function of the

domain (up to a factor of — 2/7r) for interior points of the domain.

Consider, at first, the case of the unit circle \z\ ^ 1. Suppose a function/,

which is regular in the unit .circle, has as its real part on \z\ =1 the value F;

then/may be represented in the unit circle, within an additive purely imag-

inary constant, by the classical Poisson integral formulae:

1   r 2ir 1 + ze~iu

M - r-       i--F(u)du
2irJ o     1 - ze~lu

(4.01)
1   riT       1 If2'

= C0 -I-I      -F(u)du,        Co = - — I      F(u)du.
■K J o     1 - ze~iu 2irJo

Recalling that the kernel function Kc(z, t) of the unit circle has the form

Kc(z, t)=(irll2(l—zt))~2 (see (0.06)), we see that except for an arbitrary

additive constant (4.01) may be written in the form

/2tt y» z
F(u)J    Kc(zi, e-<u)dzid(e-iu),

where fzu(zi)dzi denotes an indefinite integral of «.

We shall now show that a suitable generalization of this formula is true

for multiply-connected domains (Ac replaced by the appropriate kernel

function), although we shall reserve an exact formulation of the theorem to be

proved until the end of the next paragraph.

2. Proof of the theorem. Let {<p„}b be a sequence of functions, ortho-

normal with respect to B, each of which is regular and Lebesgue square

integrable in B*, where B+EB*. Here B is a domain of finite connectivity

whose boundary we denote by b.

Given the function g, gE£2(B) ; then g may be written in the form of the

"Fourier" series,

00

(4.03) g(z) = Z *»*'»(*). zGA,



140 LEONARD GREENSTONE [January

where

(4.04) gn =  f gPidco,
of B

provided that {pi }B is closed with respect to £2(B); that is, if gG-C2(-B),

then g can be expanded in the series (4.03).

Set

dpn(Z) df(z)
(4.05) pi(Z)=-^    and    f'(z)=-^-±,        f'(z) E £2(B);

aZ dz

f'(z) then possesses the following "Fourier" expansion in terms of [pi }sinB:

(4.06) /'(«) = Íf'mp'm(z) =  ¿( f/'ç5Wco)c6'm(Z),
m=l m-1 V of B /

where/m' is obtained by setting g=f in (4.04). Now

OO

(4.07) KB(z, Z) = E <t>Uz)$'n,(Z)
m-l

converges uniformly in any closed subdomain D+EB, and is an analytic

function of z and Z in D+; consequently, by a proof entirely analogous to one

given by Bergman [l; pp. 47-50] and [4; p. 25], we may interchange the

order of summation and integration in (4.06) to obtain:

/'(*) =   f \f'(Z) E p'm(z)p'm(Z)\ dcoz,
of bL m-l J

or

(4.08) f(z) = f f'(Z) Í" f KB(zi, Z)dzA dcoz.

Let us further suppose that/=/i-f-¿f2 is a function which belongs to jQ(B) ;

note that its derivative /' and its real part fi are single-valued in B.

Let

(4.09) L= )      )    KB(zi, Zi)dZidzi = Li - iL2;

now let B be a domain such that the derivative of the function mapping it on

a characteristic domain of type C(n)(9) does not become infinite on the

boundary, then define

(') A characteristic domain of type O' is an n-tuply connected domain with (n — 2) slits

along arcs of circles eccentric with the bounding circles |z| =r, \z\ =1.
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d*L(z, f) dL(z, Z)      d* rz    *
(4.10)      -V-^ =   Ihn—- = — (Li - iL2) =        A*(zi, f)<fei,    f E b,

df z->?     dZ df J

where Z—*f along the inner normal. This limit exists, since Schiffer [l] has

shown that

(4.11) L(z, Z) = - 2^g(z, Z), zEB,ZEB,

where g is the Green's function for B. Since the boundary of B, b, is composed

of circular arcs (or can be mapped into such a domain without the derivative

of the mapping function becoming infinite), it follows that dg/dZ exists for

Z = fEb and hence d*L/df exists.
Clearly, if B is multiply-connected, then both L and dL/dZ and KB(z, Z)

will be multi-valued; to avoid ambiguity we introduce the simply-connected

domain BA obtained from B by n — 1 conveniently chosen cuts.

From (4.08)

(OÙ = f f(Z) ( f   KB(zi, Z)dz\ duz

= f   f(Z) ( f   KB(zi, Z)dzï\ duz

-L
r   r   d*Li d*L2   i

=  I /r-ds + i-ds
J b   L       dn dn      1

+  Z h\-ds + i-ds\,
y-i  J «„    L       dn dn      J

(4.12)

dL
f'—dw (Z = X - iY)

«A    dZ

d*Li d*L2

where e2„eiy-i,v = 1,2, • • • , n — 1, are the edges of the cross cuts which cut B

into a simply-connected domain BA, and n and ds are the interior normal

and line element respectively. The integrals over e, will vanish, since we have

supposed that the functions <pi are defined in B, in which case they will be

single-valued in BA as will be KB(z, Z); hence (4.12) equals

(4.13)     f /i [d*L2 + id*Li] = if fifo v) f ' K*B(zi, f)dzidf, f - { - *,.

Upon setting the left-hand side of (4.12) equal to the right-hand side of
(4.13) and integrating, we obtain

(4.14) /(*) = if fi(Z, v)(fZ K*B(zi, l)dz?\ df + C* z E BA,
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which is the desired generalization of (4.02).

Theorem 5. Let f=fi+if2 be a function which is regular in a bounded

multiply-connected domain, B, whose boundary b satisfies the condition (4.09) ff. ;

suppose further, that the derivative f and the real partfi of f are single-valued in

B+, while f itself is supposed Lebesgue square integrable in B ; then f can be

represented in 5A in the form (4.14).

3. Villat's formula for a ring. As a further illustration, we shall prove

Villat's extension of Poisson's formula to the case of a ring, R(r). The fb in

(4.14) can then be written as the difference of two integrals, one taken around

\z\ =1, on which boundary the real part of/ is to assume the value F\, and

one around \z\ =r, on which boundary the real part of /is to be F2.

Giving Kb its value when B = R(r), see (2.11), and taking account of the

above, we obtain for (4.14) (as herer3*/r)f = d/df, that is, the interchange of

limits is permissible),

/.It                 /    f.z           1               »            mn        /Znie-intl              r"       \ \

Pi(0)[   \    -E -(-+-)dzi)d(e-i»)

/. Jr                /     roz          I            »          wrn     \tfrne-ine

FM -7e^^-Tn)-—o \J     irzire~,e „=i    l — r2"/      rn

+-'—— (dzi\ d(re~«) +Ct

If the indicated indefinite integration be performed, then (4.15) assumes

the form

1       /o 1-K oo yn /„ng—inB ~n       \

/(«)--I    Fi(e)Z---(—--,)de
it Jo n=i   1 - r2n\    rn zne-*nV

-I      F2(6) E -(zne~ine - z~nein6)dd + C*
ir Jo Zi 1 - r2"•r -f o „_i   1 - r2n

Now (4.16) coincides with Villat [l ; equation (11), p. 14], so that we are

led finally to the formula

(4.17)

**        ico  C2" / o CO    \
f(z) = Co  +—I    Fi(o)d — logz-e)<

TV J o \íT ir    /

ico C 2r / co co    \
-—      F,(0)M —log*-e)de,

TX   of o Vt7T TX      /

where Ç, & are the Weierstrass < functions.
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