
ON SOME DETERMINANTS RELATED TO ¿-VALENT
FUNCTIONS

BY

A. W. GOODMAN«

1. Introduction. A function/(z) is said to be /»-valent in the open unit

circle (hereafter denoted by E) if it is regular and assumes no value more than

p times(2) for \z\ <1. The Bieberbach conjecture states that if

oo

(1.1) w = f(z) = E bnzn
,1-1

is univalent in E, then |ft„| ^«|fti|. This conjecture has been proved in

many special cases and has a long history (3). To the best of our knowledge it

has not been generalized to the class of ¿-valent functions. This is done in §3.

In §4 it is shown that the truth of this conjecture would imply a set of

trigonometric inequalities, Theorem 3, which are generalizations of the ele-

mentary | sin »0/sin d\ ^n. A proof of these inequalities is given in §5. Con-

versely it is shown, Theorem 6, that these inequalities have an implication

which tends to strengthen the conjecture slightly. Theorem 5 gives a second

set of trigonometric inequalities which are generalizations of the trivial

|cos nd\ ¡SI. Finally in §6 we note that the same methods may be used to

obtain bounds for analogous algebraic expressions. This last result, Theorem

7, is not new(4) but the method of proof is different.

2. Precise statements of theorems. A recent result(6) is:

Biernacki's Theorem. If f(z), given by (1.1), is p-valent in E then

(2.1) |ft„| ^ C(p)ßpn2"~1

where

p.p = max { | ¿>i|, | bi\, ■ ■ ■ , | ftp| }

and C(p) is a function of p alone.

Definition  of 73„*.  Let Bu  B2, ■ ■ ■ , Bp   be  a  set  of  non-negative

Presented to the Society, August 22, 1946; received by the editors January 18, 1947.

(') National Research Council Pre-doctoral Fellow.

(') The usual definition of ^-valence requires also that /(z) assumes some value exactly

p times. For our purposes it is more convenient to consider a g-valent function as being also

p-valent whenever q g p.

(3) See for example Montel, Leçons sur les fonctions univalentes ou multivalentes, Gauthier-

Villars, 1933, pp. 48-50.
(4) For historical notes and comments, see §6.

(') Biernacki, M., Sur les fonctions multivalentes d'ordre p, C. R. Acad. Sei. Paris vol. 203

(1936) pp. 449-451. See also Les fonctions multivalentes, Hermann et Cie., Editeurs, 1938.

Actually Biernacki proved more then we have stated here.
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176 A. W. GOODMAN [January

numbers. Let 5DÎ be the set of all functions of the form (1.1) which are /»-valent

in E and for which

(2.2) bk\úBk k=l,2,---,p.

■ ■ , Bp, p), n>p, are defined by the follow-The functions B* = B*(Bi, B2,

ing two properties:

(a) lif(z)EW, then \bn\ ^B*, n>p, and
(ß) B* is the smallest function for which (a) always holds.

Biernacki's theorem shows that the functions B* exist, that to bound the

wth coefficient of a ^-valent function it is sufficient to bound the first p coeffi-

cients. Theorem 1 states roughly that it is also necessary.

Theorem 1. Let k be a fixed integer, l^k^p. Let Bi, B2, ■ ■ ■ , Bx-i,

Bk+i, • • • , Bp be any set of p — 1 non-negative numbers. Let M be assigned

arbitrarily large. There exists a function f m(z) of the form (1.1) p-valent in E

and such that

(2.3)

and

(2.4)

Theorem 2.

(2.5)

where

(2.6)

bj I = Bjt i = 1, 2,

\b¡\> M,

5.'èÉ BkD(p, k, n),
k-i

■ , k - 1, k + 1, • • • , p,

i = p + 1, p + 2, ■ ■ ■ .

n = p + 1, p + 2, ■ ■ ■ ,

D(p, k, n) =

2kntl (n2 - a2)
a-l

(p+ k)[(p- k)\(n2- k2)
1 ^ k ^ p < ».

The conjecture is that one actually has the equality sign in equation (2.5).

Recently Yosida(6) has published a proof of this in the special case Bi = Bt

= • • • =5„_i = 0, n=p + l.

Theorem 3. Let

(2.7) F(P) =

sin 0i     sin 62

sin 201   sin 2d2

sin dp

sin 20p

sin pdi   sin pd2 • • • sin pdr

(•) Bemerkungen über die p-werligen Funktionen, Proc. Imp. Acad. Tokyo vol. 20 (1944)

pp. 16-19.
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sin 0i sin 02 • ■ • sin 6P

(2.8)    F(p,k,n)

sin (k — l)0i   sin (k — 1)02 • • • sin (k — 1)0,

sin »0i sin »02 ••• sin ndp

sin (k + l)0i   sin (k + 1)02 ■ • ■ sin (k + l)Bp

sin pdi sin pd2 i • • sin p8p

(2.9) S(p,k,n)=F(p,k,n)/F(p).

If the Bj are all real, then for all integers n>p^k^l,

(2.10) \S(p,k,n)\^D(p,k,n)

with equality holding in the limit as all d¡—>0.

Theorem 4   The truth of the conjecture implies the truth of Theorem 3.

Theorem 5. Let

(2.11) £(/») =

1

COS 01

1

cos 02

(2.12)    E(p, k, n) =

cos (p - l)0i    cos (p — 1)02

1 1

COS (k — 1)01     cos (k — 1)02

COS »01 COS M02

COS (k + 1)01      cos (k + 1)02

1

cos 0„

• ■ cos (p - 1)0,

cos (* — 1)0,

• • • cos nOp

cos (k + i)ep

cos (p — 1)01     cos (p — 1)02 • ■ • cos (p — 1)0,

(2.13)    C(p, k, n) = E(p, k, n)/E(p).

If the 0j are all real, then for all integers n>p — lçzk^l,

n

\C(p, k,n)\ ^—D(p- I, k,n),
k

(2.14)

I C(p, 0, ») | ^

h W - a2)
ami

(p- l)\(p- 1)!
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with equality holding in the limit as all B —*0.

Theorem 6. Let {s(z)\ be the set of functions p-valent in E of the form

(2.15) w = s(z) = P(u)/Q(u), u = S/(l - 3)2,

where P(u) and Q(u) are polynomials of degree at most p. For this set of functions

the conjecture holds.

Theorem 7 (Mitchell). Let

(2.16) V(ki, kt, ■ ■ ■ , kp) =

k, k,

Zl z2

kt kt
Zl Z2

k,
Zp

H
Zp

Zl       Zi

If \zj\ ¿l,j = l, 2, • • • , p, then for all integers kp>kp-i> • • • >¿ieO

(2.17)
V(ki, ki, ■ ■ ■ , kp)

n (** - k,)

7(0, 1, • • • , p - 1)

with equality holding in the limit as all z,—-»1

Lemma 1. For all integers nSijfe^l

(p - l)l(p - 2)! • • • 3!2!

(- l)-+*2n*     ==i    ,        . »
U(n   - a) = &n,(2.18) Z

„_*   (m + k) \(m — k) ! «_i

and for all integers n>k~^l,ß\^l

(2.19) z (- i)M n (»ß - «*) n («* - w = o.
m— k a—'1 a—m+l

Here the empty product is unity by definition.

3. The example functions. These functions are constructed by taking

appropriate polynomials of a particular univalent function. This procedure

will give the following lemma.

Lemma 2. The function (1.1) is p-valent in E whenever

(3.1) bn = Z (- iy~kbkD(p, k, n), n = p+ 1, p + 2, ■■ ■ .
t-i

Theorem 1 follows immediately from Lemma 2 by selecting bk sufficiently

large and b¡ = B¡, j = l, 2, • • • , k — 1, k + 1, • ■ • , p. Theorem 2 also follows

from this lemma by setting ô* = ( — l)""^*, k = 1, 2, • • • , p.

To prove Lemma 2, observe first that
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(3.2) w = P(u) = eh« + a2u2 + • • • + apup = E *»2"

where «=z/(l—a)2= E»-i nz" 1S always ¿»-valent in E. For u(z) takes E

into the complex w-plane slit along the negative real axis from — oo to —1/4

and w = P(u) maps this region into a Riemann surface having at most p

sheets. Now

(3.3)

where

(3.4)
(2m - 1) !

Using (3.3) in (3.2), it follows that

(3.5) ftn =   E amAf>     ,

m=l,2,-

(m)       (n + m — 1)(» + m — 2) ■ ■ ■ (n — m + 1)
An    =-

» = 1, 2,

We shall determine the Oj as functions of the b¡, i,j = l,2, • • • , p, and from

these determine the ft„, n>p, as functions of the ¿>„ j = l, 2, • • • , p. For this

define D'(p, k, »)' by

(3.6) D'(P, k, n) =

Now « appears in only one row, and in each element of that row it occurs as

a factor no more than 2p — 1 times. So D'(p, k, n) is a polynomial in « of de-

gree at most 2p — 1. For n=jj¿k the jth and ¿th rows are identical and hence

D'(p, k, n) has the roots » = 1, 2, • • • , k — l, k + l, • • ■ , p. Further the

polynomial is an odd function of ». Finally for « = 0 every element of the

¿th row is zero. We thus know all the roots. To find the multiplicative con-

stant for this polynomial observe that for n = k every element above the

main diagonal of (3.6) vanishes while each element in the main diagonal is

one. An examination of (2.6) will show that
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(3.7) D'(p, k, n) = (- l)»-kD(p, k, n).

If now the first p equations of the set (3.5) are solved for the at in terms of the

bj, one finds that

m m 2k(2m — 1) !
(3.8) am = Z (- l)k+mbkD(m - 1, *, ») = £ (~ l)»-ftt \    -'-—

*-i t_i (m + k)\(m — k)\

for 1 tim^p. Using (3.8) in (3.5)

*     (m)    » h+m      2k(2m- 1)!
bn = 2^An     2^bk(- 1)

m-l (w+ ¿)!(w - ¿)!

p        p       (- l)k+m2kn    "£i

(3.9) = Z**Z . \'(-rrrll (*2 - «2)
k-i    m~k (m + k)[(m — £)! „_i

p

= Z bkQ(p, k, n)
t—i

where the last equation defines ()(£, &, n). Now (3.9) holds for any values

assigned to bi, b2, • • • , bp. This establishes the identity (2.18), which is the

first half of Lemma 1. Note that a slight change has been made in the upper

limit of the sum which is permissible in view of the occurrence of zero factors.

We shall not prove the second half of Lemma 1 since it is not needed in the

present work. Its proof is similar to that of the first half with the one change

that in place of A^ given by (3.4) one uses the slightly more general

m-l

wJI (nß — aff)
—(m) a-1

(3.10) Ai    =-;-

mTL (m& ~ «")
a-l

To obtain a simpler form for Q(p, k, n) observe that it is a polynomial in

n of degree 2p — 1, which by Lemma 1 has the roots £ + 1, k+2, ■ ■ ■ , p and

the value one when n = k. Since all the terms of the sum are zero for

tt = 0, 1, 2, • • • , k — 1, these values are also roots. Lastly Q(p, k, n) is an

odd function of n. Hence

(3.11) Q(p, k, n) = (- l)p-"D(p, k, n),

and using this in (3.9) we have (3.1). This completes the proof of Theorems

1 and 2.
4. A second set of ^-valent functions. In §3, /»-valent functions were

obtained by taking pth degree polynomials of u. We next consider the

rational functions(') of u, s(z) given by (2.15). These functions will be regular

(') The question of the size of the coefficients in the power series for functions of this form

was first raised by O. Szász during a conversation in the autumn of 1945.
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in E and hence p-valent in E if and only if all the roots(8) u¡ of Q(u) lie in

the interval — °o ^Uj^ —1/4. We shall obtain power series for these func-

tions and for this we need the following lemma.

Lemma 3(9). Let z3=cos Oj+i sin B¡, j = l, 2, ■ ■ • , p. Then

E(p) = 2<.p-»<.p-2)i2f[ (cos0A - cos0,-),
h>j~l

ew = (t)" x n («* - */)(«»«< - DÛ*rl,
\ 2 / h>j-l ; = 1

F(#) = 2^1£(/>) n sin 9j,

(4.1)

(4.2)
j-i

*(*) = (^Y n (»i - 2i)2/ ' n («* - «*hwi -1).
\2t/    ,=i A>í=i

If the indicated substitution is made, the trigonometric determinants are

transformed into determinants which are algebraic in z¡ and §/. The relation-

ship between E(p) and F(p) is then obvious. Finally a little manipulation of

the rows will transform E(p) into a determinant of Vandermonde type in

the variables (z¡—z¡).

Lemma 4. Let Q(u) be a fixed polynomial with all of its roots u¡ distinct and

in the open interval — «> <u¡< —1/4. Then there exists a unique function Sk(z)

of the set [s(z)\ of the form

oo

(4.3) sk(z) =zk+  ¿Z  Kz\ 1 £ fe á p,
n-p+l

and for this function

(4.4) bn=S(p,k,n), n = p+ 1, p + 2, ■ ■ ■ ,

where the B¡ are such that

(4.5) - 1 < cos 6j = 1 + 1/2«,- < 1,    0 < 6, < r,        j = 1, 2, • • • , p.

Since the roots are assumed distinct we may write

w
J-.       üjU J^ üiZ

= 0,0 + E -= ao + E
j-l   « -  Uj ,_!   Z -  Uj(l  - Z)2

(4-6)
* z^iSin0,-

W =  flo +  2_r   -
,_i  I — 2z cos 0,- + z2

(*) When Q(w) is of degree jap we regard p—qoi the roots as being at — «.

(•) This was first obtained by E. Prouhet, Nouvelles Annales de Mathématiques (1) vol.

16 (1857) pp. 403-404 and vol. 17 (1858) pp. 187-190.
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where B¡ is determined as in (4.5) and A¡= —aj/Uj sin B¡, j = l, 2, ■ • ■ , p.

For fixed Q(u), P(u) determines (4.6) uniquely and conversely the Aj of

(4.6) determine P(u) uniquely. It is well known(10) that

z sin 0 "
(4.7) - =  Zz"sinw0

1 — 2z cos 0 + z2       „=i

and so (4.6) becomes

(4.8) w = a0 + Z( Z^jsin nd,Azn.
„_i \ ,_i /

To obtain the form (4.3) from (4.8) take a0 = 0, and determine the Aj

from the set of p nonhomogeneous linear equations obtained by using the

conditions on the first p coefficients of the power series (4.3). The de-

terminant of this system of equations is just F(p), and our hypotheses on

the roots u¡ together with (4.2) show that F(p)9i0. The Aj are uniquely de-

termined and using the values of Aj found, it is easy to see that bn has the

form (4.4).

It should be noted that in Lemma 4 the polynomial could be of degree

less than p and could have repeated roots subject only to the condition that

all of the roots are in the interval — <=° tüUj^ —1/4. Under these circum-

stances the quantities S(p, k, n) become indeterminate forms, but the bn

may still be obtained as limit values of the S(p, k, n). To show this we denote

by Qi(u) a polynomial of this slightly larger class. Without loss of generality

one can always put Qi(u) in the form l+Ciu+c2u2+ ■ ■ ■ +cpup where, in

view of the conditions imposed on the roots of Qi(u), the coefficients c¡ are

bounded continuous functions of the roots. Then the «th coefficient in the

Maclaurin series for 1/Qi(u) is also a bounded continuous function of the

roots. Finally, P(u) can always be determined, and uniquely so that

P(u)/Qi(u) has the form (4.3), and when this is done each bn so obtained is a

continuous bounded function of the roots of Qi(u). To complete the proof

of the assertion about limits one only needs to select a sequence of poly-

nomials Qw(u) which satisfy the conditions of Lemma 4 and such that

lim,.„<?<«> (u)=Qi(u).

Lemma 5.

(4.9) lim S(p, k, n) = (- l)p~kD(p, k, n).
8j-0J=l,l.p

In the discussion above take Qi(u) = l. Then (2.15) becomes (3.2). On

the other hand Qi(u) is the limit of a sequence of polynomials whose roots

ttj—>oo and so cos B¡—>1 and &,—*0. Lemma 5 then follows from equation

(3.1). The proof of Theorem 4 is now obvious.

(") Zygmund, Trigonometrical series, pp. 1-2.
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5. Proof of the trigonometric inequalities. We shall say that a polynomial

has the sign ( —l)m if the coefficient of every term of the polynomial has this

sign. It is understood that this criterion is applied after like terms have been

combined. For example p(x) =3x8 — 2x8+x has the sign +1. When m is

known to be even (odd) we shall merely say the polynomial is positive

(negative).

The plan of proof for Theorems 3 and 5 is simple. It will be shown that

the substitutions z, = cos Oj+i sin 6¡, j — 1, 2, • • • , p, reduce C(p, k, n) and

S(p, k, n) to polynomials in z¡ and z¡ having a certain sign. Since, for real

6j, \zj\ =1, it will follow that maximum absolute values for these poly-

nomials occur when zi=zJ = l, or all 0,=O. Let

(5.1) F'(p)

Zi — Zi    z2 — z2 •

2 2 2 2

Zl — Zl      Z2 — Z2 •

p p        p
Zi — Zi     Zi ■

_p
Zi ■

Zp        Zj

z©      z*

zp

(5.2)       F'(p,k,n)

(5.3) E'(p) =

(5.4)       E'(p,k,n)

Zl Zl Zi — Zi

k—1

Zl    ' Zl
k-1      _*-l

Z2        —  Z2

Zl — Zi Z2 — z2

k+l        Jfc+1 Jfc+1        _k+l
Zl      — Zi Zi      — z2

p      _p
Zi — Zi

1

Zl + Zl

p       _p
z2 — Z2

I

Z2 + Zi

p—1       _p_l       p_l       JP—1

Zl      + Zi Zi      + Zi

k-1 Jt-1
Zl      + Zi

Zl + Zl

k+l        _k+l

Zl      + Zl

k-1 _k~l
Zi       + Zi

Z2 + Zi

k+l k+l
Zi     + z2

Zn Zj2

Zp Zp

k+l _ Jfc+1
Zp Zp

p       _p
3p    "i-    Zn

1

Zp + z„

p-1      _p-l
Zp     + zp

k-1 k-1
zp    + z„

"  I  -n

zP + zp
k+l _k+l

Zp       "T" Zp

p—1 p—1       p—1       _p— 1 p—1       _p— 1
Zl     + Zi        z2     + z2     ■ ■ ■ zp    + zp

The following are trivial consequences of Lemma 3 and the above definitions
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C(p, k, n) = E'(p, k, n)/E'(p), 1 g k g> p - 1,

(5.5) C(p, 0, n) = 2-*E'(p, 0, n)/E'(p),

S(p, k, n) = F'(p, k, n)/F'(p), 1 Ú k ^ p.

E'(p) = 2P~1E(p) =   É («* - zi)(zhZi - l)f[z7\
(5.6) h>i;1

f'(p) = (2ifF(p) = n («* - 2*) n (*» - *)(*»** - i)n«rx-
A-i Ä>y-i i

To avoid the annoying special treatment which arises in (5.5) when k =0, we

introduce the definition C'(p, k, n)=E'(p, k, n)/E'(p), 0-¿k^p-l.

Lemma 6. For all integers n>p — l^fc^O, C'(p, k, n) is a polynomial in

Zj and Zj, j = l, 2, • • • , p, and this polynomial has the sign ( —l)p_*-1.

We use induction on p, the order of the determinant, which is valid for

every admissible k and n. For p = 1 the theorem is trivial. Unfortunately the

proof must be broken up into four cases according as k = 0, l^k^p — 3,

k = p — 2,andk=p — l. Even this is not exhaustive since in each of these cases

restrictions are necessarily imposed on the range of p. Certain special cases

are thus omitted and must receive individual attention. A few new symbols

will be of assistance. Let

(5.7) P.(zj, zi) = 1 + Z (*fli)a + i*i*Ù",       í = 0, 1, 2, • • • .
«=1

Here, and in what follows, the empty sum is zero by definition. Then(H)

for each s ̂  1,
«       •       •      _* «—i      _«—i       «—i      _•—i

Zj + Zj — Zi— Zi — Zi(Zj      + Zj      — Zi       — Zi    )

(5.8) ,
= ZjZi(ZjZi —   l)(Zj — Zi)P,-i(Zj, zi).

Further let

(5.9) Q.(*i,zi) = ( Z (ziZi)aj | Z (ziZi)al , s = 0, 1, 2, ••• ,

a—m

(5.10) K(s, m) =  £ z™+ ", 0 á m á s.
a-0

Then

(5.11) Q,(zj, zi) = A(î, 0) + Z (z7 + z7)K(s, m), i^0,

(") It will be well to bear in mind that this identity as well as all those which follow depend

on the assumption that z,z, = l, j = \, 2, • - • , p.
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(5.12) Zj + Zj — Zi — Zi = ZjZi(ZjZi —  l)(Zj — Zi)Q,-i(Zi, zi), s ^   1.

Case l^sk^p — 3, £^4. Perform the following transformations on

E'(p, k, n), the numerator of C'(p, k, n): (1) Subtract the first column from

the /th column for j = 2, 3, • ■ • , p. (2) Subtract zi times the/th row from

the (j+l)th row for the values of/ in the order j = p — 1, p — 2, • • • , k + 2,

k — I, k — 2, • • • , 2, 1. If now the identities (5.8) and (5.12) are used, then

certain obvious factors, common to either some row or some column, can be

utilized to reduce the denominator E'(p) to E'(p — 1) in the variables

Zi, Zz, • • ■ , Zp. Expansion of the numerator by minors of the first row yields

only one nonzero term and so

1 1 1

(5.l3)C'(p,k,n) =

_(p-l) (p-2)+2n-2t/2

Zl

E'(p-l)

Pl(Zi, zi)       Pi(z3, zi) Pi(zP, zi)

Fk-i(zi, zi) Pk-2(zz, zi)

Qn-l(z2, Zl) Ç„_l(zs, Zl)

Qk(z2, zi) Qk(z3, zi)

Pk+l(z2, Zl) Pk+l(Z3, Zl)

Pk-i(zp, zi)

Qn-l(zp, Zi)

Qk(zP, zi)

Pk+i(zP, zi)

PP-i(Zi, Zi)    Pp-2(z3, zi) ■ ■ ■ Pp-2(ZP, zi)

Now simple manipulations of the rows will reduce each P,(z¡, zi) to the

form z\(z!j+Zj) except for s — k + l. In this case the simplification yields

zl+1(zkí+1+z'¡+1)+z1(ztJ+z^)+z1-1zJ-1+ztj-1) for a typical term of the (k + 2)th

row. Since K(s, m) contains only the variable zi, it is clear that the (.jfe-f-1 )th

row can be so altered as to have z1(ztj+z)) + (zt1~l+z1+1)(zj~l+zj~1) for a

typical term. Subtracting the (& + l)th row from the (&4-2)th row and again

removing certain obvious powers of Zi from each row gives

(5.14)      C(.p,k,n)-
Zl

E'(p-ï)

1

Z2+Z2

*-2      Jfc-2
Zi     +32

Q»-l(Z2, Zl)

Zl+Zl+ (Z)+Zl) (Z2     +h" )
k+l   .   -*+l       / k-1      _*-l

Z2     -+Z2     —(Zl     +-Z2     ;
*+S  ,   -*+2

Z2     -+Zi

V-S  .   -P-2
Z2      +Z2

1

zv+zv

*-2  ,   _t-2
Zp    +Zp

Qn-l(Zp, Zi)

Zp+Zp+iZi+zJiZp" +z,   )
k+l ,    k+l      . k-1  ,    k—l.

Zp    +Zj>    — (Zp    +Zp    )
k+2 ,  _*+2

Zp    +Zp

P-2 .   -P-2
Zp     +Zp

It should be noted that (5.14) is not strictly correct in the case fe = l. It will

be correct if wherever z*_14-z*_1 occurs the value 1 is used in place of 2.
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Using the (&-fT)th row and the (Ä + 2)th row (5.14) can be expanded into

the sum of four determinants one of which is obviously zero. Each of the

three remaining derminants is again a sum of determinants when the form

of Qn-i(zj, zi) as given by (5.11) is considered. When 1 ^m^p — 2 in (5.11)

most of the determinants are zero as a result of the equality of the feth row

with some other row. Thé terms, not obviously zero, obtained for m^p — 2

yield

^"X\K(n - 1, k - 1) + K(n - 1, k + 1) - (zx + zi)A(» - 1, k)\

and if we use the definition   (5.10) it is easy to see that this expression is

identically zero. The terms obtained from Qn-i(Zj, zi) when m>p — 2 give

C'(p, k, n) = zV Z K(n - l,m){C(p - 1, k - 1, m)
(5.15) m-p-l

+ C'(p - 1, k+l,m) - (zi + zi)C'(p - 1, k, m)}.

If we use Lemma 6 for index p — 1 it is clear that the polynomial (5.15) has

the sign (-I)p-*-1.

Case k=p — 2, p^i. In this case the steps which led to (5.14) give

1 ... 1

Z2+Z2 ■ • • Zp+Zp

.»-1

(5.16)C(p,p-2,n) =
zV+zt4 ■ ■ • z^+z^r*

Q»-l(Z2. Zl) • • ■ Qrx-l{Zp, Zl)

Ü2      +Zi      +(Zl+Zl)(Z2     +22     ; • •.• Zp    +Zp     +{Z1+Zl)(Zp     +Zp    )

Using the last row (5.16) becomes the sum of two determinants. Each of

these is again a sum of determinants when the form of Qn-i(z¡, zi) is considered.

For l^m^p — 2 most of the terms in this sum are zero. The non trivial terms

obtained for this range of m yield

n-l
A =zi    [K(n- l,p-3)- (zi + Zi)K(n- 1, p - 2)}

(5.17) =^(zx     +zi        +---+Z1        +zi   ) (n>p)

= - 1 (n = p).

Combining this with the terms obtained when m>p — 2 we have

,.  1Q, C'(p, p - 2, n) = A + zV   Z K(n - l,m){C(p - 1, p - 3, m)
(5.18) m-p-l

- (zi + zi)C'(p- l,p-2,m)}.

It is easy to see from this equation that the truth of Lemma 6 for index p — 1

implies that C'(p, p — 2, n) is a negative polynomial.

Case k=p — l, pl±3. In this case the steps which before led to (5.14) give
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(5.19)      C'(p, p - I, n) = —

_n-l

Zl

E'(p - 1)

1

Z2 + Z2 zP + zp

p-Z _p_3
Zi       + Zi

p-Z _p—Z
Zp      + Zp

Qn-l(Zi, Zl)       •••     Qn-l(Zp, Zl)

(5.20) C'(p, p - 1, n) = zT    E K(n - 1, m)C'(p - 1, p - 2, m).
m=p—i

Case k = 0, p^3. First more notation! Let

(5.21) R.(zj, zi) = (z'i + z')(zi + zi) - (z[ + z'i)(z,- + z,), s è 1-

Then for 5 ̂  2

9    8

R,(zj, zi) = ZjZi(zjZi — l)(z

(5.22)

Let

(5.23)

i - zi) <( E z"iZi)(  E z'j     "zij

+ (!'""'X5"4
» í      • »~2    \2   I .   ^     ex   a \ -\     ot   ai

T,(zj, zi) = Zj<l + ¿_,ZjZi +  ^z,zi>+l
I a=l a=l '

»-2 s

+   E Z1Z"  +    E ZjZl, > 2
o-l o-l

Then for s^.2

(5.24)        R,(z¡, zi) — ziR,-i(zj, zi) = zî(z,-zi — l)(z,- - zi)r,(z,-, zi),

r,+i(z„ Zi)  —  T.(Zj, Zi)   = Zjz\(zi + Zi)(Zj + Zj),

Tí(zj, zi) = z,zi{2 + (zi + zi)(zí + z¡)\.

Finally let

(5.25)

(5.26)      Un(zi, zi) = 2E zi   + *i(*i + zi) E (zl + ~Zi)K(n - 1, «).

Then for » ^ 2

(5.27)
_n+l

Rn(z¡, zi) = Z,Zi    (z,zi — l)(z, — Zi)Un(Zj, zi).

In E'(p, 0, «) multiply each column except the first by Zi+Zu Then sub-

tract from the &th column Zk+Zk times the first column, for k = 2, 3, ■ • • , p.

Expansion by minors of the second row gives
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(5.28)   C'(p,0,n) = —
-  1

E'(p)(zi + zi)p-2

Rn(z2, zi)

R2(z2, zi)

Ri(z2, zi)

Rn(zp, zi)

Ri(zP, zi)

Rs(zp, zi)

Rp~i(z2, zi) ■ ■ • Rp-i(zp, zi)

Next multiply the (s — l)th row by Zi and subtract the result from the sth

row for the values of 5 in the order s=p — 1, p — 2, ■ ■ ■ ,4, 3. Removing

obvious factors yields

Z2U„(Z2,  Zl)   ■  ■   •  ZpUn(Zp, Zl)

l\zj
_(P-1)(Pt-2)+»/2

— Zi

(5.29)C'(p,0,n) = —
J-2

E'(p- l)(zi + zi)*-

T2(z2, zi)

T3(z2, zi)

T2(zp, zi)

T3(zp, zi)

Tp-i(z2, zi) • ■ • Tp_i(zp, zi)

Again subtract the sth row from the (s+l)th row for the values of s in the

order s=p — 2, p — 3, • • • , 3, 2, and remove obvious factors. Then one finds

(5.30)C'(p,0,n)=~
— Zl

E'(p-l)(zi+zi)

Un(z2, zi) Un(zp, zi)

2 + (zi+Zi)(z2+z2) • • -2 +(zi+zi)(zp+Zp)
2.-2

z2-x-z2
2   ,   .'■

Zp-j-Zp

P—1      _B-2
z2    +z2

9-2  ,   _B-2
Zp     "f-Zp

and since the expression z" {2 Zm-'i z\m ~ 2ziK(n — 1, 1)} vanishes identically,

C'(p, 0, n) = zT1 Z  K(n - 1, m)\2C'(p - 1, 1, m)

- (zi + Zi)C'(p- l,0,m)}.

(5.31) mm.p—1

The inductive hypothesis applied to (5.31) shows that C'(p, 0, n) has the

sign ( — l)"-1.

The above treatment omits the cases p = 2, and £ = 3, k = l. After what

has been done, these will present no new difficulties and so may be left for the

reader.

Lemma 7. For all integers n>p^l

S(p, k, n) = Z C'(p, k-l,n-l-2a)- C'(p, k + 1, n - 1 - 2a),
(5.32) at=o

1 £ * á t - 2,
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S{p, k, n) = ECU k-l,n-l-2a) + 2"1 {1 + (- 1)»-*}.
(5.33) „-0

l g, k = p - I, p,

where t= [(»-p-l)/2J.

This reduces the sine determinants to sums of cosine determinants. The

computations are direct and will not be given.

Lemma 8. S(p, k, n) is a polynomial in z¡ and z¡, j — l, 2, • ■ • , p, having

the sign ( — l)p~k.

It is clear that Lemma 8 can be proved from Lemmas 6 and 7, if we group

the terms in the sums in a proper manner. The next two lemmas do exactly

this.

Lemma 9. C'(p, p — 2, p) + l is a negative polynomial.

This is a trivial consequence of Lemma 6 taken together with the reduc-

tion formulae (5.18) and (5.17), when p¡zi. For p = 2, 3 individual computa-

tions are necessary.

Lemma 10. For all integers »—l>p—2^&S1

(5.34) C'(p, k - I, n) - C'(p, k + I, n)

is a polynomial having the sign ( — l)p~k.

This is proved by induction on p, the order of the determinant, using the

reduction identities already developed for the proof of Lemma 6. Here again

we are forced to consider cases.

Case 2^k^p—4, p^6. For these ranges of the indices both terms of

(5.34) can be reduced by (5.15). Regrouping the terms, we have

n_1

(5.35) C'(p, k - 1, ») - C'(p, k + 1, ») = g*     E  Kin ~ 1, «)Ai
m— p—1

where Ai = C'(p-l, k-2, m)-C'(p-l, k, m) + C'(p-l, k, m)-C'(p-l,
k + 2, m)-(zi+zi)[C(p-l, k-l, m)-C'(p-l, k + l, m)]. Clearly the

assertion for index p follows in this case from the assumption of the lemma

for index p — 1.

Case 2 ^k = p — 3, p^5. Here (5.34) is reduced by using (5.15) on the first

term and (5.18) on the second term. So

i "~x

(5.36) C'(p, p - 4, n) - C'(p, p - 2, n) = - A + z\      E   K(n - I, m)A2
m=fp—1

where
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A2 = C'(p - 1, p - 5, m) - C'(p - l,p - 3,m)

- (zi + zi) {C(p - 1, p - 4, m) - C'(p - 1, p - 2, m)}

+ C'(p - 1, p - 3,m).

The assumption of the lemma for index p — 1 shows that the first four terms

of A2 are so grouped as to be negative. The fifth term is also negative but the

— A is positive. If we apply Lemma 9 we see that for m=p — l the fifth

term contains — 1 and so we have present from this term

-n-1W 1      j. 1\ ,-n~P    .    .n-P-2 n-p-2 n-p
— Zi   K(n - 1, p - 1) = - (zi      + zi + ■ • • + zi + zi    ) = A.

Thus (5.36) is a negative polynomial.

Case 2 ̂ k=p — 2, p^4. Here (5.34) is reduced by using (5.15) on the first

term and (5.20) on the second term. Observe that the range of summation

is slightly different in the two formulae, and that the value k=p — 3 used in

(5.15) makes the second term of this formula identical with the term ob-

tained from (5.20) when k = p — l. Thus

C'(p, p - 3, n) - C'(p, p-l,n)

(5.37) „_! „_i   îz»
= - zi   K(n- l,p -2) +zi       Z   K(n - 1, w)A3

m=*p—1

where A3 = C'(p-l, p-1, m)-(zi+z1)C'(p-l, p-3, m). Now each of the

terms of A3 is positive, and further by Lemma 9 we know that the second

term of A3 contains — 1 for m = p — 1. So we have present from this term

z"-1A(w — 1, p — l)(zi+zi). All that remains is to observe that

(5.38) zTlK(n - 1, p - l)(2l + zi) - z\XK(n - 1, p - 2)

is positive. Whence (5.37) is positive.

Case l=k^p — i, £ = 5. Here (5.34) is reduced by using (5.31) on the

first term and (5.15) on the second term. Thus

-i   "_1

(5.39) C'(p, 0, n) - C'(p, 2, n) = z\      *£   K(n - 1, m)Ai
m=p—l

where   A4 = C'(p-l,    1,   m)-C'(p-l,   3,   m)-(zi+zi){C(p-l,   0,   m)

— C'(p— 1, 2, m)}. It is clear from the grouping of terms indicated above that

(5.39) has the sign (-1)"-1.

The only cases which have been omitted in the above work are the cases

k = l, p = 3, 4. These are relatively simple and will be left to the reader. This

completes the proof of Lemma 10 and hence Lemma 8. Combining this with

Lemma 5, Theorem 3 is established.
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In the same way Lemma 6 will give Theorem 5 as soon as we obtain the

limit value of C'(p, k, n) as z¡—»1. To do this we return to the trigonometric

form and use L'Hospital's rule on C(p, k, «). First let k>0. Set 0i = O. Now

as 0j—>0, the ratio becomes indeterminate and so we differentiate numerator

and denominator with respect to 02 just once. Now as 03—>0 we again have

an indeterminate form and again we differentiate numerator and de-

nominator, this time with respect to 63. Proceeding in this way it is clear that

n
lim C(p, k, n) = — lim S(p — 1, k, n)

8,~>0,J=1,2,- ■ ■ ,v k   9,->0,.7=2,3, ■ • ■ ,p

(5.40)
»

= — (- l)"-k~1D(p - 1, k, n).
k

When k = 0 the treatment is a little different. Put 0i = O and differentiate

numerator and denominator once with respect to 0¡, j = 2, 3, • • • , p. The

denominator is now reduced to a determinant of order p — 1, but the numer-

ator is still of pth order. Expanding the numerator by minors of the first

column, one has

pz\   n
lim C(p, 0, n) = 1 - lim E — siP ~ L *, n)

l>j->0,Jo*l,»,-• • ,9 fly-»0,¿-2,3,-•-,j>    ¡t_i    k

(5.41) p-i
(_ l)p-*-i2w2n (n2 - a2)

i-E
"-1

tTi (p + k- l)l(p - k - 1)!(»2 - k2)

The right side is an even polynomial in n of degree 2p — 2 with the obvious

roots +1, ±2, • ■ • , ±(p-l) and the value 1 for » = 0. So (5.40) and (5.41)

yield (2.14) and this completes, the proof of Theorem 5.

Theorem 6 is now an easy consequence of Theorem 3 and Lemma 4.

6. Proof of Mitchell's theorem(12). This theorem does not seem to be too

well known and it is hoped that the appearance of the present proof will serve

to call attention to it. As recently as 1938 Biernacki(13) refers to the simplest

case(14) of this theorem as Itahara's lemma.

It has long been known that when the non-negative integers k¡ are ar-

ranged in an increasing sequence, V(ki, k2, • • • , kp)/V(0, 1, •• -, p — 1) is

a positive polynomial(12)(16). From this it follows immediately that

(u) O. H. Mitchell, Note on determinants of powers, Amer. J. Math. vol. 4 (1881) pp.

341-344.
(I3) Les fonctions multivalentes, p. 10.

(u) The case kp=n, k¡=j — \, j = \, 2, ■ • • , p — 1. On the multivalency of power series,

Jap. J. Math. vol. 10 (1933) pp. 71-78.
(") P. C. Rosenbloom, Some properties of absolutely monotonie functions, Bull. Amer.

Math. Soc. vol. 52 (1946) pp. 458-462.
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,,   .. ,. y(ki, k2, • ■ ■ , kp)
(6.1) lim

tj-i,j-i,i,---,p V(mu m2, ■ ■ ■ , mp)

always exists whenever the integers m¡ are all distinct. We can determine the

limit value by first considering the special case in which m¡ = k¡, j = 1, 2, • ■ -,

p — 1, and then combining these special cases in a rather obvious fashion.

Consider the set of functions of the form

P f CO p 00

(6.2) w = Z- = Z Z cjZj2   =  Z bnz ,
;=1     1   —  ZjZ n-0 i=l n-0

and, for a given fixed set of indices 0 = ki, k2, ■ ■ ■ , kp, select that function of

the set for which

bu, = 0, j - 1, 2, • • • , p - 1,
(6.3)

bkv = 1-

It is assumed of course that the z3- are such that V(ki, k2, • ■ ■ , k^^O. The

Cj are then uniquely determined and using the expressions obtained for them

by solving the equation set (6.3) in (6.2), one finds that

~   V(ku kt, ■ ■ ■ , ¿p-i, n)
(6.4) w = 2_, -zn.

n-0 Y(kl,   k2,   ■   ■   •   ,   kp)

On the other hand the limit function as z,—»1 in (6.2) can be obtained by

examining the set of functions

d0 + diz + ■

(1 - z)p
(6.5)

1 °°    /
= — (aiv + a2v2 + ■ ■ ■ + apvp) = Z b'nzn,

Z n=0

where v =z/(l —z). Without too much difficulty it can be seen that the condi-

tions (6.3) applied to (6.5) give

(6.6) b'n=f[(n- k¡) /ïï(kp- kj).
i-i '     j=i

Therefore the limit values of the coefficients of (6.4) are given by (6.6).

Finally we observe that the left side of (2.17) can be obtained as a product

of a finite number of terms of the form (6.1), and when this is done and the

limit taken as z¡—>1, the corresponding product of terms of the form (6.6)

will yield the right side of (2.17). This completes the proof of Theorem 7.

Columbia University,

New York, N. Y.


