
TOPOLOGY OF LEVEL CURVES OF HARMONIC FUNCTIONS

BY

WILFRED KAPLAN

1. Introduction

1.1. Statement of results. The main purpose of this paper is to establish

the following theorem.

Theorem 1. 7e/ F be a regular curve-family filling the xy-plane. There exists

a homeomorphism of the xy-plane onto a domain D of the xy-plane such that F is

transformed onto the family of level curves of a function u(x, y) which is harmonic

in D.

By a regular curve-familyC1) is meant a family which is locally homeo-

morphic to a family of parallel lines.

It follows from the theory of conformai mapping that D can always be

chosen to be one of the two domains Dim. the interior of the unit circle x2+y2

= 1, Dx: the entire xy-plane. If D can be chosen as Di, F will be termed

hyperbolic; if D can be chosen asD„, Fwill be termed parabolic. The cases are

not mutually exclusive, as the following theorem shows.

Theorem 3. Every F is hyperbolic. There exist infinitely many topological

types of families F which are not parabolic.

A third result concerns the Riemann surface of the inverse of a function

p(z) analytic in a simply-connected domain D. By the Riemann surface of the

inverse of such a function will be meant that part of the Riemann surface of

the complete inverse function which corresponds to D: that is, the space of

pairs (z, w), w=p(z), z in D, with local coordinates defined in the usual man-

ner. This would coincide with the Riemann surface of the complete inverse

function only if p(z) cannot be continued analytically beyond D.

Theorem 2. Let w=p(z) be analytic in the simply-connected domain D and

have nonvanishing derivative in D. Let R be the Riemann surface of the inverse

function. Then there exists an at most countably infinite class A and a subdivision

of R into nonoverlapping simply-connected subsets Ra (aCA), such that the fol-

lowing conditions are satisfied:

(a) Each set Ra is schlicht over the w-plane.

(b) The common boundary points of two sets Ra, and Ra¡, if nonvoid, form

an open curve, which lies schlicht over a straight line Ke(w)= const, in the

w-plane, and which separates R.
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(c) The part Wa of the w-plane over which Ra lies can be represented in the

form: pa(u) <v<qa(u), w£Za, whereby the following conditions hold:

(cl) For one value of a, Ia is an open (perhaps infinite) interval; for all

other values of a, Iais a half-open (perhaps infinite) interval;

(c2)   -<*>£pi(u)<qa(u)é + «>;

(c3) pa(u) is upper semi-continuous; qa(u) is lower semi-continuous.

1.2. Relation to previous results. In previous papers [l] [2] the author

has classified topologically all regular curve-families filling the plane. It was

shown, in particular, that each curve of the family must be open, that is,

homeomorphic to an open interval, and must have the point at infinity as

unique limit in both directions on the curve. Each family F was shown to be

capable of a "normal" subdivision into nonoverlapping subfamilies Fa, each

of which is homeomorphic to a family of parallel lines. (Cf. §3 below for a more

detailed description.) It is this normal subdivision which gives rise to the sub-

division of the Riemann surface R in Theorem 2.

In addition, the following theorem was established  [l, Theorem 42]:

Theorem A, Every regular curve-family filling the xy-plane is the level-curve

amily of a continuous function f(x, y) which has no local extrema.

Theorem 1, therefore, states that, after a suitable homeomorphism of the

plane has been applied,/(x, y) can actually be chosen as a harmonic function.

Conversely, the level-curve family of a function u(x, y) harmonic in a simply-

connected domain D is a regular curve-family filling D (hence a family homeo-

morphic to a family F filling the plane) provided u has no critical points in

D. The points at which the partial derivatives du/dx and du/dy vanish are

necessarily singular points of the family (of "multiple saddle-point" type).

The result can therefore also be interpreted as achieving a topological char-

acterization and classification of the level-curve families of functions u(x, y)

harmonic without critical points in a simply-connected domain D.

In another paper [4] the author stated and outlined the proof of the fol-

lowing theorem.

Theorem B. Every regular curve-family filling the plane can be mapped

homeomorphically onto the family of solutions of a system of differential equa-

tions

dx dy
(l) ~ = P(x,y),        ~ = q(x,y),        p2 + q2*0,

at at

where p and q are defined and have continuous first partial derivatives for all

(x, y).

This theorem is a simple consequence of Theorem 1, for the level-curves

of the function u satisfy differential equations of the form indicated, with
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p=du/dy and g= —du/dx, and a family defined by (1) in any simply-con-

nected domain is necessarily homeomorphic to a family of same type filling

the plane. However, by the method of proof to be employed here, this result

will be used in the demonstration of Theorem 1, so that it cannot be con-

sidered as a corollary. An alternate method of proof of Theorem 1, inde-

pendent of Theorem B, will be indicated in §5 below.

2.   Proof of Theorem 1

2.1. Preliminary definitions. Let 7i and 72 be regular curve-families

filling surfaces Si and S2. If there is a homeomorphism T of Si onto Si such that

Pi is transformed onto 72, Pi will be termed equivalent to 72. If further Si and

Si are oriented and 7 preserves orientation, then 7 will be called an o-homeo-

morphism and 7i will be termed o-equivalent to F2.

Throughout the following the same symbol, for example F, will be used to

represent a curve-family and the point set which it fills. The context will

prevent ambiguity.

For convenience complex variables z = x+iy and w = u+iv will be used

to represent the points of the xy-plane and the wu-plane. Both planes will be

assumed oriented in the usual manner, so that an analytic homeomorphism

w=p(z) is orientation-preserving.

2.2. Construction of the mapping ZV From this point on F will be assumed

to be defined by differential equations of form (1). By Theorem B, this in-

volves no loss of generality. G will denote the family of solutions of the dif-

ferential equations

dx dy
(2) — = - q(x, y),       — = p(x, y),

at dt

that is, the family of orthogonal trajectories of F. G is then also a regular

curve-family filling the xy-plane [l, Theorem 2].

By Theorem A, continuous functions f(x, y) and g(x, y) can be chosen

which have no local extrema and which have F and G, respectively, as level-

curve families. These functions will now be assumed chosen in a fixed manner.

The transformation u=f(x, y), v = g(x, y) of the z-plane into the w-plane

will be denoted by TV

Lemma. 7i is continuous and is locally a homeomorphism which is either

throughout orientation-preserving or throughout orientation-reversing.

Proof. Since the curves of G are orthogonal trajectories of 7', a neighbor-

hood U of each point (xo, yi) can be found which can be mapped o-homeo-

morphically on a rectangle a<x<b, c<y<d in such a way that the curves of

F become the lines x = constant and the curves G become the lines y = constant

of the rectangle. The functions/and g become continuous functions of x and

y respectively in the rectangle, and necessarily monotone functions, since
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both functions have no relative extrema. The mapping from the rectangle to

the íü-plane is hence one-to-one and continuous, and the inverse is also con-

tinuous. Thus Pi is a homeomorphism on U, and must either preserve or re-

verse orientation in U. It follows that the set of points for which Pi preserves

(or reverses) orientation is open. Since the z-plane is connected, Pi must there-

fore either throughout preserve or throughout reverse orientation.

By replacing g by — g, if necessary, it is possible to ensure that Pi pre-

serves orientation and it will be assumed that this has been done.

2.3. Definition of the Riemann surface R. A Riemann surface is by defini-

tion a surface with local conformai coordinates. The surface R is defined as

follows. Its points are all pairs P:(z, w), where w=TiZ. The mapping T2:z

—>P:(z, w) is thus a one-to-one correspondence between the z-plane and R

and can be used to define a topology and an orientation in R, so that P2 be-

comes an o-homeomorphism of D„ onto R. The mapping Tz'.P'-(z, w)—>w is

then a continuous map of R into the w-plane which is locally a homeo-

morphism. This allows one to define local conformai coordinates in R. For a

neighborhood of each P0'(z0, w0) can be found which is mapped o-homeo-

morphically by P3 onto the interior of a circle in the w-plane. This circle can

then be mapped one-to-one and conformally onto the unit circle: \w\ <1,

and thus coordinates in the unit circle are assigned to a neighborhood of each

P0. If two such neighborhoods overlap, the maps P3 coincide on the common

part and hence the resulting transformation of coordinates in the unit circle is

conformai. Thus R is a Riemann surface and T¡ is a conformai map of R into

the w-plane. R can thus be thought of as "lying over the w-plane" and one

can discuss the "sheets of R" over a given point in the w-plane.

Remark. The mapping Ti is "interior" in the sense of Sto'ilow and the con-

struction of the topologically equivalent map T%, as just described, is essen-

tially the same as Stoilow's construction of an analytic function topologically

equivalent to an interior transformation of a surface into a sphere. (Cf. [6],

especially chap. V, §5.)

2.4. The family i> on the Riemann surface R. The homeomorphic trans-

formation T2 takes F onto a regular curve-family $ filling R. In fact, $ con-

sists precisely of the "parallel lines" in R lying above the lines u = constant in

the w-plane. Thus i> might be described as a family of parallel lines filling R.

In a sense, it has thus been shown that the curve-family P, assumed to be

only locally homeomorphic to parallel lines, is actually equivalent to a family

of parallel lines in the large.

The family G of orthogonal trajectories is mapped onto a similar family

T of "parallel lines" filling R, all perpendicular to those of <£. The family G is

of no further interest here. However, a question of definite significance is

that of the relationships between the topological structures of F and G. F

may have the structure of a family of parallel lines filling the plane, while G

does not, as simple examples show.
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2.5. Conclusion of proof of Theorem 1. To complete the proof, it is simply

necessary to apply the fundamental theorem of conformai mapping to R. R

is homeomorphic to the finite z-plane, is hence open and simply-connected.

Therefore R can be mapped one-to-one and conformally onto either Di : \ z | < 1

or 7>M: | z| < «>. Let Ti'.z—>P(z, w) be the inverse mapping from Di or DK to

R. Then the map 76= 7374 is a conformai map of the domain 7>i or 77«, into

the w.-plane. Let 77 be the counter-image of the family <£ under Ti. Then

under 76, 77 is mapped onto a family of lines u = constant in the w-plane ; that

is, 77 is precisely the locus of curves u(z) =const., u being now a harmonic

function. But 77= TiTZ1(F) is o-equivalent to F. Hence F is o-equivalent to

the level-curve family of a function u(z) harmonic in a domain D.

3. Normal subdivisions of curve-families and Riemann surfaces

3.1. Introductory remarks. Throughout this section D will denote a

simply-connected domain and w=p(z) a function analytic in D with non-

vanishing derivative in 77. The goal of this section is then to establish Theorem

2, which describes certain properties of the Riemann surface R of the inverse

of <p(z).

Any statement about R can be restated as a property of the mapping from

D to the w-plane by p(z). Since only topological properties of R are involved,

the statements could then equally well be applied to any mapping topolog-

ically equivalent to p(z), for example, to the mapping 7i of §2, which one

might described as "a homeomorphism generated by a regular curve-family

filling the plane," or, equivalently, to any locally one-to-one interior trans-

formation (in the sense of Stoïlow) of D into the w-plane. In all cases precisely

the same class of Riemann surfaces R (as constructed in §2.3) are involved,

and there is therefore no loss of generality in considering R as the Riemann

surface of the inverse of an analytic function.

3.2. Normal subdivision of a curve-family. The concept of normal sub-

division of a regular curve-family F filling the plane is defined in [l, §3].

The essential ideas will be briefly recalled here, with minor modifications.

The normal subdivision consists in the selection of a countable class Fa of

nonoverlapping sub-families, where a ranges over a countable class A (con-

taining at least one element ceo) and the 7„ satisfy the following conditions :

1. Fao is equivalent to a family of parallel lines filling a plane; for a^ao,

Fa is equivalent to a family of parallel lines filling a closed half-plane, the

curve corresponding to the boundary of the half-plane being denoted by Ca.

2. The common boundary of two sets Fa¡ and 7„2, if nonvoid, consists of

one of the two curves Ca„ Ca2-

3. If Ca2 is the common boundary of 7„, and 7„2, then there exist curves C

and C" of the family Fa, such that no one of the curves C", C", Cai separates

the other two.

3.3. Proof of Theorem 2. The family T7 of level curves of u = Re [p(z) ]
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is a regular cuve-family filling D. Since D is homeomorphic to a plane, all

the topological properties of regular curve-families filling the plane hold with-

out modification for P. In particular, since Pis differentiable, the transforma-

tion Ti'.u=f(x, y), v = g(x, y) can be constructed as above, with w = const. on

each curve of P. In fact, a possible choice of Pi is w=<p(z), and this choice

will be made, so that f = Re [<p(z)], g = lm[<p(z)]. The transformations P2 and

P3 can then also be defined as in §2, and R, as defined there, is precisely the

Riemann surface of the inverse of <p(z).

Furthermore, Pean be normally subdivided, as in §3.2, and a fixed normal

subdivision will be assumed. The set T2(Fa) on R will be denoted by Ra and

its projection P3(P„) on the w-plane by Wa. The value of u on C„ will be

denoted by ua.

Now the function u =f(x, y) has no local extrema. Since each F„ is equiva-

lent to a family of parallel lines, this implies that u takes each value at most

once in Fa and must range over an interval Ia which is open for ct=ao and

half-open with end points ua otherwise. Since v has no local extrema, v takes

each value at most once on each curve C of Fa, and thus ranges over an

interval pa(u) <v<qa(u). It follows that Pi is one-to-one in Fa and, since Pi

is locally a homeomorphism, is hence a homeomorphism of Fa onto Wa. Since

P2 is a homeomorphism, this implies that P3 = PiP2-1 is a homeomorphism of

Ra onto IFa; that is, Ra is schlicht over Wa. Thus (a) is proved.

The common boundary of Ra„ and R„2 (if nonvoid) is the image, under

the homeomorphism T2, of the common boundary of P„, and P02, that is, of

Cai or Cai. Since u = const, on Ca¡ or Ca2, assertion (b) follows.

The representation of Wa in the form pa(u) <v<qa(u), w£Za, has already

been established in the proof of (a), and (cl) and (c2) also follow immedi-

ately. Since Wa is a homeomorphic image of Fa, each point (u, v) of Wa for

u interior to Ia is an interior point of IF» (by "invariance of domain"). This

implies the indicated semi-continuity of pa(u) and qa(u) for u interior to Ia.

If u is an end point ua, then each point (ua, v) oí Wa is an image of a point

P on Ca- Since Pi is locally a homeomorphism, there exists a semi-circle in

Wa with center at (ua, v) and diameter on u=ua. This implies the semi-

continuity conditions for u = ua. Thus (c) is completely proved, and Theorem

2 is established.

Remark. A further use of the properties of the normal subdivision or of

properties of analytic functions would show that the image under Ti oí each

boundary curve Caj of P„ lies on one of the two intervals u = uaj, v>qa(uaj)

or u = uaj, v<pa(uaj). The choice of interval depends on the "side of Fa¡" to

which Caj belongs. Furthermore those curves Ca¡ which map into a fixed one

of the two intervals can be grouped into two classes, on each of which Pi is a

homeomorphism. The two classes are separated by the curve C of Fa on

which u = Ua, = ua,= • • • . The basis for this analysis is given in [l] and f21.

especially [l, §4] and [2, §1.4].
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4. Proof of Theorem 3

In the proof of Theorem 1 above no indication was given as to which

type of Riemann surface R might be expected: that is, whether D is 7A

(hyperbolic case) or Dm (parabolic case) in the conclusion to Theorem 1.

Theorem 3 asserts that D can always be chosen as 7>i and that there are

infinitely many topologically distinct types of F for which DM cannot be

used.

To prove the first of these assertions, it is necessary only to ensure that

|w| be bounded on R. The level-curve functions/(z) and g(z) of §2.2 can be

replaced by the functions

/(z) = tanh/(z),        £(z) = tanh g(z)

to ensure that this is the case. For then / and g are proper level-curve func-

tions, since tanh x is a monotone continuous function of x, and |/| <1,

||| < 1. Thus | w| = |/(z) +ig(z) | will be bounded on R and hence 76 is a con-

formal map on D which is bounded. By the Liouville Theorem, D can be D\,

but not D„. Hence every F is hyperbolic.

If an F is also parabolic, then the image family 77 can be chosen as the

level-curve family of the real part of an entire function p(z) with nonvanish-

ing derivative. Thus p must be either a polynomial of degree one or a func-

tion of the form /exp p(z)dz, where p(z) is entire. By the Picard Theorem, the

Riemann surface R must, in the latter case, have infinitely many sheets. But

each sheet of R corresponds to one subset Fa of a normal subdivision of F,

hence each normal subdivision of F must require infinitely many subsets Fa.

In the other case, when p is a linear function, F must have the structure of a

family of parallel lines. But it is easy to construct examples of families F for

which every normal subdivision requires a finite number of subset 7«. Thus

the level-curve families of the functions/„(x, y) defined as follows:

/„ = e1 sin y, 0^ yg 2nir,

fn = y, -  oo   < y g 0,

/„ = y — 2wx, 2nir ^ y < °o,

each require precisely 2n+l subsets Fa in every normal subdivision, as can

be easily verified. Thus they represent an infinity of distinct topological types

of families, none of which can be of parabolic type.

That there are infinitely many topological types of F which are parabolic

appears extremely probable, although a demonstration has not as yet been

worked out. A preliminary investigation indicates that the level-curve

families of the real parts of the entire functions

exp z, exp (exp z), exp (exp (exp z)), ■ • •

are all topologically distinct.
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5. Alternate development. Unsolved problems

5.1. Alternate development of the theory. It is of logical interest to con-

sider the most efficient order in which the various theorems occurring in this

theory can be established. For convenience, the main theorems are restated

here in concise form: I. Possibility of normal subdivision of a regular curve-

family F filling the plane [I, §3.6]; II. Existence of a level-curve function for

F (Theorem A above) ; III. Representation of every "normal chordal system"

as a family F [2, §l]; IV. o-equivalence of curve-families having isomorphic

chordal systems [2, §2]; V. Representation of P as a differentiable family

(Theorem B above) ; VI. Equivalence of F with the level-curve family of a

harmonic function (Theorem 1 above).

The order of proof thus far is as follows: first I; then II, IV, V as conse-

quences of I, but independently of each other; then VI as a consequence of

II and V; then III independently of all others.

It is worth remarking that in the proof of each of the theorems III, IV,

V, VI a special canonical model of a regular curve-family was constructed, a

different model being used for each theorem. The efficiency of the develop-

ment would be greatly improved if the number of models were decreased, the

ideal being to use just one model.

It has been found possible to proceed as follows: to prove I as before;

then to prove III, using as model the family 4> on the Riemann surface R

described above, the regularity of <£ being immediately verifiable; then to

prove IV as before; finally to obtain II, V and VI as immediate corollaries.

This method would require two models. However, IV could also be proved

with use of the model $>, although the details have not as yet been worked

out. Thus the whole development can be greatly shortened and simplified,

and the number of models can be reduced to two, even possibly to one. It is

planned to carry out such a program in a subsequent paper.

5.2. Unsolved problems. The results obtained above suggest a number of

questions whose answers would be of interest.

1. Are there infinitely many topological types of parabolic families? Are

there a continuum? Are there a continuum of families of non-parabolic type?

2. Can the families of parabolic type be characterized in terms of chordal

system structure?

3. What function-theoretic properties characterize a class of entire func-

tions whose level-curve families (that is, those of their real parts) have a

given topological type?

4. Can Theorem 1 of this paper be extended to regular curve-families

with singular points? The singular points would then have to be of general'zed

saddle-point type (such as that of the level curves of Re(zn) at the origin).

This question suggests a general program of classification of curve-families

with such singular points.
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5. What are the relationships between the structure of the family F and

that of its family G of orthogonal trajectories?

The question arises as to whether this theory can be of use in the solution

of the problem of type for Riemann surfaces. One is necessarily restricted

thus far to Riemann surfaces with no algebraic branch points. The answer to

question 2 would give a necessary condition that a family be parabolic; the

failure of this condition would then be a sufficient condition that a family be

hyperbolic. This result could then be restated in terms of the Riemann sur-

face R, and might well give a useful criterion for function theory.
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