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1. Introduction. P-harmonic functions and the need for extension of this

class. In order to develop a theory of functions of several complex variables,

in particular along patterns similar to those used in the theory of a single

variable, it is necessary to develop tools analogous to those which in the case

of one variable lead so successfully to numerous important results.

The principle of hyperbolic measure and that of harmonic measure are

two of the most powerful methods in the theory of one variable. The intro-

duction of complex orthogonal functions and the method of the minimum

integral provide a suitable replacement of the methods connected with the

principle of hyperbolic measure ; they yield, in the case of one variable, most of

the results which can be obtained by applying the first of th'e principles men-

tioned above; since these methods do not use the Riemann mapping theorem,

they can easily be extended to the case of several complex variables.

The generalization of methods which use the principle of harmonic meas-

ure seems to be more involved. These methods are based on the introduction

of harmonic functions of two real variables into the theory of analytic func-

tions of one complex variable and the use of certain properties of the former

functions. In particular, the fact that to every continuous functions defined

on the (sufficiently smooth) boundary curve of a domain^) S32 there exists a

function, harmonic in S32, and assuming the prescribed boundary values, to-

gether with the fact that this function can be represented in a comparatively

simple form by means of an integral, plays a decisive role in many investiga-

tions of the theory of one variable.

If one attempts to generalize these methods to the case of several complex

variables, one immediately realizes that the corresponding approach for

several variables meets serious difficulties and leads to methods of investiga-

tion which in many respects are weaker and considerably less flexible than in

the case of one variable. Let us analyze the reason for this situation.

The real or imaginary part of an analytic function of two complex vari-

ables is a P-harmonic function, that is, satisfies the four equations:

d2U       d2U d2U       d2U

dxi        dyi ox2        dy
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d2U d2.U d2U d2U
(1.2) -+-= 0,-= 0.

dxidx2       dyidyi dxidyi       dXidyi

Every P-harmonic function is naturally a harmonic function of four real

variables. On the other hand, not every harmonic function of four real vari-

ables is P-harmonic. The boundary of a four-dimensional domain (domain of

definition of a function of two complex variables) is a three-dimensional

manifold (2). It doe6 not, from the point of view of the theory of functions,

play the same role as the boundary curve in the case of a single variable.

True, every harmonic (and a fortiori every P-harmonic) function assumes the

maximum and minimum of its values on the (three-dimensional) boundary,

and therefore the maximum of the real and imaginary parts (or of the ab-

solute value) of a function of two complex variables is assumed on the

boundary. On the other hand, P-harmonic functions represent a sub-class of

harmonic functions, and a P-harmonic function (and a fortiori an analytic

function of two complex variables) is uniquely determined by its value on

certain sub-sets of the three-dimensional boundary. For instance, in the case

of a bicylinder(3) P4 = E[|zi|<l, |z2|<l] the Cauchy formula yields the

values of an analytic function in P4 in terms of its value on the two-di-

mensional surface P2 = E[|zi|=l, |z2|=l], while the boundary of P4 is

è3 = E[|zi| <1, |z2| =1]+E[|zi| =1, |z2| <ll (See also Remark 1, p. 527.)

From this formula it can easily be deduced that every analytic function as-

sumes the maximum of its absolute value not merely on b3 but indeed on the

"distinguished boundary surface" P2. This situation suggests that the dis-

tinguished boundary surface may assume from the point of view of the

theory of functions of two variables the role of the boundary curve in the

case of one variable. The analogy fails, however, in one important direction;

to every real continuous function defined on the (sufficiently smooth)

boundary curve of a (plane) domain, there exists a harmonic function which

assumes the prescribed values. On the other hand, it is quite easy to see that

to a given real function defined on the distinguished boundary surface

732 of a bicylinder, there does not always exist a P-harmonic function de-

fined in P4 which assumes on P2 the prescribed values. Indeed, from the

theory of Fourier series in two variables, it follows immediately that to every

continuous function defined on P2 = £[|zi| = 1, |z2| =l] there exists and is

uniquely determined by the values on P2 a function which satisfies (1.1) ; but

in general such a function will not satisfy in addition to (1.1) the system (1.2).

(See Remark 2, p. 528).

(2) For simplicity's sake, we shall limit ourselves to the consideration of functions of two

complex variables. We wish, however, to stress that the generalization of considerations to the

case of n complex variables is in almost all instances a question which involves only technical

difficulties.

(3) See notation at the end of this section.
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The means of remedy could proceed in two directions. Either we can in-

troduce subsets of B2, such that to every real continuous function defined on

such a subset there exists one and only one P-harmonic function assuming the

prescribed boundary values on the subset under consideration ; or we can ex-

tend the class of P-harmonic functions in such a way that the extended class

as far as possible still has the properties needed as tools for our investigations

but, on the other hand, is so large that the boundary-value problem with

functions prescribed on the whole distinguished boundary surface has always

a solution.

While it seems that attempts in the first direction cannot possibly lead to

successful results, it is quite natural in the case of a bicylinder to introduce as

an extended class the class of functions which satisfy the system (1.1), de-

noted as doubly harmonic functions. On the other hand, it is clear that in

the case of a domain different from a bicylinder the extended class must be

defined by some other properties because the doubly harmonic functions do

not have in general the required properties (4).

In the present paper, an attempt is made to define functions of extended

class for a much larger family of domains with distinguished boundary surface

than the family of bicylinders.

In introducing this extended class, we make the following requirements:

(1) In the case of a bicylinder, the extended class coincides with doubly

harmonic functions.

(2) In the case of a domain which by a pseudo-conformal transformation

can be obtained from a bicylinder, the class coincides with the functions ob-

tained by a pseudo-conformal transformation from doubly harmonic func-

tions.

(3) In the case where there exists a P-harmonic function which assumes

prescribed values on the distinguished boundary surface, the function' of the

extended class coincides with the corresponding P-harmonic function.

(4) If to a function given on the distinguished boundary surface there

exists a P-harmonic function which at every point of the distinguished

boundary surface is larger (smaller) than the prescribed function P, then in-

side the domain M4 this P-harmonic function is larger (smaller) than the

function of the extended class corresponding to P.

Further, it is important for various purposes that our definition of func-

tions of the extended class enable us to obtain a comparatively simple integral

formula, representing functions of the extended class in M* in terms of their

values on the distinguished boundary surface.

Roughly speaking, the basic idea of defining functions of extended class

is as follows: Let us suppose that the real function F is given on the distin-

guished boundary surface of a domain M*. Now, we consider the totality

(4) We note that in general by a pseudo conformai mapping a doubly harmonic function is

not transformed into a doubly harmonic function.
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17(7; 7174) of all P-harmonic functions which are regular in the domain 7174,

continuous in the (closed) domain 7174, and at every point of the distinguished

boundary surface 7172 are equal to or larger than 7. The totality of these

functions we denote as the upper class V(F; 7174) of functions belonging to P.

They form a normal family and at every interior point of 7174 the family has a

minimum. These minimum values define a real function corresponding to P.

This function can be defined by its boundary values on the whole boundary

m3 of 7174. Let us denote this function by u(Z; F).

In an analogous way, we consider the totality £(F; 7174) of P-harmonic

functions which are regular in 7174, continuous in 717\ and at every point of 7172

equal to or smaller than F. As before, we show that the family has at every

point a maximum l(Z, F) and that this function possesses a boundary value

on the boundary tm3. In general u(Z; F) does not equal l(Z; F) except in the

case where there exists a P-harmonic function which assumes the values F on

il72. On the other hand, as we shall show, on the boundary m3, u(Z; F) =l(Z; F)

and therefore by our procedure we define on the boundary m3 a function

which we can associate with F, which we denote as the function of extended

class, E[Z; F; M4], ZCm*.
It remains now to define the functions of extended class inside the domain

7174. There exist several possibilities how to proceed. The most natural ways

seem to be the two following ones:

I. Define as function of extended class(6) Eh [Z ; F; 7174] that harmonic func-

tion of four real variables which assumes on m3 the values u(Z; F)=l(Z; F)

determined previously on tm'.

The functions Eh[Z; F, M*] possess the advantage that they are defined

intrinsically, that is, they are independent of the choice of the coordinate

system. On the other hand, they have the disadvantage that in the formula

representing the function Eh[Z; F, M*] in A74 in terms of the values F, there

appears a Green's function of a four-dimensional domain 7174, and that we

get a fourfold integration. Since the Green's function of four-dimensional

domains are not sufficiently investigated and since operating with fourfold-

integrals is often very inconvenient, this situation suggests replacing the

above-mentioned class by another class of functions which on the boundary

coincide with the values determined previously, which have a simpler repre-

sentation in 7174, but which are not necessarily defined intrinsically.

II. Let zK = n*(Z, pi, pi), k = 1, 2, pi, pi real, Z complex, be a two-dimen-

sional family J of analytic surfaces such that to every point Zw CMk there

exists one and only one pair (pu pi) such that zK = nK(Z, pu pi), k = 1, 2, passes

through Z(0) and J possesses some properties indicated in §4.

We define as extended class En [Z; F; M*] the totality of functions each of

which is harmonic as function of Re Z, Im Z, in every MiC\[zK = nK(2\, pi, pi),

(') In general, we shall denote functions of the extended class by E[ ]. If we wish to stress

that we consider those indicated under I or II, we shall write Eh[ ] and En[ ] respectively.

(Thus if we write E[ ], the symbol refers to both types.)
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k = 1, 2] and assumes on fwsf^[z« = w«(Z, p-i, pi), k=1, 2] the values defined

above.

Notation. The superscript attached to a symbol denoting a manifold indi-

cates the dimension of the manifold.

In operating with sets we use the usual symbols: S, + (sum set), — (dif-

ference set), f} (intersection),X (outer product of domains), and so on(6). For

instance, we denoted by Sx^fJ,, Z*(X*) the sum of a family of sets which

depend upon a parameter X* running through the interval s\. (Note that the

sets Zf(Xfc) considered in this paper are families of disjoint segments of sur-

faces, lying in the four-dimensional space [lt(Kk)C\ItQ^i) =0, for Xt^X* ]

so thatSx4e>Ja Z»(X*) (under certain continuity conditions) is a segment of

a hypersurface, that is, it is a three-dimensional manifold.

We denote by M4(zK=zf)) the intersection of the domain M4 with the

plane zK = z<-°\ We note that in the following we omit the superscript, and

write simply M4(zK = zi).

We denote by E[ • • • ] the set of points whose coordinates satisfy the

relations indicated in the brackets.

A point of the four-dimensional (Euclidian) space, with cartesian co-

ordinates xi, yi, x2, y2 (or complex coordinates zu z2, z« = x«+ty«) is denoted by

Z. In general we shall write Z as argument rather than (xi, yu x2, yi) or

(zi, z2). When dealing with analytic functions of two complex variables, we

shall use, however, as arguments (zi, z2), in order to stress that a quantity is

an analytic function of two complex variables.

We wish finally to remind the reader that in the usual manner we denote

functions U of four real variables xi, yi, x2, y2 which satisfy the equation

d2U/dx\+d2U/dy\+d2U/dx\+d2U/dy% = 0 as harmonic functions.

Functions U of the same four real variables satisfying the system (1.1)

will be denoted as doubly harmonic functions.

Finally, functions satisfying simultaneously systems (1.1) and (1.2) will

be denoted as B-harmonic functions.

P-harmonic functions are real (or imaginary) parts of analytic functions

of two complex variables Zi, z2, z, = x,+iyK, k=1, 2.

These functions are usually denoted as biharmonic functions. It seems

preferable, however, to change this terminology since functions that satisfy

the equation

d4U d4U        d4U
-h 2-h-= 0
dx4 dx2dy2       dy4

are also denoted as biharmonic functions.

Remark 1. Let us note that naturally one can obtain a generalized Cauchy

formula representing the values of an analytic function of two variables in-

side the domain H4 in terms of its values on the whole three-dimensional

(8) See F. Hausdorff, Lehrbuch der Mengenlehre, 2d ed., 1927, p. 1.
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boundary h3. We have

1   r C r     ( à(l/r2) à(l/r2)
f(Zi, Z2) = — <f(ti, f.) —— drudtidvi - i -^—i dZidtidr,

1-h-J  of   of }}     \ all dfl

<f(i/r2) . a(i/V2) )
——— d%idr\idn2 — i —-d£idr]idti> ,

BÍ1 Bf;

f* = £*+«/*, fk = £k—ir¡k. See Bergman [7, p. 389](7). On the other hand, it is

of importance that in the case of a large class of special domains there exists

a generalized Cauchy formula expressing the values inside the domain in

terms of values on a certain two-dimensional surface (distinguished boundary

surface) of the domain.

Remark 2. Every continuous function u(pi, pi) of two variables pi, p2

can be formally represented in the form of a double series,

00 00

S   S  [^«n cos {w4i + nfa) + Amn sin (w0i + wtf>2)]
m=-0 n=—oo

[00 00m=0 n=—o

Amneilm*l+n*»)mn

—00

The above expression will represent the real part of an analytic function of

two complex variables ^m-o 2Zn-o Amn¿Í¿¡t if and only if ^4mn = 0, for

m = 01 1, 2, • « • ; «= — 1, —2, that is, if u(<¡>\} 4>%) satisfies the conditions

I      «0*i, Pi)e^m^~n^dpidp2 = 0,  m = I, 2, 3, ■ ■ ■ ; n = I, 2, 3, ■ ■ ■ .
o     «7 «

2. Domains 7174 and their structure. Before investigating functions of

two complex variables in a class of domains with distinguished boundary sur-

face, it is necessary to describe in a more exact manner the geometric structure

of the domains under consideration. These domains have already been in-

vestigated in a series of previous papers [l—11 ](8) in connection with other

questions. In order to simplify the reading, we shall repeat briefly here the

hypotheses needed concerning the geometrical structure of these domains

and indicate the properties which will be needed for our purposes.

A. Segments of analytic hypersurfaces, which constitute the boundary of

7174. The boundary of the domains to be considered consists of finitely many

segments of   analytic   hypersurfaces (9),   denoted  in   the  following  by i\,

(') Numbers in brackets refer to the bibliography at the end of the paper.

(8) A knowledge of the previous papers indicated in the bibliography is not presupposed in

the present paper.

(9) We note that often in the following for the sake of brevity we use the terms "hypersurface"

and "surface" instead of the more precise terms "segment of a hypersurface" and "segment of

a surface," respectively.
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k = l, 2, • ■ • , n. For the purpose of defining with the help of these hyper-

surfaces a domain with distinguished boundary surface, it is useful to extend

each such hypersurface to a larger hypersurface j\ which divides a given

domain P4 into several parts. (See Fig. 1, p. 531). In general, the boundary of

jl will belong to the boundary of R4. For our purposes, it is only necessary that

this extension, j\ — i\ of i\, be continuously differentiable. (Such an extension

of a segment of an analytic hypersurface is in general possible, while the

analytic extension is often impossible.) Thus, we shall work initially with

jl, returning later to il.

Suppose that for each Xi£/1 = E[0^X«i^2ir]

(2.1) 4>k(Z,\k),

ZER4, is a complex, continuously differentiable function of the five real vari-

ables xi, yi, x2, y2, X*(10). Let

(2.2) Qk\\k) = E[**(Z, \i) =0],       X*€/-El0áX»S2r]

be a one-parameter family of surfaces or segments of surfaces in R4. We suppose

that Qt2)(Xfc) and Q\(\i ) do not possess common points unless X* =X* , except

perhaps when X = 0 and X' = 27r. In this latter case we assume that either

Qt(0) = $(2ir) or Q\(0) and Q\(2ir) have no common points.

We assume (Hypothesis 2.1) that these hypersurfaces can be uniformized,

that is, there exist two functions of three real variables(u), £, 77, X*,

(2.3) hlCLk, \k),       Ik E P*(X*),       Z* = £ + iv,       \k Ef1,       k = 1, 2,

having continuous first derivatives with respect to Ç, n and X*, P|(Xi) being

an appropriate domain in the (¿77)-plane such that

(2.4) <Pk\h\CLk, \i), hl(Zk, \k), \k] = 0,

and such that to every point Z(0)£P4'for which

(2.5) ¿*(Z(0>,xr)=0

there is one and only one point (Z£, XjJ) for which

(2.6) zl=hl(zl,\\), «-1,2.

We shall further assume (2.2) (12) that the boundary of E\(\k) is a Jordan

curve and varies continuously (in the Fréchet sense) when X* varies. It is to be

(10) It should be remarked that by an oversight in [ó] we implied the existence of the

derivatives with respect to 21 and z^. The present formulation is the correct one.

(11) In  [l]the existence of derivatives with respect to Z, was implied. It is correct as

stated here.

(12) The term hypothesis will be omitted henceforth.
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noted that the domain [of the three-dimensional (LzvXi)-space] defined by

Sxig/i EiQoi) is a cylinder (or a torus) (denoted by d-l) with varying cross-

section, El(~ki). If (Z*, X*) runs through all the points of d\ then the set of

points (zi, z2), Zt = hl(Zk, \k), forms a hypersurface or a segment of a hyper-

surface denoted by j\. j\ is the sum of the laminas QlCKi). By the corre-

spondence

(2.7) Z*-> (zi, zi),       s. = h'k(Zk, Xi),       Zk G El(\i),

which we denote(13) by R\h, we have a one-to-one mapping of El(\k) into

Q2CXk). Using this notation we have, for example,

(2.8) E¡(\k) = R^[Q¡(M)].

It is, for our purposes, necessary to know that jl has the property of

dividing every sufficiently small hypersphere 7V£ with center at a point Z(0)

of jl into two connected parts. To this end, we assume (2.3) that at every

point Z of jl at least one of the determinants

/„ ~x di^k ' ^k f   , r. . , t1'   ,   •, <2)
(2.9) —-— ^0,        pk = pk   + ipk  ,

d(\kl X)

here X represents any one of the four variables Xi, yi, x2, y2, and

dpk

(2.10) 0 <   -   < ».
d\k

Indeed suppose dpí1)/d\k9lé0. Then from pt\Z, \k)=0, it follows that

X*=X*(Z). Substituting the last expression into pi2)(Z, X*) we obtain the

equation of (2.2) in the form ^2) [Z, \k(Z) ] =0. Since

dpk   [Z, \k(Z)]      dpk        dpk    d\k dpk        [~d0fc   [Z, \k]~

dxi dxi        d\k   dxi dx

and from ^'[Z, X*(Z)] = 0, we have

/    rap, [z, x^j-|

i        L        dxi       J'
\k = \k(Z),

we obtain finally

d\k dpk     / dpk

dxi dxi  '     dx*

dpk        d[pk  ,Pk   \    I dpk

dxi d[xi, \k]    '     à\k

(") We note that the mapping of one segment Ek{\k) into the corresponding segment

Of 0*) of the 2-space is denoted by R\k. _ __
The mapping of the entire three-dimensional manifold d3 =S\kÇ£/1E*h(\k) ontoS\kÇ£/lQl '(X*)

will be denoted by Rk.
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It follows therefore from (2.9) and (2.10) that (2.2) can be written in the form

Xi = K(yi, Xi, y2) which implies the property of jl mentioned above, see [l, pp.

79-81].
B. The domain M4. Let us consider n hypersurfaces j*, k = l, 2, 3, ■ ■ ■ , n,

oí the form described in A. We shall suppose that the jl, k = l, 2, • • ■ , n,

divide the domain P4, now taken to be simply connected, into parts in such a

Fig. 1. Two-dimensional analogue of domains Ri and Ml, of boundrry ms of M*,

and distinguished boundary surface(u) Afs=Sî_lS '"_! G¡„.

manner that there exists at least one connected domain ilZ4 (one of the cells

into which R4 is divided by the jl, k = l; • • • ,n) which lies wholly in R4

(for example, if4CP4). The entire boundary m3 of M4 consists therefore of

parts of jl. We note that M4 by definition has no points in common with any

jl, k = l, 2, • • • , n. We shall suppose (2.4) that the parts of jl belonging to the
boundary m3 of M4,

3 .8 __4
ik = Jkl\ M ,

where

(2.11) il =   S    ll(Ki),       ll(\k) =Ql(\k)nM\

are segments of analytic hypersurfaces, that is, in a certain neighborhood of

Zjb(X*), <bk(zi, Zi, X*) (see (2.1)) is an analytic function of two complex variables

Zi, z2. Also the uniformizing functions Aí(Z¿, \k), « —1, 2, k = l, 2, ■ - • , n

(") Note that in the model the dimensions of the manifolds are diminished by 2, that is,

hypersurfaces are replaced by lines, surfaces by points, and so on.
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(see (2.3)), are analytic functions of Z* in the corresponding part R^i [lt(kk) ]

of ElÇkk).
In order to avoid too great generality, we shall suppose (2.5) that Pt(X*)

= R^i [Z^(Xjt) ] and therefore Z^(X*) is a simply-connected domain or possibly

————Í

Fig. 2. Domain(16) d3 (the image of j3 in the f^A* space), Z¡,=£+iri.

empty, for all X*£/1 except at most in a set w° consisting of a finite number of

points. Further, we assume (2.6) that the set of values of the Xt's belonging

to/1— n° for which the Z^(Xk) are not empty consists of finitely many con-

nected segments si«, a = l, 2, • • • , ß. For every Xt0)£sia, Pl(Xt0)) represents

the kernel domain in the sense of Carathéodory of Bl(\i), when X&—>Xi .

We assume (2.7) that for Xjt£siet, the boundary b^Çhi) of PJt(Xi) consists

of finitely many, at most k, differentiable arc segments, which meet each other

(16) S fit S Xjtgsia £2(X*) ¡s the image of a segment il of analytic hypersurface. S ¡fr consti-

tutes the boundary ms of M*.
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under nonvanishing angles, k is assumed to be independent of X*. For

X*GsJL— sL, Pjt(Xfc) is assumed (2.8) either to consist of an isolated arc,

which possibly may degenerate into isolated points, or of (two-dimensional)

domains part of whose boundaries degenerate to isolated curves or points.

On each boundary curve bl(7\k) of Bl(f\k)=Ri^[ll(f\k)], X^GsL, we may

define a sense of direction such that it is positive when T?^1 [it(Xjt) ] lies to

the left (2.9). If, approaching Xt0)GsL — sL> from both sides, a component of

the boundary R^l[ll(\i)] degenerates to an open arc or to a point, the sense

of direction of the corresponding curves on R^1 [7t(X¿~)] and R^ [7|(X¿")]

should be the same.

C. The distinguished boundary surface. As indicated in the introduction,

of special importance is the surface consisting of intersections of boundary

hypersurfaces il which we denote as the distinguished boundary surface.

(i3 denotes the closure of i3.)

We assume (2.10) that every intersection i^C^il, a^k; k = l, 2, • ■ ■ , n;

n = l, 2, • • • , n, is a two-dimensional manifold.

As has already been indicated in previous investigations on the boundary

w3=St-i ** of -^74> the following two types of points can be distinguished:

I. 7-points that belong to only one hypersurface il.

II. 7C-points that belong to the intersection of at least two il. By con-

siderations similar to those of [2, p. 83], we can show that every point of

7?xt[Z>i(X*)] must be a TiT-point.

J?xt[&i(X*)] (the image of blQ\k) in the Z-space) will be denoted by 4(Xjt).
Since every point of ilÇhi) is a TC-point, that is, is an intersection of at least

two i¿, it must belong to at least one il, a^k. We write

(2.12) il,(\k) = il(\k) H il, a * k,

_2 1 2 ™    _2

(2 . 13) G far    =       S t*v(X*), Gk    =    S     Gfcff.

ka

We note that naturally(16) ilQ\k) =S'"_i *L(X*) and that the intersection of

two G\ is not necessarily empty, since a TT-point can belong to more than

two i3m's.

(2.14) M2 =  S   g\  = S     S' Si
k-l 4=1     <j-l

represents the distinguished boundary surface of(17) 7174.

(le) The prime attached to S indicates that the term a = k is omitted.

(17) We wish to note that in previous papers we formulated some additional hypotheses

and proved some further properties of the Gt's, for example, the possibility of carrying out an

integration of functions defined on AT2. Since, however, for the purposes of the present paper

these properties are not needed, we omit a discussion of these questions.
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3. Further assumptions concerning the structure of M4. In the present

paper we consider a special class of domains, namely, those bounded by

finitely many analytic hypersurfaces. The general geometric structure of

these domains has been described in §2. In order, however, to be able to prove

certain properties of functions of extended class, we have to make additional

special hypotheses, to be formulated in the present section. These hypotheses

will insure that to every lamina, say (18) I2 = ll(\i), it is possible to construct

a domain ^44 of the following type.

Let T4 = I2XR2 be a product domain, one of whose components is I2, and

the second one a suitably chosen domain R2, see (3.8). By a suitable pseudo-

conformal transformation, we obtained from T4 a domain ^44 to whose bound-

ary the lamina I2 = ll(kk) belongs and which domain includes M4. A domain

A4 oí this type is denoted as an "exterior domain of comparison with respect

to the lamina Zt(X*)-"

We proceed now to the formulation of the hypotheses which insure the

existence of the domain of comparison A4 described above(X9).

According to (2.4) the segment I2 = ll(\k) of an analytic hypersurface

belonging to the boundary m3 can be given in the parametric form

(3.1) », = hl(Zk,\k), k - 1, 2;X* fixed,

where hi are continuously differentiable functions of the complex variable Z*

and a real variable X* defined for Z*£BJ|(X*), Xt£îia> si, = E [Xi?') <X*

<Xta+1)]. These functions for every fixed value of Xi£sL, are analytic func-

tions of the complex variable Z*. For every fixed value Xä, Z* can be elim-

inated from (3.1) and we can write the equation of the surface in which Zt(Xjt)

lies in the form

(3.2) <pk(zi, z2, \k) = 0.

We assume (2.4') (20) that <bk(zi, z2, X*) is an analytic function of two com-

plex variables Zi, z2 in 3f4 and that (3.1) there exists another continuously

differentiable function, say gk(zi, z2, X*), which is, for every zi, z2 belonging to

M4, an analytic function of these two variables possessing the property that

the pseudo-conformal transformation

(3.3) Zi = <pk(zi, z2, Xi),        z2 = gk(zi, z2, \i)

('*) We required that for every lamina Ik(\k), A*£íia, h = i, 2, • • • , n, a = l, 2, • • • , ßt,

the conditions described here for one lamina P are fulfilled.

(") Exterior domains of comparison of this type have been extensively studied in [8].

They were used in order to prove that the kernel function becomes infinite of certain order upon

approach to the boundary, as well as to investigate the behavior of analytic functions of two

complex variables in the neighborhood of laminas of this kind.

(40) (2.4') is a reinforcement of (2.4) according to which function #*(zi, z,, X*) was assumed

to be an analytic function of Si, zj only in a certain neighborhood N* of </>t(zi, z,, X*) =0.
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is one-to-one and schlicht in il/4. The domain obtained from Ä?4 by the

transformation (3.3) will be denoted by 7¡7*4.

The new coordinates z*, z2* will be denoted as "canonical coordinates

with respect to the lamina 7t(X*)." We assume also that the origin, that is,

z2* = 0, is an interior point of the domain 7j¡*2(X*) (situated in the plane

zi*=0), so that the origin lies inside the segment 7**2(X*). (This can always

be realized by adding to gk a suitably chosen constant.)

(3.2) The lamina(21) 7fc*2(X&) which represents a domain of the z2*-plane

(denoted by 7*2), which domain lies in the plane zi* = 0, is assumed to be a

star domain with the center at the origin and to include in its interior a

circle E[|z2*| up].
(3.3) 717*4 is a bounded domain. Without any loss of generality we may

assume (3.3a) : For (zi*, z2*) belonging to il/*4, we have

(3.4) |*î|<l/2, |*Î|<1.

(3.4) The segment

(3.5) E[0 > x*> - 1, yî= 0]

of the hyperplane y * = 0 does not belong to M*4.

(3.5) There exist an tf\ rf>0, a p<°\ 0<M(0) <«,anda <ru <Ji<l/2 such

that for(22) |ai»| <rf

(3.6) M   (zi = zi) C 7   /(l - <ri| zi I1'"   ),       I    =M   (zi = 0)

holds.
(3.6) There exists a pm, p(1)<oo, such that (23)

j*i I*2
(3.7)-C-exp lw/"ij    Ior   "i = P(1), exp [a] = e".

1 — s/2      I — s

Theorem 3.1. Let(2i) A* denote the domain of the z*, z*-space obtained from

(3.8) 74 = 7*2 XT?2, P2 = E[|zî[ < 1/2] - E[- 1/2 < xt < 0, y* = 0]

by a transformation

(3.9) zi    = Zi,        s2    = z2/(l — <rzi     ),

see Fig. 3.

(21) Tk2 (\k) =M** (z*=0) is the image of /^(Xt) in the 2*, zj-space.

(22) Mi(z,=z,) is an abbreviation for the intersection of M* and the plane z*=z*m. Note

that we omit the superscript (0).

(23) I*11 a denotes the domain which we obtain from I*1 by the transformation Z = z*/a.

I*' exp (ib) means the domain obtained by the transformation Z—z*eib.

(M) We note that the domain A* is located in the z*, z*-space.
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Suppose further that e is some number such that 0<e<l/2, and a is chosen

in such a way that

(3.10a)        1 > a > 2ai/(l - e)       and       (3.10b)        1 - a < p

(see (3.2)) hold.

Fig. 3. Three-dimensional analogue of the domainsi26) M4, Tl and A*.

Finally, let u be chosen so large that

(3.11a) cos (w/u) - (t/p) > 1/2,

(3.11b) cos (w/u) — sin (ir/p.) > 1 — «,

(3.11c) y =. M(l - «r)(l - e) > 7rM(1),

(3.1 Id) 1 - a(riYßcos (tt/m) + v(t/p) < P,

(3. lie) M>M(0>-

Then

(3.12) M*4C^44.

Remark. We note that it follows from our hypotheses that the constants

a, u and p can always be chosen in accordance with (3.10a)-(3.10e).

Proof. (1) We consider at first the intersections ^44(zi*=Zi*) for which

|zi*r=^i0). Z*2 includes the circle |z2*| <p. For a fixed zi* the transformation

(3.9) means a dilatation of I*2 by the factor 1/| l-oz?11*] and a rotation.

(») Note that the domain R2 (see (3.8)) is replaced here by a segment of a straight line.
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We have

| 1 - az*  ' | á [(1 — ari " cos (<t>i/u))  + (ari " sin (<t>i/p)) ]

(3.13) (0) i/,i * ,*i
á 1- OV!   )      cos (tt/ju) + a(ic/u), Zi = rie

By (3.11d)

p

1 — o-(ri   )      COS (v/u) + a(ir/u)

which means that the circle E[|z2*| <p], see (3.2), is so expanded that it

covers the unit circle. Therefore for | z? | 2: r^

(3.15) A4(z* = z*i) D E[ | z* | < 1] D M*4 (z* = zî)

holds.
(2) We consider now intersections A4(z*=zif) for which

(3.16) \z*\<ri\

By definition

*       *. I*2
(3.17) A4(zi = zi) = -r--ïït^ exp <iô)

1   —   <7Zi

where

T   ^i   sin (<pyp)   1
(3.18) b = arctan     -^-——   .

LI - ari    cos W>i/m)J

Now, by (3.18) and (3.11c)

1/(1   /

i - a^y*

(3.19) ,/„
l/M i" T<r(l — e)rx

=  (7(1   -  «)M       —-,(«).!,„.,-  =  -
p(l - a(ri  )    )(1 - e) v

where from (3.7) follows that v>pm.

Further, by (3.11b)

| 1 — <rzi     | a 1- ari     cos (7r/yu) + arx    sin (tt/ju)

(3. 20) = 1 - ar\ " [cos (tt/V) - sin (ir/p) ]

g 1 - (1 - e)arî/"
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holds. Therefore

7*2
A*(z* = z*) = j--fTjjrr exp (iS)

1 — azi
(3.21) ' ' i/M

7*2 / .    ff(l - t)n7*2 /       <r(l - ijn      \

1 — (1 — e)o-ri \ v /

By (3.7), (3.10a), (3.1 le) and (3.6) it follows that for \z?\ <rf

(3.22) A*(z*i = z!) D-     f2 w<l D       7*2 1/M<S D M*4(zî = «t).
1  —  2~*(1  — e)oT! 1  — (TiT-i

(3.15) and (3.22) together with (3.4) implies (3.12), that is, the statement of

our theorem.

Finally, we make the hypothesis (3.8) needed in the following: There exist

fixed constants 77, r', p', such that to every point (z*, z2*) of M*2 for which

12*| Up', there exists a point (0, z*(0)) of i\Çhk) such that

(3.23) |z*-z2*<0) | a^|aî|l/T'.

Remark. Applying the methods developed in [l] and using Theorem 3.1

it is possible to obtain bounds for the kernel function, see [l], when we

approach to points of the distinguished boundary surface, il/2.

4. The two-parameter family of analytic surfaces [zi = Z, z2=pi+ip2] and

their properties. In the case of functions Eh[Z; F; Af4] of extended class, the

additional hypothesis which has to be made on il/4 to insure the possibility

of construction of functions Eh[Z; F; il/4] is: (4.1) Green's function for

harmonic functions of four variables exists for the domain il/4. ((4.1) implies

that the domain A/4 has the property that if on its boundary m3 a continu-

ous function is given, then at every point the corresponding harmonic func-

tion converges to the given function when we approach the boundary.

In the case of functions En[Z; F; il/4] the corresponding hypotheses be1

come more complicated. For simplicity's sake, we shall formulate these

hypotheses in the special case where

(4.1) zi = »i = Z,        z2 = n2 s ¡h + ip2.

We assume in this case

(4.1a) The projection P2 of A/4 on the z2-plane, that is, the totality of

Zi values of all points (zi, z2) of il/4, is a two-dimensional domain of finite con-

nectivity.

(4.2a) The boundary of il/4(z2=z2) is a one-dimensional manifold which,

except perhaps for a finite set of values z2, consists of finitely many continu-

ously differentiable curve segments, which form nonvanishing angles with

each other.
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(4.3a) For every z2EPi, M4(z2 = z2) can be written as a sum of finitely

many (at most s) connected domains, M4 (z2 = z2) =SaN%(z2).

We assume that for every z20)EP2, the following alternatives take place:

Either (1) the boundary of N2(zi) when z2^>z20) converges in the Fréchet

sense to the boundary of A7«^0') and therefore A^(z20)) is the kernel domain

(in the sense of Carathéodory) of N(z2) when z2—tz20), or (2) the boundaries

of N%(z2) for z2-^z¡20) converge to a point and therefore lim^^0' Na(z2) is

empty, or finally (3) lim H^ Nl(zi) is a domain, say Ñl, but N* does not

belong to M4(z2 = z20)). Then ÑaEMi(z2 = z20)) and it consists of Z-points, the

boundary (which consists of Zi-points) of Ñl satisfies hypothesis 4.2a and Ñ2a

is the kernel of A^(z2), when z2—>z20>.

5. Some properties in m3of the functions of extended class. In §§2 and 3

we formulated certain hypotheses which have to be made about the structure

of the domain M4 and its boundary. In this and in the next section, we shall

show that these hypotheses insure that certain properties of a real function

F(Z) defined on M2 imply certain properties of the function E(Z; M4; F) in

m3. We shall prove, namely, two theorems.

Theorem 5.1. If F(Z) is a (uniformly) continuous function in M2, then in

every il the function E(Z; M4, F) is also (uniformly) continuous and, therefore,

is continuous on the whole boundary mz.

Theorem 5.2. Under conditions formulated previously on M4, and addi-

tional conditions on F(Z) to be formulated in §6, there exist to every function

F(Z) and every lamina Zt(X*), a B-harmonic function U(Z) defined in M4 such

that

(5.1) E(Z; M\ F) = U(Z)    for   Z £ l\(\k),

(5.2) E(Z; M\F) ^ U(Z)    for   ZEM*.

We proceed now to the proof of the first theorem.

According to (2.5), every il is a "cylinder" (or the sum of cylinders) which

can be represented in the form

(5.3) », - *,(Z*. X»), k = 1, 2; \k E s\a, Zk E BÍ(\k)

where s\a are connected intervals of the Xt-axis, and P?(X*) = ¿?_1 [ll(Kk) ]

are simply-connected domains in the Z^-plane.

As we shall show, the mapping R^1

(zi, zi) —> (Zk, \k),

(5.4) 3 ,2 2
(zi, zi) E ika =    S ,  Ik(\i),        (Zk, \k) E    S x   Bk(Xk)

XifcG'Jfca XjSita

is one-to-one and continuous. As follows from Lemma 5.1 (to be formulated

and   proved   subsequently),   the   boundary  of  ¿L   is Sx^.^1^*),   and
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R~lt [í*(X*)] = &í(Xt) so that bl(Xi) consists of images of iü-points. The func-

tion F(Z) given on the distinguished boundary surface is defined at every

TC-point and therefore at every point of b\(\k). Thus a real function is de-

fined at every point of each b\(Kk). Since by the hypothesis (2.9) each bl(\k)

consists of finitely many rectifiable curves, we can for every X* determine in

P»(X*) = R\¿ [/»(Xu,) ] the harmonic function Ui(Zk, X*) which in blÇhk)

= R\h1[ilQok)] assumes the prescribed values 7[Z(Z*, X*)], ZkCbl(\i). Since

the values of F[Z], ZG*i(X»), and therefore those of F[Z(Zk, X*) ], ZkCb\(\k),

when Xt varies, vary continuously, for every XtG-sL, (2.7) holds, it follows

by classical results that Ui(Zk, X&) is a uniformly continuous function of

Z*,, Xfc, (Z4, Xt) Cdta =S**eï*« BtÇki).
Since, further, the mapping Rk is one-to-one and continuous in every à%,,

and Rk(dla)=ila, U(Z) = Ui[Zk(Z), X*,(Z)] is (uniformly) continuous in ij^.

In order to establish Theorem 5.1, it remains merely to prove the follow-

ing lemma

Lemma 5.1. The boundary b\ÇXji), X¡tGsL (or, what is the same, il(?\k) since

the mapping R\k is one-to-one and continuous) changes continuously when X*

varies in the interval sla.

Proof. By hypothesis (2.2) the boundary curves jl(\k) of each QlÇKi)

vary continuously. Each llQ\k) represents a part of QlCXi). If ¿í(X*) did

not vary continuously, then the boundary il„ =S xte«ia /¡t(Xi) would consist

also of parts of some laminas itÇXk), that is, of 7-points. We shall show that

this is impossible.

Let Z(\k)=RkCLil), Xfc), Zjt" fixed, represent a sequence of points each of

which lies on Ql(\k), and suppose that for X^X^, (Xt1—X*,) sufficiently small,

Z(Xi) are 7-points, that is, Z(X*)G/tOX*)- We shall show that the points

Z(Xi) =7?fc(Zt1),X*),X*>Xt1, (Xi—Xjti) sufficiently small, must also be 7-points.

Rk(Zt\ \ki) is a point of Qt(ki), and therefore by (2.3) it is possible to con-

struct a sufficiently small hypersphere S* with the center at Z(\kl) which

does not include any Tv-points and such that jl divides S4 into two parts. Let

Xt2 be chosen so near X^ that the point Rk(Zk\ Xjt2), }\kl>}okl, lies in S4.

Rk(Zi\ XfcJ can be either a boundary point of il/4 or an exterior point of il/4.

The second alterrative is impossible, since we know that S* is divided by jt

into two parts and all points of one part belong to the interior of il/4. Thus

^(Zt1', X*2) belongs to the boundary of this part of S* and therefore in every

neighborhood of Rk(Ztl), X*2) there are interior points of il/4. Consequently

Rk(Zk\ X*2) is a boundary point of Mi, q.e.d.

6. The proof of Theorem 5.2. In this section we shall give the proof of

Theorem 5.2, that is, we shall show that to every function F(Z) given on the

distinguished boundary surface M2 and satisfying certain conditions, there

exists a P-harmonic function U(Z) of the class 17(7, M) (see p. 427) which

coincides on the boundary curve i\(\i) of a given lamina 72 = 7t(Xi) with
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F(Z). (It is to be noted that *J(X*) =l\(\k)r\M2.)  If therefore z? and z2*

denote coordinates which are normal with respect to the lamina I2,

(6.1) P[Z(0, 0; x*2, y*)] = U[Z(0, 0; x2, /,)], (x*2, y2) £ t*\

(6.2) F(Z) g U(Z), ZEM2.

In order to prove our statement we have, however, to make some addi-

tional hypotheses on P.

(6.1) Let h(z2*)=S(x*, y*)+iT(x2*, y2*) he that analytic function whose

real part 5 assumes the values of P(0, 0; x2*, y*) on the boundary i*1 of

I*2 = Ik*2CKk). We assume that there exists a constant p" such that for every

point (x2*<0), y2*(0))£**\ 5 and T can be represented in the intersection of

I*2 and the circle with center (x2*(0\ y2*<0)) and the radius p" in the form

„,   *       *. (0) * *(0)       (0) * *(0)       (0) (0) (0)      *       *
S(x2, yi) = a     + (x2 — x2    )ai    + (y2 — y2    )a2  , ctk    = ak  (x2, y2),

(6-3) (0) *(0)       *(0) r     . *«°>ma     = S(x2    ,y2    )=F[Z(0,z2    )\,

rr *    *\      am   i   r *       *m    m *       *«»    <o>    <o)        (oj   *    *
T(x2, yi) = ß     + (x2 — x2    )ßi   + (y2 — y2    )ß2  , ßk    = ßk  (x2, y2),

(^•4) „(0) _.   *(0)        *(0).
ß     = Z(x2    , y2    ),

where there exists a constant y independent of x2*(0>, y2*(0) such that for

x2*, y* in the given circle

(f. c^ I    c0) I     I o(0) I     I    (0>l     I »<0>l ̂  i   o(6.5) | a     |,    \ß     |,    | a,    |,    | ßK    I < y, «-1,2.

(6.2) We assume that F(Z) satisfies a Lipschitz condition, that is, if

Z*<">(zi*("\ z2*<«>)£M2, «-I, 2, then

| F[Z(Z*W)] - F[Z(Z*i2>)] | á C( | zV1} - zî'TX

(6-6) ,|    ♦(!) *(2) |1/X.
+ I z2      — z2 )

where C and x are suitably chosen constants.

We finally note that it is no restriction to assume that

(6.7) 4ff à F(Z) à 2a, a à | Z(xt, yt) |.

This is because a fixed constant is a P-harmonic function and can be added

and subtracted from ,S and F without changing P.

We proceed to the construction of the function U(Z*). The function

5[Re (zt(l - azï'")), Im (z*(l - azï"))]

(6.8)
+ îT[Re (»1(1 - ail ")), Im (».'(l - az* "))],
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where <r and p are constants introduced in Theorem 3.1, is defined in the

domain ^44 and therefore in il/4. Since the points (z*, z*) lying on the negative

real axis E[x2*<0, y2* = 0] do not belong to il/4, Zi*1'* is uniquely defined for

any point Z* by the assumption that

#
(6.9) — ir < arg Zi < ir.

We now multiply the function (6.8) by (l+kzi*11'), k>0, v>0, and write

U* = Re{[S+iT][l+kz*1"]}.

It is apparent that U* coincides with F on iîlÇXi). We shall show that k, k>l,

and v can be chosen large enough so that U*(Z*)^F[Z(Z*)], Z*CM*2.

We first consider-that part of il/*2 for which |zi*| ¿piSmin (p', p").

(Concerning p' see (3.8).) Consider an arbitrary point (zi*, z2*) of il/*2, such

that |zi*| gp and let z2*(0)=x2*(0)+îy2*(0) be the point defined in hypothesis

(3.8). Let us denote z2* — z2*(0) by z2* = x2*+iy2*. We shall show that by choosing

p sufficiently small and v sufficiently large, both independently of k^l, we

can insure that

77*(Z*) â F[Z(Z*)],       Z*CM*\        \zi\£p.

Now by hypothesis (6.1)

^[~ */. 1/"       0i\   .    *   i/d .   0i      */ i/ß        Pi\
S m S \ Xi I 1 — orí   cos — 1 + y2oTi   sin —• ; y21 1 — ori    cos — 1

*      1/C     .      <t>l~] (0) || ||

— #2oti    sin —    á a      — y\ Li\ — y\ L2\
PJ

(6.10)

where

* *      l/ß 01     ,      *      l/ß     .     01
Li = Xi — Xi ori    cos -—h y2ori   sin —,

p p

* *       l/ß 01 *      1/fX    .      01
Li = y2 — Xi ori    cos-x2ari   sin — •

M P

We may now use hypothesis (3.7) to estimate Zi and 72. By (3.8) it fol-

lows that |*5| úAr\'T, |y*| ^Ar\'T. Here T = max [r', p], see (3.23), n= |z*|.

Trivially one obtains

(6.11) St a'"' - Pri/T, P = 6^7.

By construction

(6.12) | 7 | ^ a.

We now recall the definition of U* and obtain immediately on assuming
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that v is sufficiently large so that cos (ir/v)>2/3, sin (ir/v) <l/3,

U* ^ [am - Prî/r][l + 2kr\"/3] - a[kr!*/3].

Recalling that a"» = P[Z(0, z2*(0))]è2a, we obtain

U* ̂  aW + akrT - P(l + k)rT.

Simultaneous we have, using (6.2), that

(6.13) \F[Z(z\, z*)] - F[Z(0, zV0))] | á C(\zï\1/X + \ z*t\l/x),

that is, F[Z(z*i, z*2)]^a^ + Cr\/x+ACr\/TX. We shall certainly assure U*^Fii

akri    =£ P(l + k)rt    + CrL    + ACrx     ,

and this will be true if

kr\'" ä kR'r]'TX   where   R' = [2R + C + AC]/a,

that is, if r}/"eP]/TX. We may pick p so small and v so large that(26)

(6.14) r\" è R'rli'TX for n < p.

Our proof will now be complete if we can show that a proper choice of k

will insure U*(Z*)^F[Z(Z*)] for Z*EM*2, |zi*|èp. Using that 5=2a,

| T\ <a, cos (tt/v)>2/3, sin (ir/v) <l/3, we have

U* ^ 2a[1 + 2kr]"/3] - a[kr\"'/3]

(à.  IS) H, l/y
= 2a + akri    = a[2 + ¿ri   J.

But P^4a. We need merely choose k so large that kp1,">2.

Since an analogous procedure may be applied to obtain a function of the

class J^(F, M4), we obtain the following:

Theorem 6.1. To every function F(Z) defined on M2 and satisfying condi-

tions 6.1-6.2 and to every lamina Zf(Xjt) there exist B-harmonic functions u(Z)

and l(Z) of the classes V(F, M) and £(F, M), respectively, such that on ll(\i)

we have

(6.16) u(Z) = l(Z) = h[x*2(Z), y*(Z)], Z £ lt(\k),

where h[x*, y*] is that harmonic function which on il(\k) assumes the values

F[Z(0,z2*)].

Remark. By a slight modification of the proof it is possible to replace

(6.1), (6.2) by weaker hypotheses: it suffices (essentially) to assume that F

is continuous.

(M) For example choosing v = 2t% and pá (l/R')iT*.
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7. Determination in il/4 of functions Eh(Z; il/4; F) of extended class and

some of their properties. By the procedure indicated in §5, we determine in

every lamina T\Çhk) a real function. Since the whole boundary m3 of il/4 can

be represented as a sum of laminas, a real function is defined in tm3.

If F(Z) is (uniformly) continuous in il/2, then by Theorem 5.1 this func-

tion is (uniformly) continuous in m3, and assumes the values F(Z) if we ap-

proach in m3 the distinguished boundary surface il/2.

As we indicated in §1, there are two possibilities of extending the function

throughout il/4.

The first possibility consists in constructing that harmonic function

(7.1) Eh[Z;M*;F], Z G M\

which assumes on m3 the value determined previously.

If A/4 satisfies hypothesis 4.1, then it is known from the theory of potential

that to every (uniformly) continuous function defined on m3 there exists a

harmonic function of four variables defined in Mi which assumes the pre-

scribed values on m3. Thus we obtain:

Theorem 7.1. If the domain il/4 satisfies the conditions formulated in §§2,

3, and 4, then to every function F(Z) defined on the distinguished boundary

surface il/2 and satisfying hypotheses 6.1-6.2, there exists one and only one

function Eh[Z; il/4; P] of extended class which assumes on il/2 the values F(Z).

From the definition of the functions Eh[Z; il/4; 7] follow almost immedi-

ately the following lemmas :

Lemma 7.1. If

(7.2) 7i(Z)^72(Z), ZCM\

then

(7.3) Eh[Z; M4;7i] ^ Eh[Z; M*;F2], Z CM*-

Lemma 7.2. If B(Z) is B-harmonic in Mi and satisfies on M2 the hypotheses

6.1-6.2, then

(7.4) Eh[Z; A74; B] = B(Z), Z C M*.

From Lemmas 7.1 and 7.2 follows:

Corollary 7.1. If B,(Z) (k = 1, 2) are B-harmonic functions which satisfy

on M2 the hypotheses 6.1-6.2, and such that

(7.5) (-1)'7(Z) ^ 73,(Z), ZCM2,

then

(7.6) Eh[Z; M4; (-l)P] è BK(Z), Z C M\
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Lemma 7.3. If M4 = E[\ zi\ <ru \ z2\ <r2], that is, if M4 is a bicylinder and

F(Z) satisfies hypotheses 6.1-6.2, then Eh[Z; M4: F] is that doubly harmonic

function which assumes on M2 = E[zi| =ru \z2\ =r2] the values F(Z).

8. Properties of functions En[Z; F; M4] in ilZ4. In this section we shall

indicate how to determine the values of En[Z; F; M4] in the interior of M4

and we shall show that the hypotheses (4.1a)-(4.3a) insure that a theorem

analogous to 7.1 [proved in §7 for Eh [Z; F; M4] ] holds for the En [Z; F; M4].

We begin by proving that the functions En [Z; F; M4] are continuous. Let

(zf\ 4°') be an inner point of M4. Then 4°' must be an inner point of the

projection P2, see (4.1a) ; for, if this were not the case, then in every neighbor-

hood of z20) there would exist points 4s)£P2, such that M4[z2 = z2s)] were

empty, and in every neighborhood of (zf\ z2 ) we would have points

(4°\ 4°) which do not belong to M4. Therefore (z®\ zf) would not be an

inner point of ilZ4.

Since P(zi, z2) is a continuous function of Zi on the boundary of

M4(z2 = zi0)), it follows from (4.2a) that £n[zi, 4°': F; M4] is a continuous

function of Zi in M4(z2 = z2)). The function En [Z;F; M4] is continuous on w3,and

every Na(zf) has the property that to every interior point (zf\ z20))EM4

belonging to any Na(z20)) there exists a neighborhood |z20> —z2| ^e such that

for |z20)—z2| ^e the boundary of Na(z20)) varies continuously, and Nl(z20))

is the kernel domain of the sequence of domains Nl(z2), for z2—>z2\ There-

fore, from (uniform) continuity on the boundaries of the Na(z2) of En [Z; F, M4]

considered as function of z2 follows the (uniform) continuity in Na(z2), for

\z2 — z20)\ ̂ e. Thus En[Z; P, M4] is (uniformly) continuous considered as

function of Zi, z2 at every point of Af4. Since further it is uniformly con-

tinuous considered as function of Zi in every Na(z2), and since En[Z; F, M4]

is (uniformly) continuous on the boundary, it follows that En[Z; F; M4] is

(uniformly) continuous in M4.

In particular, it follows from this that limz-z(0) En[Z; M4; P] =F(Z^)

for Z<°>EM2.

Until the present we assumed that F(Z) is a (uniformly) continuous func-

tion defined on M2. It is, however, comparatively easy to generalize our

considerations to the case where F(Z) is continuous on M2, except possibly

on a curve n1, where it has a finite jump.

9. Inequalities for bounded analytic functions of two complex variables.

Ostrowski's two constants theorem is one of the most simple applications of

the principle of harmonic measure. The introduction of functions of extended

class enables us to generalized this result.

Notation. The functions Eh[Z; M4, m], where

(9.1)     m(Z) = 1    for   Z £ m\ C m\     m(Z) = 0    for   Z £ li - il\,

will be called (in generalizing the classical concept) the PÄ-harmonic measure
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of the segment M\, and will be denoted by

(9.2) Eh[Z; Af"; m\].

Theorem 9.1. Let g(zu zi) be an analytic function of two complex variables

which is regular in il/4, and for which

(9.3) | f(*i, ft) | S •< 1, (ft, ft) g m\ c m\

(9.4) | g(zi, ft) | á 1, (ft, ft) C il/',

/?o¿ds. Then

(9.5) [ g(zi, z2) | ^ exp (lg a X Eh[Z\ M*; ill]).

Proof. Since g(zi, z2) is an analytic function of two complex variables,

lg I g(ft> 22) I is a 73-harmonic function which is regular in il/4, except perhaps at

a finite number of analytic surfaces [zero surfaces of g(zi, zi) ] where lg | g(zi, z2) |

becomes logarithmically — 00. We shall at first show that the inequality

(9.6) lg I g(Zi, zt) I è lg a X Eh[Z; M*; m\]

holds in every lamina, say l\(\k).

Two cases can occur: (1) l\Q\k) is a zero surface of g(zi, z2). Then

lg \g(zi, zi)\ = — 00 for (zi, zi)Cl\Q<k), and therefore the inequality (9.6)

holds there.

(2) If itCki) is not a zero surface of g(zi, zi), then g(zi, z2) can vanish there

only at a finite number of points, lg |g(zi, z2)| and Eh[Z; il/4; AT"2] are har-

monic functions of real variables Re Zk, Im Zk. Since i{Q\k)CM2, by assump-

tion the inequality (9.6) holds on ilÇKi), and therefore by the classical result

of the theory of harmonic functions of two real variables, also for (zi, zi)

G7t(Xfc). Thus (9.6) holds in every ilÇki) and therefore in the whole 7W3.

We proceed now to establish (9.6) for ZGAf4. Eh[Z; Af4; A/2] and

lg j g(zi, zi) I are harmonic functions of four real variables. (We note that the

latter function becomes — 00 along the zero surfaces of g(zi, zi), if such exist.)

According to the classical results of the theory of harmonic functions of four

real variables, the validity of the inequality (9.6) on the boundary of the

domain implies the same inequality for points inside the domain il/4, q.e.d.

Notation. In analogy to (9.2) we shall denote En [Z; Mi; m] by

(9.7) En[Z; Af"; Afî]

and shall call it pTi-harmonic measure of the segment Af2.

Corollary 9.1. Under the conditions as in Theorem 9.1, there holds:

(9.8) I g(zi, zi) I g exp (lg a X En[Z; M*; Afî]).
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Proof. On m3,

(9.9) En[Z; M*; m\] = Eh[Z; M*; m\]

and as before we obtain that on every m3(z2 = z2), lg aXEn[Z;M4; M2]

âlg |g(zi, z2)\. In M4(z2 = z2), E[Z; M4; Ml] as well as log |f(zi, z2) are

harmonic functions of the variables Re Z, Im Z, see II p. 526 and (4.1),

E[Z; M4; Ml] is a regular harmonic function, while log| g(zi, z2)| is regular

except perhaps at a finite number of zero points of function g[«i(Z, pi, p2),

«2(Z, pi, p2)]=g[Z, pi+i"p2], pi+i*p2=z2 = fixed, where log |g[Z, pi+¿p2]|

becomes — «>. From the validity of (9.9) on the boundary of M4(z2=z2), it

follows that the same inequality holds inside M4(z2=z2), q.e.d.
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