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1. Introduction. In this paper a simple elementary proof will be given for

the well known theorem that any two points a and b of a locally connected

continuum M which are not separated in M by any set of less than « points

can be joined in M by a set of « independent simple arcs, that is, arcs inter-

secting by pairs in just a+b. The theorem in this form was first proven by

Rutt [l](x) for plane continua M and for general 717 by Nöbeling [2] and

Menger [3] and has been extended by Zippin [4]. Our proof represents an

extension to arbitrary n of the inductive type of reasoning used by the

author [5] in simplifying the proof of the cyclic connectedness theorem

(which is the case » = 2 of the above theorem). It holds for locally compact

717, as in Zippin's generalized form

Our terminology in the main will be that of Menger-Nöbeling and of the

author's book [5]. We recall that a continuum is a connected compact metric

space and a generalized continuum is the same except that compactness is

replaced by local compactness. A metric set W is regular at a point xCWii

x has arbitrarily small neighborhoods in W whose boundaries are finite sets.

A subset X of W separates two disjoint sets P and Q in W provided W—X

is the sum of two separated sets one containing P and the other Q. Such a

set X separates P and Q in the broad sense in W provided W—X is the sum of

two separated sets (possibly empty), one containing P — XP and the other

Q — XQ. The set W is n-point connected between P and Q provided no set of

less than n points separates P and Q in W, and W is n-point strongly con-

nected between P and Q provided no set of less than n points separates P and

Q in the broad sense in W. An arc joins two sets if it has an end point in each

of them.

2. Theorem^2). If the locally connected separable complete metric space M

is n-point strongly connected between two disjoint closed sets P and Q, then M

contains n disjoint arcs joining P and Q.
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P) Numbers in brackets refer to the bibliography at the end of the paper.

(2) This is called the second n-arc theorem by Menger [3]. It seems to have been proved

heretofore only for locally compact spaces M, except in the cases n = \, where it becomes the

arcwise connectedness theorem established for complete spaces by Moore [6] and Menger [7],

and n = 2, where it was proved for complete spaces by the author [8]. It should be noted that

the main theorem, §3, does not hold for complete spaces even in case » = 2, as was shown by the

author in [8].
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The proof will be by induction on ». The case » = 1 is an immediate conse-

quence of the arcwise connectedness theorem, since then some component of

M must intersect both P and Q. Suppose the theorem holds for all positive

integers less than «.

Let S denote the set of all xEM such that there exists a sum Sx of n dis-

joint arcs, « — 1 of which join P and Q and the remaining one px joins P and x.

Then S is open in M and nonempty. For if xES and R is any region in M

with xEREM— Sx+px, the arc px can be extended in R to any yER thus

giving a system Sy for y so that SZ)R. Also if yEM, M — y is (w—l)-point

strongly connected between (P+y) —y and (Q+y) —y, because if a set X of

less than «—1 points separated these two sets in M—y in the broad sense,

X+y would similarly separate P and Q in M. Hence PCS since for any y,

M — y contains a set of « — 1 disjoint arcs joining P and Q.

The set S is also closed in M. For let y be any limit point of S. Then as

just shown, M—y contains a sum A of « — 1 disjoint arcs «i, a2, ■ ■ ■ , an-i

each joining P and Q. Let R he a region about y with REM— (P+A). Let

xERS and let Sx he a sum of n arcs determined by x as above.

Then SX — RSX contains a sum B of « disjoint arcs ßi, ß2, ■ ■ • , ßn each join-

ing P and Q + R. Let a¿ = í,g„ ß,=piri where p., ¿¿EP, qtEQ, riE(Q + R).

On a¿ in the order qit i, let q\ he the first point of B + P, let Ci= ¿Cî_1 ?J ar>d

v4i= 2Iï_1 <7¿<?J. On /3j in the order pi, r¿ let pj be the first point of Q+R + Qi
and let Pi= 2^1î PiPt- Repeating: on a, in the order q{, i, let q\ be the first

point of Pi+P, let Q2= 2^?_1 g2 and .¡42= ]C"-1 5'??; on ßt in tne order pit r<

let p,2 be the first point of Q + R + Q2 and B2= 2^îPiPi- an(^ so on- Continue

this process. For some integer m we must have A¡=Am and B¡ = Bm for all

j>m. For otherwise Bjt^Bj+i for all j; and hence for some i^n and in-

finitely many j's: ji, j2, • • • , we have pi^p1*1. But this is impossible since

the open subarcs [p^pi*"1-1] of ßi are disjoint and pi* and p^+1 lie on different

arcs a,.

Now ^4m and Bm are sums of « — 1 and « disjoint arcs respectively; and

-í4OT-Pm is contained in the set Qm of end points gf of the arcs in Am. Thus if

we keep intact each arc in Am having its end point q? in P and to each re-

maining arc of Am, say qkqT, we add the unique arc ptp? which it intersects

so that pT=qt, we obtain a set of « — 1 disjoint arcs eu e2, • ■ • , e„_i each

joining P and Q.

Now since Qm contains exactly « — 1 points, there is at least one arc ßi, say

ßk, with Qmßk = 0. But this gives Qißk = 0 for all i¿m, since by construction

ßkQi 7*0 gives ßkQjr^O for all j>i and hence ßkQm^O. Accordingly,

pkrk=ßk = pkpHEBm so that ßkE = 0 where £= X)?"1 «<•

Now if rkER, ßk+R+W (W a region about r* not intersecting P) con-

tains an arc pky which, together with the arcs in E, forms a system Sy so

that yES. On the other hand, if rkEQ, E+ßk consists of n disjoint arcs join-

ing P and Q; and even in this case, P+the arc of Sx containing x+one of the
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arcs of E+ßk contains an arc py which together with the remaining n— 1 arcs

in E+ßk forms a system Sy so that yCS.

Thus S is both open and closed in 717; and since M contains arcs joining

P and Q and PCS, we have SQ^O. Hence if xCS-Q, the system Sx de-

termined by x satisfies our theorem.

3. Theorem. If the locally connected generalized continuum M is n-point

connected between two of its points a and b, it contains a set of n independent

arcs joining a and b.

Again the proof is by induction on n. For n = 1 the conclusion follows by

arcwise connectedness. We suppose it holds for all k <n. If M—a — b contains

more than one component Q with QZ)a+b, Mi = Qand M2 = M—Q are locally

connected generalized continua; and since if a set 7T< separates a and b in

717,- (i=l, 2), Ki+K2 separates a and b in 717, it follows that Mt is «,-point

connected between a and b (i = 1, 2), where 0< w,- ;£ w— 1 and ni+n2 = »; and our

induction hypothesis gives a set of «,- independent arcs in 717,- joining a and b

whose sum is a set of n such arcs as required by the theorem. Thus we may

suppose there is only one such component Q and we set Q.—E. Since any set

separating a and b in £ also separates them in 717, £ is «-point connected

between a and b.

Lemma. £ contains a locally connected generalized continuum N which is

n-point connected between a and b and has a as a regular point.

Proof of the lemma. Let U be a neighborhood of a such that Í7 is com-

pact and does not contain b. Since each point of £ is interior to an arbitrarily

small locally connected continuum in £ and the boundary F(U) of U is

compact, F( U) is contained in the interior of the sum L of a finite number of

locally connected continua in E — a — b; and if we add to L an arc in E—a — b

joining each pair of components of L, we obtain a locally connected continuum

Xi in E—a — b containing F(U) in its interior. Thus if we set 77i = G+Xi,

where G is the component of E — F(U) containing b, Hi is a locally connected

generalized continuum because every xCHi is interior either to G or to Xi in

77i.
Now let (V,-) be a sequence of neighborhoods of a such that (U— U-Xi)

DViDViDV2DV2D • ■ ■ and ô(V,)<l/i. Let us set Fi = 0, and for each
i>l let Xi be the sum of a finite number of locally connected continua such

that F(Vi)CXiCVi-x- Vi-i-Xi-i-Vi+i, and let F< be the sum of a finite

number of arcs in E — a each joining Xi and 77,_i and having just one point

in 77,_i and such that F,- intersects every component of Xi. Let

00

77,- = 77<_i + Y i + Xi for i > 1, and 77 = a + 22 #<•
i

Then since 77i is a locally connected generalized continuum and, for each
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*>1, Xi+YiE Vi-i, it follows that H is a locally connected generalized con-

tinuum.

Since ior any xE(E —a —b),E—x is (w-l)-point connected between a and

b, it contains a sum Sx of « — 1 independent arcs joining a and b. Since the

open sets E — Sx cover the compact sets Xi + Y,, ior each i there exists a finite

collection S[, Si, • • • , S^ oí the sets Sx such that Xt+ F.C S7_'i(£-Sj).
Set S)=T), j^mi, and for each *>1, and j ¿mi, let P/be the closure of the

component of Sj —SjZZ,_i containing a. Finally, set

n - b + £ £ rt
<=i j_i

Then since for each í > 1 and all j ^ w¿, PjC F,-, it follows that A7 is a locally

connected generalized continuum. Further, since for any t>l, W, = N

•(F,_i— Vi)EX,-i+Xi plus a finite number of the arcs of Y, and of T) for

s^i, since IF,- contains a compact set not intersecting X.-i+X,- and separat-

ing a and P(F,_i) in N, and since any finite arc sum is everywhere regular as

it can contain no continuum of condensation, it follows that N is regular at a.

It remains to show that N is «-point connected between a and b. Suppose,

on the contrary, that some set K of less than « points separates a and b ir-

reducibly in N. We shall prove this impossible by showing that KH=0. In

the first place, KXi = 0 because for any x£Xi some T) does not contain x

whereas every Tj must contain K, as otherwise one of the arcs of P^from a to

b fails to intersect K. Also, K G = 0. For if not, then if y is the last point of

Xi on an arc ab in E — K, ybEG+XiEN. Then since K — KG would not

separate a and b in N, N-(K-K-G) would contain an arc aub; and if u is

the first point of Xi on this arc, au ■ K = 0 and we have a connected subset

au+Xi+yb of N-K containing a+b. Thus PJZZi = 0. Hence if K-H^O and

k is the least integer such that K-Hk^O, we have k>l. But Hk = Hk-i

+ Yk+Xk; and if Yk+Xk contains a point x of K, some set Tf fails to con-

tain x and hence contains an arc az with az-P = 0, zEHk-i, since Tf consists

of » —1 arcs joining a and ZZa_i and intersecting by pairs in just a. This is

impossible since then Hk-i+az is connected and contains a + b but does not

intersect K. Thus K-H = 0, which also is absurd because NZ)HZ)a+b. Thus

the lemma is proven.

Returning to the proof of the theorem, we note that since the lemma can

be applied in N at b, we may suppose N regular at both a and b. Thus there

exist infinite sequences (Pi) and (Qi) of regions in Af such that PiQi = 0 and,

for each *>1,

a C Pi EPi C P,-i C Vi,i(a),      bEQiEQiE Qi-i C VUi(b),

the boundaries F(Pi) and F(Qi) contain finite numbers p,- and qt of points,

and the boundary of any open set lying in P.- (or Qi) and containing a (b)

contains not less than p,- (qi)  distinct  points. The set N0 = N — Pi — Qi is
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«-point strongly connected between P(Pi) and F(Qi), because any set sepa-

rating TVo between these two sets in the broad sense also separates 7Y between

a and b. Hence, by §2, No contains a sum 7o of n disjoint arcs joining £(Pi)

and F(Qi) and we suppose these arcs reduced so that each has only its end

points in the sum of these two sets.

Let Pi =7o- F(Pi), Q{ = To • F(Qi). Then each of these sets contains

exactly « points, namely, one end point from each of the « arcs in TV Now if

Ni = Pi — P2, Ni must be «-point strongly connected between Pi and F(P2).

For if some set 77 of less than « points separated these two sets in A7! in the

broad sense, the set K = H+F(Pi) —Pi contains less than pi points; and the

component of N—K containing a is in Pi and has less than pi boundary

points, contrary to the choice of Pi. Hence TVi contains a sum 7i of « disjoint

arcs joining Pi and F(P2). Similarly Mi = Qi — Q2 contains a sum Si of « dis-

joint arcs joining Qi and F(Q2). We suppose the arcs in 7i and Si reduced

so that the set P2' =Ti-F(P2) and Q2 =Si-F(Qi) consist of exactly n end

points as before. Continuing, N2 = Pi — P3 and M2 = Qi — Q¡ contain sums P2

and Si respectively of n disjoint arcs joining P2 to F(P3) and Qi to F(Qi),

and so on indefinitely. Clearly the set

00

S = a + b + To + E (7< + Si)
i

consists of exactly n independent arcs in N (and thus in 717) from a to b as

required by the theorem.
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