ON n-ARC CONNECTEDNESS

BY G. T. WHYBURN

1. Introduction. In this paper a simple elementary proof will be given for the well known theorem that any two points a and b of a locally connected continuum M which are not separated in M by any set of less than n points can be joined in M by a set of n independent simple arcs, that is, arcs intersecting by pairs in just a+b. The theorem in this form was first proven by Rutt $[1]^{(1)}$ for plane continua M and for general M by Nöbeling [2] and Menger [3] and has been extended by Zippin [4]. Our proof represents an extension to arbitrary n of the inductive type of reasoning used by the author [5] in simplifying the proof of the cyclic connectedness theorem (which is the case n=2 of the above theorem). It holds for locally compact M, as in Zippin's generalized form

Our terminology in the main will be that of Menger-Nöbeling and of the author's book [5]. We recall that a continuum is a connected compact metric space and a generalized continuum is the same except that compactness is replaced by local compactness. A metric set W is regular at a point $x \in W$ if x has arbitrarily small neighborhoods in W whose boundaries are finite sets. A subset X of W separates two disjoint sets P and Q in W provided W-X is the sum of two separated sets one containing P and the other Q. Such a set X separates P and Q in the broad sense in W provided W-X is the sum of two separated sets (possibly empty), one containing $P-X\cdot P$ and the other $Q-X\cdot Q$. The set W is n-point connected between P and Q provided no set of less than P points separates P and P in P and P in the broad sense in P in the broad sense in

2. Theorem(2). If the locally connected separable complete metric space M is n-point strongly connected between two disjoint closed sets P and Q, then M contains n disjoint arcs joining P and Q.

Presented to the Society, April 26, 1947; received by the editors March 5, 1947.

⁽¹⁾ Numbers in brackets refer to the bibliography at the end of the paper.

⁽²⁾ This is called the second n-arc theorem by Menger [3]. It seems to have been proved heretofore only for locally compact spaces M, except in the cases n=1, where it becomes the arcwise connectedness theorem established for complete spaces by Moore [6] and Menger [7], and n=2, where it was proved for complete spaces by the author [8]. It should be noted that the main theorem, §3, does not hold for complete spaces even in case n=2, as was shown by the author in [8].

The proof will be by induction on n. The case n=1 is an immediate consequence of the arcwise connectedness theorem, since then some component of M must intersect both P and Q. Suppose the theorem holds for all positive integers less than n.

Let S denote the set of all $x \in M$ such that there exists a sum S_x of n disjoint arcs, n-1 of which join P and Q and the remaining one px joins P and x. Then S is open in M and nonempty. For if $x \in S$ and R is any region in M with $x \in R \subset M - S_x + px$, the arc px can be extended in R to any $y \in R$ thus giving a system S_y for y so that $S \supset R$. Also if $y \in M$, M-y is (n-1)-point strongly connected between (P+y)-y and (Q+y)-y, because if a set X of less than n-1 points separated these two sets in M-y in the broad sense, X+y would similarly separate P and Q in M. Hence $P \subset S$ since for any y, M-y contains a set of n-1 disjoint arcs joining P and Q.

The set S is also closed in M. For let y be any limit point of S. Then as just shown, M-y contains a sum A of n-1 disjoint arcs $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ each joining P and Q. Let R be a region about y with $\overline{R} \subset M - (P+A)$. Let $x \in R \cdot S$ and let S_x be a sum of n arcs determined by x as above. Then $S_x - R \cdot S_x$ contains a sum B of n disjoint arcs $\beta_1, \beta_2, \cdots, \beta_n$ each joining P and $Q + \overline{R}$. Let $\alpha_i = s_i q_i$, $\beta_i = p_i r_i$ where p_i , $s_i \in P$, $q_i \in Q$, $r_i \in (Q + \overline{R})$. On α_i in the order q_i , s_i let q_i^1 be the first point of B+P, let $Q_1 = \sum_{i=1}^{n-1} q_i^1$ and $A_1 = \sum_{i=1}^{n-1} q_i q_i^1$. On β_i in the order p_i , r_i let p_i^1 be the first point of $Q + \overline{R} + Q_1$ and let $B_1 = \sum_{i=1}^{n} p_i p_i^1$. Repeating: on α_i in the order q_i , s_i let q_i^2 be the first point of $B_1+\overline{P}$, let $Q_2=\sum_{i=1}^{n-1}q_i^2$ and $A_2=\sum_{i=1}^{n-1}q_iq_i^2$; on β_i in the order p_i , r_i let p_i^2 be the first point of $Q + \overline{R} + Q_2$ and $\overline{B_2} = \sum_{i=1}^{n} p_i p_i^2$; and so on. Continue this process. For some integer m we must have $A_i = A_m$ and $B_i = B_m$ for all j > m. For otherwise $B_j \neq B_{j+1}$ for all j; and hence for some $i \leq n$ and infinitely many j's: j_1, j_2, \cdots , we have $p_i^j \neq p_i^{j+1}$. But this is impossible since the open subarcs $[p_i^{j_k}p_i^{j_k+1}]$ of β_i are disjoint and $p_i^{j_k}$ and $p_i^{j_k+1}$ lie on different arcs α_i .

Now A_m and B_m are sums of n-1 and n disjoint arcs respectively; and $A_m \cdot B_m$ is contained in the set Q_m of end points q_i^m of the arcs in A_m . Thus if we keep intact each arc in A_m having its end point q_i^m in P and to each remaining arc of A_m , say $q_k q_k^m$, we add the unique arc $p_i p_i^m$ which it intersects so that $p_i^m = q_k^m$, we obtain a set of n-1 disjoint arcs e_1, e_2, \dots, e_{n-1} each joining P and Q.

Now since Q_m contains exactly n-1 points, there is at least one arc β_i , say β_k , with $Q_m \cdot \beta_k = 0$. But this gives $Q_i \cdot \beta_k = 0$ for all $i \leq m$, since by construction $\beta_k \cdot Q_i \neq 0$ gives $\beta_k \cdot Q_j \neq 0$ for all j > i and hence $\beta_k \cdot Q_m \neq 0$. Accordingly, $p_k r_k = \beta_k = p_k p_k^m \subset B_m$ so that $\beta_k \cdot E = 0$ where $E = \sum_{j=1}^{n-1} e_i$.

Now if $r_k \in \overline{R}$, $\beta_k + R + W$ (W a region about r_k not intersecting E) contains an arc $p_k y$ which, together with the arcs in E, forms a system S_y so that $y \in S$. On the other hand, if $r_k \in Q$, $E + \beta_k$ consists of n disjoint arcs joining P and Q; and even in this case, R + the arc of S_x containing x + one of the

arcs of $E + \beta_k$ contains an arc py which together with the remaining n-1 arcs in $E + \beta_k$ forms a system S_n so that $y \in S$.

Thus S is both open and closed in M; and since M contains arcs joining P and Q and $P \subset S$, we have $S \cdot Q \neq 0$. Hence if $x \in S \cdot Q$, the system S_x determined by x satisfies our theorem.

3. Theorem. If the locally connected generalized continuum M is n-point connected between two of its points a and b, it contains a set of n independent arcs joining a and b.

Again the proof is by induction on n. For n=1 the conclusion follows by arcwise connectedness. We suppose it holds for all k < n. If M-a-b contains more than one component Q with $\overline{Q} \supset a+b$, $M_1=\overline{Q}$ and $M_2=M-Q$ are locally connected generalized continua; and since if a set K_i separates a and b in M_i (i=1, 2), K_1+K_2 separates a and b in M, it follows that M_i is n_i -point connected between a and b (i=1, 2), where $0 < n_i \le n-1$ and $n_1+n_2=n$; and our induction hypothesis gives a set of n_i independent arcs in M_i joining a and b whose sum is a set of a such arcs as required by the theorem. Thus we may suppose there is only one such component a and a we set a and a in a in

LEMMA. E contains a locally connected generalized continuum N which is n-point connected between a and b and has a as a regular point.

Proof of the lemma. Let U be a neighborhood of a such that \overline{U} is compact and does not contain b. Since each point of E is interior to an arbitrarily small locally connected continuum in E and the boundary F(U) of U is compact, F(U) is contained in the interior of the sum E of a finite number of locally connected continua in E-a-b; and if we add to E an arc in E-a-b joining each pair of components of E, we obtain a locally connected continuum E in E containing E containing E in its interior. Thus if we set E is the component of E containing E containing E is a locally connected generalized continuum because every E is interior either to E or to E in E in E.

Now let (V_i) be a sequence of neighborhoods of a such that $(U-U\cdot X_1)$ $\supset \overline{V_1} \supset V_1 \supset \overline{V_2} \supset V_2 \supset \cdots$ and $\delta(V_i) < 1/i$. Let us set $Y_1 = 0$, and for each i > 1 let X_i be the sum of a finite number of locally connected continua such that $F(V_i) \subset X_i \subset V_{i-1} - V_{i-1} \cdot X_{i-1} - \overline{V_{i+1}}$, and let Y_i be the sum of a finite number of arcs in E-a each joining X_i and H_{i-1} and having just one point in H_{i-1} and such that Y_i intersects every component of X_i . Let

$$H_i = H_{i-1} + Y_i + X_i$$
 for $i > 1$, and $H = a + \sum_{i=1}^{\infty} H_i$.

Then since H_1 is a locally connected generalized continuum and, for each

i>1, $X_i+Y_i\subset V_{i-1}$, it follows that H is a locally connected generalized continuum.

Since for any $x \in (E-a-b)$, E-x is (n-1)-point connected between a and b, it contains a sum S_x of n-1 independent arcs joining a and b. Since the open sets $E-S_x$ cover the compact sets X_i+Y_i , for each i there exists a finite collection S_1^i , S_2^i , \cdots , $S_{m_i}^i$ of the sets S_x such that $X_i+Y_i \subset \sum_{j=1}^{m_i} (E-S_j^i)$. Set $S_j^i=T_j^i$, $j \leq m_1$, and for each i>1, and $j \leq m_i$, let T_j^i be the closure of the component of $S_j^i-S_j^i \cdot H_{i-1}$ containing a. Finally, set

$$N = H + \sum_{i=1}^{\infty} \sum_{j=1}^{m_i} T_j^i$$

Then since for each i > 1 and all $j \le m_i$, $T_i^i \subset V_i$, it follows that N is a locally connected generalized continuum. Further, since for any i > 1, $W_i = N \cdot (V_{i-1} - \overline{V}_i) \subset X_{i-1} + X_i$ plus a finite number of the arcs of Y_i and of T_i^i for $s \le i$, since W_i contains a compact set not intersecting $X_{i-1} + X_i$ and separating a and $F(V_{i-1})$ in N, and since any finite arc sum is everywhere regular as it can contain no continuum of condensation, it follows that N is regular at a.

It remains to show that N is n-point connected between a and b. Suppose, on the contrary, that some set K of less than n points separates a and b irreducibly in N. We shall prove this impossible by showing that $K \cdot H = 0$. In the first place, $K \cdot X_1 = 0$ because for any $x \in X_1$ some T_1^1 does not contain xwhereas every T_{j}^{1} must contain K, as otherwise one of the arcs of T_{j}^{1} from a to b fails to intersect K. Also, $K \cdot G = 0$. For if not, then if y is the last point of X_1 on an arc ab in E-K, $yb \subset G+X_1 \subset N$. Then since $K-K \cdot G$ would not separate a and b in N, $N-(K-K\cdot G)$ would contain an arc aub; and if u is the first point of X_1 on this arc, $au \cdot K = 0$ and we have a connected subset $au+X_1+yb$ of N-K containing a+b. Thus $K\cdot H_1=0$. Hence if $K\cdot H\neq 0$ and k is the least integer such that $K \cdot H_k \neq 0$, we have k > 1. But $H_k = H_{k-1}$ $+Y_k+X_k$; and if Y_k+X_k contains a point x of K, some set T_j^k fails to contain x and hence contains an arc az with $az \cdot K = 0$, $z \in H_{k-1}$, since T_j^k consists of n-1 arcs joining a and H_{k-1} and intersecting by pairs in just a. This is impossible since then $H_{k-1}+az$ is connected and contains a+b but does not intersect K. Thus $K \cdot H = 0$, which also is absurd because $N \supset H \supset a + b$. Thus the lemma is proven.

Returning to the proof of the theorem, we note that since the lemma can be applied in N at b, we may suppose N regular at both a and b. Thus there exist infinite sequences (P_i) and (Q_i) of regions in N such that $\overline{P}_1 \cdot \overline{Q}_1 = 0$ and, for each i > 1,

$$a \subset P_i \subset \overline{P}_i \subset P_{i-1} \subset V_{1/i}(a), \quad b \subset Q_i \subset \overline{Q}_i \subset Q_{i-1} \subset V_{1/i}(b),$$

the boundaries $F(P_i)$ and $F(Q_i)$ contain finite numbers p_i and q_i of points, and the boundary of any open set lying in P_i (or Q_i) and containing a (b) contains not less than p_i (q_i) distinct points. The set $N_0 = N - P_1 - Q_1$ is

n-point strongly connected between $F(P_1)$ and $F(Q_1)$, because any set separating N_0 between these two sets in the broad sense also separates N between a and b. Hence, by §2, N_0 contains a sum T_0 of n disjoint arcs joining $F(P_1)$ and $F(Q_1)$ and we suppose these arcs reduced so that each has only its end points in the sum of these two sets.

Let $P_1' = T_0 \cdot F(P_1)$, $Q_1' = T_0 \cdot F(Q_1)$. Then each of these sets contains exactly n points, namely, one end point from each of the n arcs in T_0 . Now if $N_1 = \overline{P}_1 - P_2$, N_1 must be n-point strongly connected between P_1' and $F(P_2)$. For if some set H of less than n points separated these two sets in N_1 in the broad sense, the set $K = H + F(P_1) - P_1'$ contains less than p_1 points; and the component of N - K containing a is in P_1 and has less than p_1 boundary points, contrary to the choice of P_1 . Hence N_1 contains a sum T_1 of n disjoint arcs joining P_1' and $F(P_2)$. Similarly $M_1 = \overline{Q}_1 - Q_2$ contains a sum S_1 of n disjoint arcs joining Q_1' and $F(Q_2)$. We suppose the arcs in T_1 and S_1 reduced so that the set $P_2' = T_1 \cdot F(P_2)$ and $Q_2' = S_1 \cdot F(Q_2)$ consist of exactly n end points as before. Continuing, $N_2 = \overline{P}_2 - P_3$ and $M_2 = \overline{Q}_2 - Q_3$ contain sums T_2 and S_2 respectively of n disjoint arcs joining P_2' to $F(P_3)$ and Q_2' to $F(Q_3)$, and so on indefinitely. Clearly the set

$$S = a + b + T_0 + \sum_{i=1}^{\infty} (T_i + S_i)$$

consists of exactly n independent arcs in N (and thus in M) from a to b as required by the theorem.

BIBLIOGRAPHY

- 1. N. E. Rutt, Concerning the cut points of a continuous curve when the arc-curve AB contains exactly N independent arcs, Amer. J. Math. vol. 51 (1929) pp. 217-246.
 - 2. G. Nöbeling, Eine verschärfung des n-Beinsatzes, Fund. Math. vol. 18 (1931) pp. 23-38.
 - 3. K. Menger, Kurventheorie, Teubner, Berlin-Leipzig, 1932, chap. VI.
- 4. L. Zippin, Independent arcs of a continuous curve, Ann. of Math. vol. 34 (1933) pp. 95-113.
- 5. G. T. Whyburn, On the cyclic connectivity theorem, Bull. Amer. Math. Soc. vol. 37 (1931) pp. 429-433; Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942.
- 6. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.
- 7. K. Menger, Zur Begründung einer axiomatischen Theorie der Dimension, Monatshefte für Mathematik und Physik vol. 36 (1929) pp. 193-218.
- 8. G. T. Whyburn, The cyclic and higher connectivity of locally connected spaces, Amer. J. Math. vol. 53 (1931) pp. 427-442.

University of Virginia, Charlottesville, Va.