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Introduction

In point set topology—or, more precisely, in the part of it once called

"theory of abstract spaces"—there are two principal methods of investiga-

tion. The first one refers to the topological space alone(2) ; we shall call it the

internal method : for example the separation axioms Po, Pi, T2 [A-H], the notions

of regularity, normality, compactness, are expressed in terms of the topologi-

cal space only. The second method uses the real numbers as a tool for in-

vestigating the topological space S, and will be called the external method.

Here the real numbers appear via the channel of real valued continuous func-

tions defined on 5. One may consider either a restricted class of these func-

tions, like distances, pseudo distances, separating functions, or the whole ring

of all continuous real valued functions defined on S. Examples of this method

are the notions of complete regular space and of metric space, the Tietze

extension theorem, the reconstruction of the space from its ring of real valued

continuous functions [G](3).

In both methods one recognizes rapidly that, in order for the topological

space to have many interesting properties, one must impose more restrictive

conditions. About these conditions, mathematicians now seem in better agree-

ment than some years ago [W] [Tu]. From the internal standpoint the inter-

esting spaces are the uniform spaces(4) and the compact spaces(6). From the

external standpoint, if one wants the topological space described accurately

Presented to the Society, September 5, 1947; received by the editors May 8, 1947.

0) A dissertation presented to the faculty of Princeton University in candidacy for the

degree of doctor of philosophy.

(2) We mean here, by topological space, the composite object (S, £) of a set 5 and a family

Ï of subsets of 5 satisfying the axioms for closed sets. It seems convenient logically and harmless

in practice to call the family of closed subsets of 5 the "topology" of 5. We shall often use the

condensed notation 5 to denote a topological space. But, when several different topologies of the

same set 5 are under consideration, we shall come back to the rigorous and convenient notation

(S, jE). 5 is called the underlying set of the topological space (S, X).

(3) Roman letters in brackets refer to the bibliography at the end of the paper.

(4) The notion of uniform space was introduced in 1937 by A. Weil [W]. They are gen-

eralizations of metric spaces, and they have essentially all their properties, except those arising

from countability.

(6) By compact space we mean here "bicompact Hausdorff space" ; that is, a space 5 which

satisfies the separation axiom T2 of Hausdorff (any two distinct points of S can be separated

by two disjoint open sets), and the Lebesgue covering axiom (from every open covering of S

one can extract a finite subcovering), or any one of the numerous properties equivalent with it.
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by real valued continuous functions, one must have a sufficient number of

them, and that is expressed by the complete regularity of the space.

The relations between these three interesting kinds of spaces are very

close: immediately after having defined the uniform spaces, Weil recognized,

by using only internal methods [W, p. 24], that every compact space, and

therefore every subspace of a compact space, can be considered as a uniform

space. In order to prove the converse, he had to use real numbers: he proves

first [W, p. 13], generalizing a method due to Pontrjagin, that any uniform

space is completely regular, and, as proved by Tychonoff(6), every com-

pletely regular space is a subspace of a compact space.

The aim of this paper is to give a proof of this fact using only internal

methods. In other words, given a uniform space S, to construct, without using

real numbers, a compact space having a subspace homeomorphic with S. This

operation is called "compactification." Some partial solutions of this problem

exist already: if, in the Hausdorff space S, the open-closed sets form a base

for the open sets, the method of Stone [S] gives a compactification of S. On

the other hand, Wallman [Wa], given any Pi space S, constructs a Ti space

ilw containing an everywhere dense subspace homeomorphic with 5 and

satisfying the Lebesgue covering axiom; but the fact that S is a Hausdorff

space, or even a completely regular space, does not insure that Çlw is com-

pact (7) ; in fact Wallman proved that a necessary and sufficient condition for

Qw to be compact is that S be normal.

The method used by both Stone and Wallman can be interpreted as mak-

ing a topological space out of the set of all "ultrafilters"(8) of a suitable

directed set. The method used here is based on the same principle.

The first part of this paper contains the definition and the study of the

main tool used here : the notion of ultrafilter. Filters and ultrafilters were in-

vented in 1937 by H. Cartan [Ca] as a generalization of sequences and of the

diagonal process, and are used systematically by N. Bourbaki and his col-

laborators. We define here filters and ultrafilters in a more general situation,

that is, in any directed set, we study their general properties and give, in

terms of filters, a characterization of boolean rings considered as directed sets.

The next section is a review of the uses of filters in general topology(9).

The first part ends with a series of counter examples.

(6) See [T]. Tychonoff imbeds the completely regular space in some, finite or transfinite,

cube. A more elegant method, due to Gelfand [G] uses the normed ring of continuous real valued

functions defined on the given space.

(') We recall that we do not call "compact" a space which is not Hausdorff. A non Haus-

dorff space which satisfies the covering axiom has none of the nice properties of compact spaces.

(8) The notions of filter and ultrafilter will be defined later. For a lattice, what is meant

here by "filter" is called "ideal" by some authors.

(9) This is only, with slight modifications of terminology, a restatement of the main points

of the Chapters I and II of the Bourbaki treatise [B]. We shall make constant use, in this paper,

of the notation and terminology of Bourbaki.
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The second part is the study of the natural topologies on the set of all

ultrafilters in a directed set; it contains also the parallel theory of the set of

all maximal ideals in a commutative ring with unit element [GS] [j2].

The third part gives the method of compactifying any uniform space by

the use of ultrafilters. The main result is the following: for any uniformizable

space 5, with the uniform structure ©, is constructed a compactification ©"""

which contains as topological subspace the completion S^ of S with respect

to @. Since the underlying topological space of S may be considered as im-

bedded in S^, the unique [W] [B] uniform structure of the compact space

S^ induces on 5 a precompact uniform structure [B ] <3* compatible with the

topology of S; ©D@*, and the correspondence ©—»©* is monotone. This

correspondence gives us a tool for studying the diverse uniform structures

compatible with the topology of a uniformizable space; we give proofs, by our

methods, of the main properties of the Cech [C] and Wallman compactifica-

tions. We give also a purely topological characterization of uniformizable

spaces. The paper ends by uniform structural characterizations of locally

compact spaces and normal sequentially compact(10) spaces.

In the preparation of this paper I received much valuable advice from

Professors C. Chevalley and J. Dieudonné, and great encouragement from

Professor S. Lefschetz.
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Chapter I

1. Definitions. A partially ordered set E will be called a directed set, if,

given any two elements a and b of E, there exists an element cEE such that

(1) c i% a    and    c :§ b,

(2) "x ^ a    and    x ^ b"    implies    x i% c(n).

(10) A space 5 is called sequentially compact if every sequence has a cluster point.

(u) In general this second condition is not required for a directed set. It would not have

been difficult to get all the results of this paper without imposing this condition. But the exposi-

tion would then become long and unsatisfactory. And, since all the directed sets which are used

in mathematics satisfy this second condition, any greater generality would have been pointless.
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The axioms for a partially ordered set imply immediately that such an

element c is unique. It is called the greatest lower bound (g.l.b.) (or the meet, or

the intersection) of a and b—and will be denoted by ab.

For example any simply ordered set, lattice, or boolean ring is a directed

set.

The mapping (a, b)-*ab of EXE onto E is an associative, commutative

and idempotent law of composition in E. The relations "ab = b" and "biia"

are equivalent. The converse is obviously true.

Notion of filter. We suppose from now on that E has a minimal element

co; then co is the smallest element of E since, for all xEE, cox^co, hence

03X — 03, which means co^x.

We can define inductively the g.l.b. of any finite family of elements of E.

The g.l.b., being associative and commutative, is independent of the order

in which the elements of the finite family are written; being idempotent

this g.l.b. depends only on the set of elements belonging to the family(12). A

subset C of E is called a compatible subset if every finite subset of C has a

g.l.b. different from co.

An elements a and a subset D are called compatible when DKJ {a} is

compatible. If D is already known to be compatible, one says that a is com-

patible with D.

Two elements a and b are called compatible if the subset {a, b} is compati-

ble. In other words: ab^co.

When the directed set E is the set ^3(5) of all subsets of a set S, ordered

by inclusion, a compatible subset 3 of ty(S) is called a family of subsets with

the finite intersection property: the subsets of any finite subfamily of Sy have

a nonempty intersection.

Instead of considering any compatible subsets, it is more convenient to

consider compatible subsets of a certain type called filters.

A filter F is a subset of the directed set E which fulfills the three following

conditions:

Fi: If aEF and xSja, then xEF.

Fn: If aEF and bEF, then abEF.
Fin: coGP-
One deduces from Fn and Fm by ordinary induction that a filter is a com-

patible subset.

The whole directed set, which satisfies Ft, Fn but not Fm is sometimes

called the improper filter.

{"■) We recall that a family of elements of E is not a subset of E, but a mapping of some

indexing set into E. For example, I being the set of integers between 1 and n, a family of n

elements of £ is a mapping : j—>a(j), j E I, o(j) EE. Of course the same element of E may occur

several times in a{I), and since in most algebraic laws of composition aa¿¿a, the product of

the elements of the set and the product ÜíGí °0')i which is called the product of the family of

elements, are in general different. Any set may be considered as a family, since it may be indexed

by itself.
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One sees immediately that one obtains a filter F from a compatible subset

C by adjoining to C:

(1) All the g.l.b. of finite subsets of C;

(2) All the elements of E greater than any one of these gLb.

The compatible set C is then called a subbase of the filter F; one says that

F is the filter generated by C.

The subset B obtained by the first adjunctions only is called a base of

the filter P. In general a subset of £ is a base for a filter if it satisfies:

Bi: If aEB and bEB, there exists CEB such that c^a, c^b.

Bn:coG£.
Two bases B and B' are called equivalent if they generate the same filter

F; it is equivalent to say: given any bEB there exists b'EB' smaller than b,

and given any b{ EB' there exists biEB smaller than bi .

It is readily seen that the intersection FH\G of two filters F and G in £

is a filter; it is called the filter intersection of P and G.

Two filters Pand G are called compatible if the subset FVJG is compatible.

This condition is, by Fn and ordinary induction, equivalent with the follow-

ing: "every element of F is compatible with every element of G." In this case

the filter H generated by F^JG is called the filter generated by F and G. H has

as base the set of elements fg, where/GP and gEG; using the usual algebraic

notation one can denote this base by FG. Then FG^E means that the filters

F and G are compatible.

Remark. If £ is a distributive lattice, the l.u.b. of a and b being denoted

by a\/b, the set of all elements greater than a is a\/E. Then any element of

the filter H maybe written /gVx = (/V*)(gVx) =/'g' (/'GP, g'EG). Hence

H is the set FG.

If FZ)G the filter P is said to be finer than the filter G, and the filter G

coarser than the filter P.

The set of all elements xG-E greater than a given element a is clearly a

filter, called the principal filter generated by a and denoted by Fa-

Classification of the elements of E with respect to a filter FEE. Let a be any

element of E. Three mutually exclusive cases may happen.

(1) aEF—or equivalently FaEF.

(2) a G P and there exists xEF such that ax = co ; a is incompatible with P.

Equivalently: P„ and F are incompatible filters.

(3) aEF and, for every xEF, oxj^co; a is compatible with the filter P;

equivalently Fa and F are compatible filters. In this case the filter generated

by the compatible subset FVJ{a} (or F^JFa) is strictly finer than F.

2. Ultrafilters. The family of all filters in E is ordered by inclusion. One

calls ultrafilter a maximal element of this family, that is, a filter F such that

there exists no filter strictly finer than P.

The existence of ultrafilter is insured by:

Theorem I. Given any filter Fin E, there exists an ultrafilter U finer than F.
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This is an immediate consequence of Zorn's lemma, since the family of

all filters finer than F, ordered by inclusion, is inductively ordered [B, Tu],

that is, the union UaP„ of an increasing family of filters is a filter.

Remark. Let us operate in the family of all compatible subsets of E con-

taining a given compatible subset C; the fact that, in the family of all sub-

sets of E containing C, the property of being compatible is of finite char-

acter^3) shows that there exists a maximal compatible family U containing

C; it is easy to prove that U is actually an ultrafilter [Wa, L].

Characterization of ultrafilters. Two distinct ultrafilters are incompatible.

Every filter is either contained in an ultrafilter U, or incompatible with U,

in particular the principal filter Fa. An element aEE is either an element

of U, or incompatible with U. Conversely let F be a filter such that, for all

<xGP> there exists xEF such that ax = u>. An ultrafilter U containing P can

not contain a, since the family {a} WPis incompatible. Hence U=F. There-

fore we have the following theorem.

Theorem II. A necessary and sufficient condition for a filter F to be an ultra-

filter is that every element of E —F be incompatible with F.

Intersections of ultrafilters. Every filter P is contained in the intersection

na Ua of the ultrafilters Ua finer than F. Suppose that P = D„ Ua for every P.

Then, to two distinct filters correspond two distinct families of finer ultra-

filters. In particular given the principal filters Fa and P&, there exists, for ex-

ample, an ultrafilter U finer than Fa but not finer than P¡,; that means that

there exists xEU such that :

ax 7^ w,        bx = oo.

If this condition, or the condition obtained by exchanging a and b, holds

for every pair (a, b) of distinct elements of E, the directed set E is called

disjunctive.

We suppose conversely that E is disjunctive. Let Fa be any principal filter

in E, {Ua} the family of all ultrafilters finer than P„. If G = C\aUa is a filter

different from Fa, there exists bEG, &GP«- To the two principal filters P„

and P;, corresponds the same family of finer ultrafilters. We now use the fact

thatE is disjunctive: if there exists x such that ax p^co, bx = to, let U be an

ultrafilter finer than Fax; it contains ax, hence a, hence is one of the Ua; hence

it contains b, but it contains x; since bx = u, we get a contradiction. If there

exists y such that ay = co, by^to, let V be an ultrafilter finer than Fby; it con-

tains by, hence b, hence is one of the Ua, hence contains a; but it contains y,

hence ay = co; a contradiction. We can therefore state the following theorem.

Theorem III (Wallman). A necessary and sufficient condition for every

(13) A property of a set D is said to be of finite character if the set D has this property when-

ever all finite subsets of D have it. Most algebraic properties, like being linearly free, are of

finite character.
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principal filter F to be the intersection of the ultrafilters finer than F is that the

directed set E be disjunctive.

Ultrafilters finer than the filter generated by a family of filters. Let (F\) be a

family of filters in E, and 4>x the family of all ultrafilters finer than F\. Let

P be the (proper or improper) filter generated by the F\. Every ultrafilter U

finer than F is finer than all the Px, hence belongs to iïx4\. Conversely every

ultrafilter in Dx^x contains all the Px, hence P. We can therefore state:

Proposition 1. The family $> of all ultrafilters finer than the filter F gener-

ated by the filters F\ is the intersection fix "Ex of the families 4>x of ultrafilters finer

than F.

Remark. If G is the intersection of the filters F\, the family ^ of all ultra-

filters finer than G obviously contains Dxi'x. But in general it is strictly greater

than this union—an example will be given later.

3. Ultrafilters in complemented directed sets. The notion of ultrafilter

takes its full significance, and all its interesting properties, only when to every

element aEE corresponds an element a'EE which has the main features of

the complement of a subset in a directed set ty(S). Here we must, of course,

express these properties in terms of the operation (a, b)—>ab only.

Definition. A directed set E is called complemented if, to every aEE,

corresponds a'EE such that:

Ci. aa' = 03,

Cu- ax = co implies x^a'.

Cn implies the uniqueness of such an element a'.

We can also state these conditions in the following way: the set of all ele-

ments incompatible with a has a greatest element a'.

The element a' is called the complement of a.

The conditions PCi and PCn imply that E has a greatest element í = co'.

Hence e' = co.

The complement (a')' of a' is denoted a". In general, a"^a, and we shall

see that a" =a characterizes the boolean rings with a unit element; also, it is

easy to see that the set of all filters in a boolean ring ordered by inclusion is

a complemented directed set where F'^F in general.

Since txa' = co, applying PCn to a', we get a^La".

On the other hand a'a" = co, and, if xa"=co, we have a fortiori xa = co;

hence x^a'. Therefore a'" =a'.

Notice also that cfL\d implies c'^d' (since d'ct%\d'd = ui).

Set C of the complements of elements of E. (1) If x^a', xa" = co hence

a"-¿x', hence x" ¿a'" =a'. From a'b' -¿a' and a'b' ¿b', we deduce therefore

(a'b'Y'^a', (a'b')"iZb'; hence (a'b')" ^a'b'. But, since x"^x, (a'b')"

= a'b', and a'b' is a complement. The set C is closed under the law of composi-

tion (a, &)—>aZ>.

(2) We shall write: a'Vb'= (a"b")'.
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(a) a"b"úa"; hence a'Vb'= (a"b")'l\a'" =a'. Similarly a'Vb'^b'.

(b) If x'^a' and x'^b', then x" ^a" and x"^b"; hence x" Sa"b", and

x'"=x'^(a"b")' = a'\Jb'. a'\fb' is therefore the l.u .b. of a' and b' in the set C

(but not in general in the set E).

We could now prove that each of the laws of composition a'b' and a'\/b'

in C is distributive with respect to the other, and therefore C is a boolean

ring with unit. But it is more elegant to use the theory of ultrafilters to prove

this theorem.

In spite of the fact that it is not a l.u.b. in E we shall use the notation

diV^V • • • \/an = (aí ■ ■ -a/)'; notice that this law of composition is not

idempotent: a\/a = a".

The element cziV^V ■ • ■ \/an is greater than each aca^al ■ ■ -an ^aiai

= co, hence a(^(a{ ■ ■ ■ an)'.

Remarks about the situation of the elements a and a' with respect to a filter F.

If aEF, a' is incompatible with P.

If a'EF, a is incompatible with P.

If a is incompatible with P, there exists xEF such that öx = co; hence

x^a' and a'EF.

If a' is compatible with P and a'EF, a is compatible with P and aEF.

(Otherwise there would exist xEF, such that ax = co, hence a''Six and a'EF.)

These considerations lead immediately to the following theorems:

Theorem IV (Cartan). A necessary and sufficient condition for a filter F

to be an ultrafilter is that for every aEE, either aEF or a'EF.

(1) If F is an ultrafilter and if aEF, a is incompatible with F, hence

a'EF.
(2) If, conversely, for every aEE, F contains either a or a', give any

xGP, x'EF; since xx' = co, x is incompatible with P. Every element of E — F

being incompatible with P, P is an ultrafilter by Theorem II.

Theorem V (Ultrafilter theorem). If oiVosV ■ • • V^n belongs to an

ultrafilter U, then at least one of the a, belongs to U.

In fact, if U does not contain any of the a¡, it contains all the a¡ by Theo-

rem IV, and hence also ai ■ ■ ■ añ . Then (a{ ■ ■ ■ a¿)' =ai\/a2\/ ■ ■ • Va» does

not belong to U; a contradiction.

Corollaries. (1) If a" belongs to an ultrafilter U, then aEU. In fact a\/a

= (a'a')' = a".

(2) If a" is compatible with a filter F, a is compatible with F. In fact it

means that a" belongs to an ultrafilter U finer than P.

(3) Every ultrafilter U finer than the intersection G = Fii>\ ■ ■ ■ C\Fn of a

finite number of filters contains at least one of them. Otherwise there would

exist for each i an element aiEFi such that a,G U. Then a/ G U for every i,

and  therefore  a{ ■ ■ • a/. EU.   But   a = aiV ■ • • \fan = (a'i  ■ ■ ■ añ)';  it  is
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greater than every a,. Hence aEFiC\ ■ ■ ■ r\Fn — G—a contradiction.

Intersections of ultrafilters. Let us see under what condition every prin-

cipal filter is the intersection of all ultrafilters finer than itself, in other words

what can be said about a complemented disjunctive directed set.

Since a"SLa, a"x = oo implies ax = co. The disjunctivity would then imply,

if a" ?¿a, the existence of y such that a"y p^co, ay = co. But then y^a' by

PCn, and, since a'a" = œ, a"y = co; a contradiction.

Hence, for every aEE, a"=a and C = E.

In this case we have a result stronger than Wallman's theorem.

Theorem VI (Stone). In a complemented directed set E in which a" =afor

every aEE, every filter is the intersection of the ultrafilters finer than itself.

Yet (Ua) be the family of all ultrafilters finer than P, and G = f\aUa; clearly

FEG. If F ¿¿G, there exists an element bEG, bEF. We can write b = (b')'

= a';a' being compatible with Pand not contained in P, a is compatible with

P. Let U be an ultrafilter containing PW {a} ; it cannot contain b = a'; this

contradicts the definition of b. Hence F—G, and the theorem is proved.

Theorem VII. A complemented directed set E in which a" =afor every aEE

is a boolean ring with a unit element.

Let 4> be the set of all, proper and improper, filters in E. 3> has two laws of

composition: (FiG)—>FC\G and (F,G)^>E(F,G), the filter generated by Pand

G. By Theorem VI every filter F corresponds in a one-to-one way to a subset

flp of the set ß of ultrafilters in E : &f is the family of ultrafilters containing

P. Proposition 1 (Part II) and Corollary 3 to Theorem 5 show that to the

filter E(F\) generated by any family (Px) of filters corresponds the subset

flxŒj^ of £2, and to the filter intersection d¿P< of a finite family (P,) of filters

corresponds the subset U,í2f¡ of ß.

Since we are now reduced to a calculus of subsets of the set Í2, we get the

following distributivity relations:

(1) Fr\E(Fx) =Ex(FC\Fy) (the family (Px) being any family of filters).

(2) E(F, n,P,)=n,(P(P, Ft) (the family (P<) being finite).
In particular, if we are dealing with principal filters, E(Fa, Fb) = Fab,

Far\Fh = Fa^.h (since ßV* is the l.u.b. of a and b). Therefore:

(1)' aVbc=(a\/b)(a\/c).

(2)' a(b\/c)=ab\/ac.
That makes out of E a distributive lattice.

If we defined x-\-y=xy'\Jyx', it follows in the usual way that £ is a

boolean ring with respect to the operations (x, y)—>x-{-y and (x, y)—*ry. Ob-

serve that x\/y = x+y+xy.

Remarks. (1) Let PCP be a filter, and F' the set of complements of ele-

ments of F; F' is sometimes called an antifilter. The antifilters coincide with the

proper ideals of the boolean ring. (The proof is straightforward.)
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Hence, for a boolean ring, the notions of filter and of ideal are closely

related. To an ultrafilter corresponds a maximal ideal ; Theorem VI is equiva-

lent to the following well known result: "In a boolean ring every ideal is the

intersection of the maximal ideals containing it."

Theorem IV corresponds to the fact that the factor ring of a boolean ring

by a maximal ideal is a field with two elements.

(2) In the propositional calculus of the first kind (that is, without quanti-

fiers "Whatever x • • • ," and "There exists x • • • ") the propositions form a

boolean ring £(14) (a' corresponds to "not a," aß to "a and ß," a\/ß to "a or

ß"). If we attach to some propositions a truth value, "true" or "false," the

true propositions form a filter F, and the false ones the ideal (or antifilter)

P'=9I. Equivalence between two propositions "aß\/a'ß' is true" corresponds

to congruence modulo 2Í. More generally one can say that the assignment of

truth values (in a many-valued logic) corresponds to the passage to a factor

ring. The fact that the number of elements of a finite boolean ring is of the

form 2", excludes 3, 5, 6, • • • -valued logics (if one wants to keep the usual

rules of the propositional calculus).

A theory with complete determination (that is, every proposition is either

true or false) corresponds to the case where the filter of true propositions is an

ultrafilter. The existence theorem of ultrafilters (Theorem I) means that,

given a theory with dubious propositions, one can extend it to a theory with

complete determination.

Notice also that the axiom Fm(coGP) corresponds to the non contradiction

principle.

(3) A consequence of the distributivity conditions (1)' and (2)' (and of

them only) is that one can denote the filter intersection FC\G and the filter

generated by F and G by F\/G and FG respectively, these notations having

their usual algebraic meaning.

4. Use of filters and ultrafilters in general topology. We shall review here

the principal applications of filters and ultrafilters in general topology. For

more details the reader is referred to the Bourbaki treatise [B, III, chaps.

land II].

Definitions. Filter over a set. Given a set 5 we denote by ty(S) the set of

all subsets of S. ^(S), ordered by inclusion, is a complemented directed set,

and even a boolean ring.

A filter 55 in the directed set ^3(5) is called a filter over S.

If / is a mapping of the set 5 into the set T, the images of the subsets which

are elements of a filter g over S form a family of subsets of T, denoted by

/(S), which is obviously the base of a filter over T. The filter over T generated

by /(S) is called the direct image of the filter %. Notice that the direct image

of an ultrafilter is an ultrafilter.

(") We realize that it is not at all logical to speak about "sets of propositions." Therefore

these considerations about logic have only an interpretative value.
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If we are given a filter ® over T, and if none of the inverse images under

/ of the elements of ® is empty, they form the base of a filter over S, denoted

by/_1(@) ! the filter generated by/_1(@) is called the inverse image of the filter

®.

Filters over a topological space. Let 5 be the underlying set of a topological

space (S, X). The family of all neighborhoods of a point xES(li) forms a

filter over S, called the filter of neighborhoods of x and denoted by 23(x).

A filter vj over a topological space (S, X)(16) is said to converge to a point

xES, if 3 is finer than 33(x). A filter which converges to some point of S is

called convergent.

The Hausdorff separation axiom can now be stated in the following form :

"a filter cannot converge to more than one point." This point, if it exists, is

called the limit of the filter g.

A point x of S is called a cluster point of the filter if the filters g and 23 (x)

are compatible. The set A of all cluster points of a filter S is a closed set, the

intersection of the closures of all elements of g, and is called the closure of the

filter g.

Let/ be a mapping of a set 5 into the topological space T and g be a filter

over S. If the direct image/(g) has a limit xGP, x is called the limit value of

/with respect to the filter g; one writes x = limg(/(Z)).

Similarly one defines the cluster values of a function with respect to a

filter. If S is the set A of positive integers, a mapping/ of 5 into T is called a

sequence of points of T: n—>a„. The complements of finite subsets of A form

a filter over A (this is a general property of the infinite sets), called the

Fréchet-filter. A limit value of the sequence with respect to the Fréchet-filter

is called a limit of the sequence, a cluster value a cluster point of the sequence.

The connection with the usual notions, in a I\ space, is readily established.

Comparison of topologies. Given a set 5 and two topologies Xi and X2

over this set, it may happen that every closed set for Xi is a closed set for X2,

in other words XiEX2. We say in this case that X2 is finer than Xi, or that Xi

is coarser than X2. The discrete topology is the finest one. Some authors say

"stronger" and "weaker" instead of "finer" and "coarser."

If Xi is finer than Xi, the filter of neighborhoods S3i(x) (in Xi) is finer than

232(x) (in Xi).

The family Xii^X2 satisfies the axioms for closed sets; it is therefore a

topology called the intersection topology of Xi and X2.

By adjoining to the family Xi^JX2 all the finite unions of sets of it, and all

the intersections of these finite unions, one gets a topology X, which is the

l.u.b. of Xi and X2 in the partially ordered set of the topologies over S; it is

called the l.u.b. topology of Xi and Xi, and denoted by Xi\/X2.

(it) We mean by neighborhood of x, any subset of 5 containing an open set U containing x.

(le) We say "filter over a topological space" as short cut for the rigorous "filter over the

underlying set of a topological space."
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The notions of intersection topology and of l.u.b. topology can obviously

be defined for any set (X\) of topologies over S.

The l.u.b. topology may be obtained in the following way ¡consider, in the

product space IJx(S, X\) the diagonal A, the set of elements with coordinates

all equal. As a set of points A can be identified with S; and the topology in-

duced on A by the product space topology is the l.u.b. of the topologies X\.

That proves immediately that if 5 has an algebraic structure (group, ring, or

field), and if each topology X\ is compatible with the algebraic structure

(that is, makes out of 5 a topological group, ring, or field), the l.u.b. topology

is also compatible with the algebraic structure of 5.

It is easy to see that the filter of neighborhoods of x in the l.u.b. topology

is the filter generated by the filters of neighborhoods 23x(x) in the topologies

2*.
The intersection topology has none of these properties : the filter of neigh-

borhoods of x in it is only coarser than the filter rix25x(x). The intersection of

two group topologies may not be a group topology (see §5, "counter exam-

ples").

This difference of behavior is due to the fact that the l.u.b. topology and

the filter generated are obtained by an essentially finite (or at least algebraic)

construction from the data. But the intersection topology (and filter) are

obtained by a set-theoretical intersection effected at the highest level we are

operating in. We shall notice later a similar situation with uniform struc-

tures.

The property of being a filter is essentially settled in the finite case; in

fact there is essentially nothing more in a filter than in a family with the finite

intersection property (F.I.P.), and many authors, like Lefschetz and Wall-

man, work successfully with families with F.I.P. If we prefer filters it is only

for aesthetic reasons; instead of equivalence between families with F.I.P.,

we have, the filters being very big collections of objects, identity between fil-

ters. More generally the relations of inclusion and compatibility between fil-

ters are easier to express than the corresponding relations between families

with F.I.P.
After this digression we come back to our point, which is the significance

of filters in topology. Topology deals essentially with infinite sets, while it is

much easier to operate with finite sets. It is therefore necessary to have a

tool permitting the passage from the finite to the infinite (or conversely by

using dual methods). The necessary tool has to have finite features in its

definition, but to be infinite in its essence; and the filters fulfill both require-

ments. Of course, in order to be significant, filters should have some relations

with topological spaces furnished by the notions of convergence and cluster

points. In other words we want to get, from the "finite" compatibility (or

cohesion) expressed by the main filter axioms, some sort of infinite cohesion

(expressed by the limit or the cluster point). The most interesting spaces, the
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ones where we can expect to be able to transform infinite considerations into

finite ones, will be those where all filters are related with the topology; these

spaces are the compact spaces.

Compact spaces. A Hausdorff space 5 is called compact if it satisfies the

following equivalent conditions :

d: Every ultrafilter over 5 is convergent.

Cn : Every filter over S has a cluster point.

Cm: Every family of closed sets with the F.I.P. has a nonempty inter-

section.

Civ: From every open covering of S, one can extract a finite covering.

It is not the place to review here the classical properties of compact

spaces.

Identification spaces. Let (S, X) be a topological space and R an equiva-

lence relation in 5. We denote by S/R the set of equivalence classes, by <p the

canonical mapping of 5 onto S/R: <p maps every element of 5 upon its

equivalence class. A subset AES is called saturated if it is a union of equiva-

lence classes ; in other words: 4>~1((f)(A)) =A. (In general one has only</>_1(c/)(P))

Z)B. B being an arbitrary subset of S, (p~l(<p(B)) is saturated and is called

the saturated set of B.)

We introduce a topology in S/R by taking as closed (open) sets in S/R

the images under (p of the saturated closed (open) sets of 5. The topology one

obtains is called the identification topology of S/R. Notice that it is the finest

topology making the canonical mapping continuous.

The main difficulty with identification spaces is the question of separation.

We shall only study it when S is a compact space: it is clear that S/R, as

continuous image of S, will satisfy the covering axiom Civ (for example). If

we want S/R to be a Hausdorff space (and therefore a compact space), the

image <p(A) of a closed set AES will have to be compact, hence closed in

S/R. Therefore the saturated set (p~1((p(A)) of a closed set A must be closed.

We suppose that conversely the saturated set of any closed set AES is

closed. Let C and D be two distinct equivalence classes; they are closed in .S

by assumption ; S being normal there exist two open sets U and V such that

CEU, DC F, Ur\V = d). Let A=S- U, B = S-V. The saturated sets A'
and B' of A and B are closed by assumption. Consider the saturated open sets

U' = S-A', V' = S-B'. Clearly U'EU, V'EV; since U' is saturated, CEU'
and similarly DEV'. Therefore, in the identification space S/R, the points

4>(C) and 4>(D) are separated by the disjoint open sets <p(U') and (p(V').

Therefore we have the following theorem.

Theorem. A necessary and sufficient condition for the identification space

of a compact space to be compact is that the saturated set of any closed set be

closed.

Uniform spaces. Consider a set 5 and its Cartesian square SXS. The set
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of pairs (a, a) (aES) is called the diagonal of 5X5 and is denoted by A. If

F is a subset of 5X5 we denote by V~l the set of pairs (b, a) where (a, b) E V;

if V= F_1 the set F is called symmetric; by F2 is meant the set of all pairs

(a, b) such that there exists xG5 such that (a, x) E V, (x, b) G F; F" is defined

inductively.

If AES, and VESXS, we denote by V(A) the image of the set (SXA)

(~\V under the projection pri of 5X5 onto its first factor. If aES we write

V(a) instead of V({a}). If A G V, V(A)DA.
By a uniform space is meant a pair (5, ©) composed of a set 5 and of a

filter © over SXS, having the following properties:

Ui: If FG®, F^G©.
Un: If FG®, there exists WE® such that W2EV.

Ura: fVe©:FDA.
The uniform space (5, ©) is called separated if it also satisfies:

Urv: rVe©:F=A.
The filter © is called the uniform structure of (5, ©). Its elements F are

called the surroundings, and sometimes © is called the filter of surroundings.

Given two uniform spaces (5i,©i), (5i,©2) with the same underlying set

5, the uniform structure @i is said to be finer than ©2 if ©0©2; ©2 is

also said to be coarser than ©1. It is clear that a uniform structure finer than

a separated one is separated.

Given a family (©x) of uniform structures on the set 5, one verifies that

the filter © generated by the filters ©x satisfies the axioms Ui, Un, Um

(proof is in [B, II, Chap. II, p. 88]) ; © is called the l.u.b. uniform structure of

the family. Notice that when one has defined the product of a family of uni-

form spaces, the l.u.b. uniform structure, like the topology, is the uniform

structure of the diagonal.

A mapping / of a uniform space (Si, ©1) into a uniform space (52, ©2) is

called uniformly continuous if /_1(@2)C©i (the mapping/ being extended

to the products). It is clear, in general, that the inverse image of a filter of sur-

roundings is the base of a filter of surroundings.

Given a uniform space (5, ©) and a surrounding V, a subset A G 5 is

called small of order V if A XAE V. A uniform structure © is called totally

bounded if, for every FG@, there exists a finite covering of 5 by sets small of

order V. A totally bounded and separated uniform space is called precompact.

A filter % over 5 is called a Cauchy filter if, for every FG©, r5 contains a set

small of order V.

To a uniform space (5, ©) is attached a topology £(©) in the following

way: we take as filter of neighborhoods of a point aES the filter 33(a) of

all sets V(a) where FG©- Urv means that the topology £(©) satisfies the

Hausdorff separation axiom.

If ©x is finer than ©2, £(©1) is finer than £(©2). But two distinct uniform

structures may give the same topology. If a topology X is already given on
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5, and if there exists a uniform structure © such that £ = £(©), © is called

compatible with the topology X. Such a topological space (5, X) is called uni-

formizable. We shall study in this paper the conditions for a topological space

(5, X) to be uniformizable, and the set of uniform structures compatible with

its topology. Uniformizability is clearly a hereditary property.

Notice the following properties:

(1) Every uniform structure coarser than a totally bounded one is totally

bounded.

(2) The l.u.b. of a family of totally bounded uniform structures is totally

bounded.

(3) The inverse image of a totally bounded uniform structure is totally

bounded.

(4) The topology deduced from the l.u.b. uniform structure is the l.u.b.

topology. As consequences:

(a) The l.u.b. of a family of uniform structures compatible with a given

topology X is compatible with X.

(b) The l.u.b. of a family of uniformizable topologies is uniformizable.

A uniform space 5 is called complete if every Cauchy filter is convergent.

By a generalization of the Cantor method, one can consider every uniform

space 5 is an everywhere dense subset of a complete space 5^, the uniform

structure of 5 being identical with the one induced on 5 by that of 5^.

One proves that every compact space 5 is uniformizable in a unique way:

its uniform structure © is the filter of neighborhoods of A in SXS. A base of

the filter © is formed by the graphs Uj(F¿X Vi) of the finite open coverings

(Vi)oí S.
One deduces immediately that every subspace of a compact space is uni-

formizable. We shall prove later the converse.

A necessary and sufficient condition for the completion S^ of 5 to be

compact is that 5 be precompact.

5. Counter examples.

Ultrafilters finer than the intersection of an infinite family of filters. In

opposition with the set of ultrafilters finer than the filter generated by a

family of filters which has the property expressed in Proposition I (Chap. II),

the set of all ultrafilters finer than the filter intersection of an infinite family

of filters contains the union of the sets of ultrafilters finer than a given filter

of the family, but is not equal to it. This is the reason why, for the laws of

composition between filters, infinite distributivity holds only in one direc-

tion.

For example the principal filter g(o) over the infinite set 5 (aES) is an

ultrafilter. flagsSla) is the minimal filter which contains only 5. But there

are other ultrafilters than the trivial ones £ji<j|> since there exist filters

with empty intersection.

On the other hand it could be predicted, for filters over an infinite set 5,
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that distinct families of ultrafilters may have the same intersection : in fact

the set of all filters and the set of all ultrafilters have the same cardinal

22 r . Therefore the correspondence between filters and sets of ultra-

filters cannot be one-to-one.

Now we give two counter examples involving infinite distributivity (of

formula (2) Chap. III).
(1) Consider the filters over the real line P. Let g be the filter of neigh-

borhoods of 0, ®„ the principal filter of all subsets containing [l/re, l].

P(8, ®n) is the improper filter, hence f\nE(%, ®„) also.

But fï„®B is the principal filter of all subsets containing ]0, l] and

E($, nn®„) is a proper filter.

(2) If one wants to avoid the improper filter, one can demand that g and

®„ contain a given set, for example { — 1} •

We may also consider in R the equivalence relation "a — b is rational."

Each equivalence class, translated from the rational line 9î, is everywhere

dense in R, and countable. The set of all classes has the power of the con-

tinuum, and we may established a one-to-one correspondence: x—*AX between

strictly positive numbers x and classes Ax.

Let g be the filter of neighborhoods of 0, ®x the principal filter generated

by Ax. fi*®* is the minimal filter {R} ; hence E(%, V\MX)X = %.

E(%, ®x) is a proper filter since Ax is dense in R; it contains the set

Bx = AxC\[-x, +x].

The union B-\JXBxbelongs therefore to C\xE(%, ®s). But it is not a neigh-

borhood of 0 since no point of AX(~\(R — BX) lies in [ — a,+a] (a<0, x< a),

and no other Ay can have introduced them in B since the (Az) form a parti-

tion of R.

We see therefore that only the following inclusion holds:

E(F, n ®x) C fl E(F, Gx).
x x

Filters of neighborhoods and intersection topology. Consider in the plane P2

the two following topologies:

Xh '■ a set A ER2 is called open if, with any point a, it contains a horizontal

segment with center a.

Xv : similarly with vertical segments.

Xh and Xv are the order topologies deduced from the two lexicographic

orderings of the plane.

In the intersection toplogy a set A is open if, with any point a, it contains

a horizontal segment and a vertical segment of center a.

The union of a vertical segment and of a horizontal segment of center 0 is

in the filter intersection of the filters of neighborhoods of 0 in Xh and Xv;

but it is not a neighborhood of 0 in the intersection topology.

Intersection of group topologies which is not a group topology. We  use  the
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same example: Xh and Xv are compatible with the additive group structure

of the plane.

The following set V, in the form of a Maltese cross around 0, is open in

XhI^Xv- (The boundaries are not in V, except the point O.) If XhC^Xv

were a group topology, this neighborhood V of 0 would contain a neighbor-

hood U of 0, such that U+ UE V. But U must contain a horizontal segment

and a vertical segment with centers 0, hence U-\- U contains a rectangle

with center O and cannot be contained in V.

Filter intersection of two filters of surroundings. We use again the same

example. The topologies Xh and Xv, being group topologies, generate additive

uniform structures : to every neighborhood Fi ( V2) of 0 in Xh (Xv) corresponds

the surrounding Vi (F2) defined by: "(x, y)GFi" means "x — yGFi" ("(x,

y)EV2" means "x — yEV2"). Let ©i and ©2 be these uniform struc-

tures. The filter @iP\©2 is composed of the sets FAJF2; (x, y)GFiWF2

means x — yGFAJF2. If @1P\@2 is a uniform structure, there exists W=Wi

UTF2G©i^©2 such that TF2CFiP\F2; translated in terms of neighbor-

hoods of 0 it means that W+ WE ViU V2. We take for Fi and F2 a horizontal

and a vertical segment with center 0; W= WiUW2 must contain a horizontal

and a vertical segment with center 0, and W-\- W a rectangle with center 0 ;

hence no W+W can be contained in V¿JV2, and ©iO©2 is not a uniform

structure.

Chapter II

6. Spaces of ultrafilters. Let £ be a directed set with a minimal element
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co; we denote by ß the set of all ultrafilters in E, by ß„ the set of all ultra-

filters containing the element aEE, by ß* the complement of ß„ in ß. We de-

fine on the set ß the two following topologies:

Xo'- the subsets Qa are taken as a subbase for open sets.

Xf'- the subsets ßa are taken as a subbase for closed sets; in other words the

subsets ß„ are taken as a subbase for open sets.

Description of the open sets and closed sets in Xo and Xf- (1) Every finite

intersection of sets ß„ is a set ß„: UaiC\ • ■ ■ r^ß0„ = ßai . . . a„. Hence the

subsets ß* form a base for open sets in Xo- Any open set in Xo is a union of

them.

(2) Using Proposition I, §2, and noticing that every filter is generated by

the principal filters determined by its elements, we see that the set ßj? of all

ultrafilters finer then a given filter PCP is closed in Xf- Every closed set (in

Xf) is a finite union of sets ßp.

If, furthermore, E is complemented, Corollary 3 of §3 shows that any

finite union of sets ßF is a set Qp. Hence the sets ßp are the only closed sets

in Xf-

Comparison of Xo and Xf- (1) Consider an open set ß* of the subbase for

Xf, and the family (ba) of all elements of E such that aba = oo. Every ultra-

filter U containing some ba cannot contain a, and conversely every ultrafilter

not containing a contains some ba: ß^Uaßi,,, and ß* is open in Xo; therefore:

Proposition 1 : Xn is finer than Xf-

(2) Consider now a closed set ß* of the base for Xo, and let us see under

what conditions it is a closed set for Xf- Then there must exist a finite

number of filters Fi, ■ ■ ■ , Fn such that the ultrafilters not containing a are

the same as the ultrafilters containing at least one P<. Hence the family

FiVJ{a} is incompatible (otherwise there would exist an ultrafilter contain-

ing both P and a), and, in each Fi, there exists b¡ such that öo< = co. The

ultrafilters containing at least one bi cannot contain a, and because the condi-

tion of containing o¿ is weaker than the condition of containing P¿, the ultra-

filters not containing a must be the same as the ultrafilters containing at

least one &,-. Therefore :

Proposition 2. A necessary and sufficient condition for Xf to be finer than

Xo (and therefore identical with it) is that, for every aEE, there exists a finite

number of elements bi, ■ ■ ■ , bn of E such that obi = co for every i, and that every

ultrafilter in E contains either a, or one of the &¿.

If E is complemented the family {a'} fulfills the requirement of Proposi-

tion 2 (Theorem IV, §3). Hence:

Proposition 3. For a complemented directed set, the topologies Xn and Xf

of its set of ultrafilters are the same.
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Separation axioms. (1) Since two distinct ultrafilters U and V are incom-

patible, there exist aEU and bEV such that ab = co. Hence ß0 and ß& are

two disjoint open sets (in Xo) containing U and V:

Proposition 4. Xo satisfies the Hausdorff separation axiom (T2).

(2)   U being an ultrafilter, ß„ is closed in Xf'-

Proposition 5. Xf satisfies the Frechet separation axiom (Ti).

Remarks. The fact that Xf satisfies the Hausdorff axiom does not imply

that E is complemented or disjunctive. (Take for E a simply ordered set.)

Nor does it imply that Xn=XF~- one sees easily [Wa] that if 5 is a compact

space the space (ßw, Xf), ßw being the set of ultrafilters of the directed set

j5(5) of closed sets in 5, is homeomorphic with 5, hence a Hausdorff space;

but the closed sets of 5 have, as images in Çlw, the basic open sets for Xn, and

Xn is therefore discrete.

Compactness.

Theorem VIII. Xf satisfies the Lebesgue covering axiom.

We shall consider this axiom in its dual form: every family i> of closed

sets 55« °f (ß, 2>) with the finite intersection property has a nonempty inter-

section. Let "F be an ultrafilter over ß containing the compatible family 3>.

Each g« is a finite union of basic closed sets ÇlF:

g« = Of«, U • ■ • U QFan.

Hence, since rj«G^, ^ contains some ßj?oj(it) *■ ßpa for each a (Theorem V,

§3) ; and these ßj?a have the finite intersection property.

If n„ßpa = 0, no ultrafilter contains all the filters Fa; the family U„P« is

incompatible, and there exists a finite number of elements aiGPai, •••,«,

EFan such that ava2 • • • an = co. Then Fai^JFa;\J •• • • WP„n is incompatible,

in contradiction to the assumption that C\"=l ßfai. is nonempty and contains at

least one ultrafilter.

Remarks. If Xu=Xf the space of ultrafilters is compact.

In this case every open set contains a basic ß„ which is open and closed,

and the space ß is totally disconnected. This is, in particular, the case when

E is complemented.

7. Spaces of maximal ideals. We consider a commutative ring A, with a

unit element. By Krull's theorem every proper.ideal a is contained in a

maximal ideal. Let ß be the set of all maximal ideals of A ; we denote by ß„

the set of all maximal ideals containing a, by ß0 the set of all maximal ideals

containing the ideal a. We define on ß the two following topologies:

Xn'- The sets ß0 are taken as a subbase for open sets.

Xf'- The sets ßa are taken as a subbase for closed sets.

Description of the open sets and of the closed sets in Xn and Xf-
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(1) For Xn the sets ßa form a subbase for open sets.

(2) If the family (aa) of elements of A generates the ideal a, it is clear

that naß„2= ß0. Hence the closed sets for Xf are finite unions ßaiW • • • U ßan.

Every maximal ideal belonging to this union contains 0 = 0].^ ■ ■ ■ C\an.

Suppose conversely that a maximal ideal M contains a but does not con-

tain any a<; then A=m-\-ai, 1=wî,-|-o;, miEM, o¡£a¡.

By multiplication l=ai ■ • • an-\-m, mEm and m-|-a = .4, which contra-

dicts the assumption a Cm.

Hence üa¡^J ■ • ■ ̂ Jß0„= ß0in • ■ ■ Ha», and the only closed sets in Xf

are the sets ß0.

Comparison between Xn and Xf- (1) Given any aEA, consideration of the

family ba of all elements of A such that the ideal (a, ba) is the whole ring

proves, as above, that: Xn is finer than Xf-

(2) Consider now a closed set ß* = ß — ß„ of the subbase for Xn, and let us

see under what conditions it is a closed set for Xf- There must exist an ideal

b such that ß*= ß(, This implies that (a)+b = A, hence there exist bEi> and

xEA such that xa + b = I. The maximal ideals containing b cannot contain a.

Since  ßOßb, we can write the condition Q* = Qb, or:

A necessary and sufficient condition that Xo = Xf is that, for every aEA,

there exists bEA such that the maximal ideals not containing a are the same as

the maximal ideals containing b.

In some respect & is a "complement of a." This condition may be written

also:

(a) + (b) =A,

(a)C\(b) is contained in the intersection of all maximal ideals, the radical

[hi
In other words :

A necessary and sufficient condition that Xo = Xf is that the factor ring of A

by its radical be a regular ring [VN].

Separation axioms. (1) Xf satisfies the axiom Tj..

This is obvious. The example of the ring of integers (where the only non-

trivial closed sets are the finite ones) shows that (ß, Xf) is not always a

Hausdorff space.

(2) Given two distinct maximal ideals a and b, u+ b =A ; hence there exist

aEa. and bEh such that a + b = 1. ßa and ßb are two disjoint open set in Xn

containing a and b: Hence:

( ß, Xn) is a Hausdorff space.

Compactness. Xf satisfies the Lebesgue covering axiom.

Let {ßn<r} be a family of closed sets for Xf with the finite intersection

property. This means that no finite family of ideals (uai) generates the whole

ring. Hence the ideal generated by the whole family (aa) cannot contain 1,

and is contained in some maximal ideal. Hence:
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flAa * 0. Q.E.D.

Remark. If Xo=Xf (for example if A is a commutative regular ring

or, in particular a boolean ring), the space of maximal ideals is compact. For

a boolean ring there is a natural isomorphism between the space of ultra-

filters and the space of maxmal ideals. The boolean rings form the link

between §§6 and 7.

Chapter III

8. Compactification of uniform spaces. Given a topological space (5, X)

we can consider several directed sets associated with it: the set of all sub-

sets, the set of all closed sets, or open sets, or open-closed sets. The filters

and ultrafilters in these directed sets will be called filters, closed filters, open

filters, open-closed filters. Let us review the associated spaces of ultrafilters.

(1) Space of open-closed ultrafilters ßs, or Stone's space [S]—ßs, is

compact since its directed set is complemented. If every point of 5 has a

base of neighborhoods composed of open-closed sets, 5 is homeomorphic

with an everywhere dense subset of ß«. This proves, without real numbers,

that 5 is a uniformizable space.

(2) Space of closed ultrafilters ß^, or Wallman's space [Wa]. Its directed

set is not complemented, and, in general, Xo^Xf-

Xo, totally disconnected, is not very interesting: if a closed ultrafilter con-

verges to a point xG5, x must belong to every set of the ultrafilter, which

must be the principal ultrafilter U\a); this gives a natural correspondence (p

between 5 (if 5 is a Pi space, of course) and a subset of ß^; but, with (Qw, Xo)

the image of a closed set of 5 is an open set in <p(S), and <p(S) is a discrete

space.

With the topology Xf, S and 4>(S) are homeomorphic. The main ques-

tion is to see under what condition (&w, Xf) is a Hausdorff space, and there-

fore a compact space. It was settled by Wallman who proved the following

elegant result: a necessary and sufficient condition for (Qw, Xf) to be com-

pact is that (5, X) be a normal space. This shows, again without real num-

bers, that every normal space is uniformizable.

(3) Space of ultrafilters ß. Since its directed set is complemented, Xo = Xf,

and ß is compact. It is obtained by completing the set 5, considered as a dis-

crete space, with respect to the uniform structure of finite partitions [B].

Since there is nothing in ß which reflects the given topology X of 5, ß cannot

be used for topological purposes without preparation.

If 5 is not discrete there is no natural one-to-one correspondence between

5 and a subset of ß : in fact there is in general more than one ultrafilter con-

verging to a point xG5. We shall have to identify these ultrafilters converging

to x, and put 5 in one-to-one correspondence with a subset of an identifica-

tion space of ß; of course we shall try to find an identification space which

is Hausdorff. In this case 5 will be homeomorphic with a dense subset of a
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compact space, hence a Hausdorff uniformizable space. We must therefore

suppose that the topology X of 5 is compatible with a uniform structure @.

We shall operate only with symmetric surroundings (F=F~1).

Envelope of a filter—equivalent filters. Let g be a filter over 5. We call

envelope of g and denote by g* the filter having as base the family of all

sets V(A), FG@, ^4Gg. It is clear that:

g** = g*       (if W2 E V, W(W(A)) C V(A)).

If gD®, g*D®*.
If g converges to x, its envelope is the filter 23(x) of neighborhoods of x.

Two filters g and ® are called equivalent if they have the same envelope.

Notice that, if g and ® are Cauchy filters, this equivalence coincides with the

equivalence used in the completion theorem  [B].

If SO®* and ®Dg*, then g*D®** = ®* and @*Dg** = g*, hence g* = ®*

and g and © are equivalent.

We suppose now that © is an ultrafilter, and that gD®*. If ®I[)g*,

® and g* are incompatible (® being an ultrafilter). Hence there exists A Gg,

PG® and FG© such that BC\V(A)=0. But this implies V(B)C\A=0
(since F is supposed to be symmetric), in contradiction with gZ)®*. Hence

®Dg*, and g and ® are equivalent.

The identification space S. If, in the space of ultrafilters ß, we identify

equivalent ultrafilters, we obtain an identification space 5". We denote by (p

the natural mapping of ß onto 5^.

5~" is a compact space. In ß every closed set is a set ßg of all ultrafilters

finer than a given filter g. We shall prove that the saturated set of ßg is the

set ßg*, hence a closed set, which proves that 5 is compact (§4).

(1) If UDg and if 23 is equivalent to U, 23D23*=U*Dg*.
(2) Let 23Z)g*. We seek an ultrafilter UDg equivalent to 23. For every

■<4Gg, every symmetric FG©, and every PG23, BC~\V(A)?i0, since the

filters 23 and g* are compatible. Hence V(B)C\Ají0, which expresses the

fact that 23* and g are compatible. Let U be an ultrafilter finer than 23*

and g. Since UD23* and since 23 is an ultrafilter, It and 23 are equivalent.

Q.E.D.
Imbedding of S in S~'. We have noticed before that the set of all ultra-

filters converging to a given point xES is an equivalence class x' ES~^. This

gives us a natural correspondence between 5 and a subset 5" of 5".

Every open set of ß, and, in particular, every saturated open set, con-

tains an Üa, which contains a convergent ultrafilter. Hence 5' is dense in 5^.

The trace on 5' of the closed set </>(ßg*) of 5 is obviously the image of the

closure of the filter g* over 5 (that is, the set of all limit points of ultra-

filters finer than g*). Conversely every closed set .4C5, being the closure of

the filter g* generated by the V(A) (FG©) which is an envelope, has as
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image in 5- the closed set 5'P\c6(ßg*). That shows that the correspondence

between 5 and 5' is a homeomorphism. Therefore:

Theorem IX. Every Hausdorff uniformizable space can be imbedded in a

compact space.

Remark. Let 5 be any Hausdorff space, ßc the set of all convergent ultra-

filters over 5 with the topology induced by that of ß. Identifying the ultra-

filters converging to the same point we obtain a one-to-one mapping \p of 5

onto an identification space T of ßc

A closed set of ultrafilters in ßc is the set of all convergent ultrafilters

containing a given filter g; hence the inverse image by \p of any closed set A

of T (A corresponds to a saturated closed set of ßc) is the closure of a certain

filter g, hence a closed set.

Therefore \p is continuous.

If \[/ is bicontinuous, the image by \p of a closed set A in 5 is closed in T.

In other words, the set of all convergent ultrafilters with limit in A is a set

ßc/^ßg. But the intersection of all these ultrafilters is the filter 23(^4) of

neighborhoods of A; hence "\p is bicontinuous" means that, if A is closed, the

closure of 23(.4) is A itself; in other words 5 is a regular space.

Comparison between the uniform structures of S and 5'. The unique uni-

form structure of the compact space 5", defined by the graphs of the finite

open coverings, induces on 5' (and therefore on 5) a new uniform structure

©*: ©* is precompact and compatible with the topology of 5. We shall

compare © and @*.

Proposition 6. ©* is coarser than ©.

By taking complements, there corresponds to every finite open covering of

5" a finite family (Bi) of closed sets with empty intersection. Each P¿ is the

set of all envelopes of ultrafilters containing a given envelope g*. The fact

that n,Pi = 0 means that the family g*U ■ • ■ Wg* is incompatible. Denot-

ing by Ai the closure of the filter g¿ in 5, that means that there exists a sur-

rounding FG© such that

(i) v(Ai)r\---r\v(An) -0.

If we identify 5 and 5' we notice that Ai = BiC\S. Hence a system of

generators of the filter ©* is composed of the graphs

i7-.u?.1(ir<x£/<)

where the .4¡ = 5— Ui are closed sets satisfying (1).

Suppose that the F of the condition (1) is a symmetric surrounding. Let

(x, y) G F; since the { Ui} form a covering of 5, we may suppose that xG Ui.

Let Í7,-, • • • Ui be all the sets Uj to which x belongs; if y belongs to none of

them, y belongs to all the sets A^, • • •, Aiq; hence xG V(Ai/)(~\ ■ ■ • r~\V(Ain).
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By condition (1) there exists another index j such that xE Y(A,) ; a fortiori

xEAj, xEUj-, a contradiction. Hence y belongs to some U,k, and (x, y)EU;

therefore FC U and the proposition is proved.

Corollary. If ©i is finer than ©2 and compatible with the same topology,

©* is finer than ©f.

In fact condition (1) is easier to fulfill with ©i then with ©2.

Relation with the classical completion of (5, ©). If © = ©*, © is a precom-

pact uniform structure. In order to prove the converse we show first that the

space 5^, the completion of 5 with respect to the uniform structure ©, is

homeomorphic with a subspace of the compact space S~^ (of course this is

only a topological homeomorphism, and not a uniform structural iso-

morphism).

Proposition 7. 5^ *i homeomorphic with a subspace of 5".

If the ultrafilter U is a Cauchy filter, its envelope U* is also, and therefore

all the ultrafilters equivalent to 11. If we notice that, for Cauchy filters,

equivalence by envelopes is the same as the classical equivalence (used in

the completion theorem), we get a natural one-to-one correspondence be-

tween 5" and the subset T of 5"" which is the image of the set of Cauchy

ultrafilters. We identify 5^~ and T considered as point sets. We recall that

the uniform structure of 5^ is defined by the surroundings V: the relation

"(Ï, §)) G V" for Cauchy filters ï and g) meaning "Ï and g) have in common a

set DC5 small of order F."

Let $ ET be closed in T; $ is the set of all envelopes of Cauchy ultra-

filters U* containing a given envelope g*. Let X* be an envelope of a Cauchy

ultrafilter adherent to $> in the topology of 5". Let B be any element of

g, 1FG© any surrounding, and FG© a surrounding such that, V2EW, — ï*

being in the closure of <I>, there exists U*G$ such that (ï*, U*) G F: in other

words there exists D small of order F, DE^*i^U*,-DiMz(B) ¿¿0 since

U*Dg*; hence DEV(B), and W(B)EV. That means that I* is finer than g*,

and therefore %*E$- Therefore $ is closed in ¿p",

Conversely let ^ be closed in 5^, g be the intersection of the filters Vl*

elements of *&, g* the envelope of g. Let IFG© be any surrounding, FG©

symmetric and such that V3EW. Let X* be any envelope of a Cauchy

ultrafilter finer than g*. We pick in ï* a set A small of order V, and in each

U* a set Da small of order V. D = \JaDa belongs to g; hence F(P>)Gg*. Since

ï*Dg*, AC\V(D) 7^0 (V being symmetric) it follows that V(A)r\D t¿0.

Hence there exists an index a such that V(A)C\Da ¿¿0; the set V(A)^JDa

is therefore small of order VsEW, and belongs to Ï* and U*. This means that,

whatever IFG©, there exist a U^CF such that (ï*, U*) EW; in other words

3f* is in the closure of ^ in 5^, and ï*G^r. Therefore ^ is closed in T. Q.E.D.
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Now if © is precompact, every ultrafilter is a Cauchy filter, hence S^

can be identified with 5"". From the uniqueness of the uniform structure

of the compact space 5", we deduce that © = ©*. Therefore:

Proposition 8. © = ©* characterizes the precompact uniform structures.

Corollary 1. ©** = ©*.

Corollary 2. A necessary and sufficient condition for a uniform space to

be precompact is that every ultrafilter be a Cauchy filter.

The necessity is clear (every ultrafilter over a compact space being con-

vergent). The sufficiency is also clear (it means that 5^ = 5^).

Remark. It may happen that © is very simple but ©* very complicated ;

this is the case when © is the additive uniform structure of the real line.

Then 5"" is neither the circle, nor the closed interval, but a space almost as

complicated as the Cech compactification of the real line.

9. Relations with existing compactifications, characterization of a uni-

formizable spaces. Let (5, X) be a topological space. We consider the class

of all continuous mappings of (5, X) onto all uniform spaces. Since the cardinal

number of any image of 5 is smaller than the cardinal number of 5, the pos-

sible image spaces of 5 which are uniform form a set, and therefore so do all

possible continuous mappings of (5, X) onto them. Therefore there is no

logical difficulty in considering the set of all continuous mappings of (5, X)

onto all uniform spaces. We denote this set by 9Jc= {f«}.

Let fa be a continuous mapping of (5, X) onto the uniform space (Sá, Xá )

and ©«' the uniform structure of Sá. We denote by ©a = fä1(@«) the inverse

image of ©„' ; ©a is a uniform structure on 5. Since fa is continuous the topol-

ogy Xa deduced from ©„ is coarser than X.

Let U denote the l.u.b. of all the uniform structures @„; II is called the

universal uniform structure of the space (5, X) ; in general the topology Xi

deduced from U is coarser than X (£i = l.u.b.„ Xa).

But, if (5, X) is uniformizable, the identity mapping of 5 onto itself is in

the family {fa}, and U is finer than any uniform structure of 5 compatible

with X. Hence ïi = ï and U itself is compatible with X. Consequently:

Theorem X. For any uniformizable space (S, X) the universal uniform struc-

ture U is compatible with X and finer than any other uniform structure com-

patible with X. Every continuous mapping of (5, X) onto any uniform space is

uniformly continuous with respect to U. This last property characterizes U

among the uniform structures compatible with X.

The last statement is clear: consider the identity mapping of (5, ©) onto

(5, 11), © being different from 11 and compatible with X.

Cech uniform structure [C]. Instead of considering the whole family {fa}

of continuous mappings of (5, X) onto uniform spaces, we shall consider the
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subfamily {f^} of continuous mappings of (5, X) onto totally bounded uni-

form spaces. The corresponding uniform structures ©^ are totally bounded

(as inverse images of totally bounded ones), and ¡£(©0) is coarser than X.

We denote by (S and call the Cech uniform structure of the topological space

(5, X) the l.u.b. of the ©p. S is clearly totally bounded; the topology £((£) is

in general coarser than X-

But if (5, X) is Hausdorff and uniformizable, it has at least one precom-

pact uniform structure (some ©*) compatible with X. By considering the

identity mapping of 5 onto itself, we see that this ©* is coarser than S. Hence

X = X(&). Consequently:

Theorem XI. For any Hausdorff unformizable space (S, X) the Cech uni-

form structure 6 is compatible with X, precompact, and finer than any other

uniform structure compatible with X. Every continuous mapping of (S, X) onto

any totally bounded uniform space is uniformly continuous with respect to S.

This last property characterizes S among the precompact uniform structures

compatible with S.

Since the correspondence ©—>©* is monotonie, we see immediately that:

g = U*.

The completion of 5 with respect to ß is a compact space called the Cech

compactification of 5 and commonly denoted by ß(S).

Corollary (Cech). ß(S) is the greatest compact extension of S.

This means that every compact space T in which 5 is everywhere dense

is an identification space of ß(S).

Let f be the homeomorphism between 5 and an everywhere dense subset

5i of T. If we put the Cech structure on 5 and on 5i, the precompact struc-

ture induced by T, f is uniformly continuous, and hence can be extended to

the completion ß(S). \(ß(S)) is compact, contains S\\ hence \(ß(S)) = T.

Since the continuous image of a closed set in ß(S) is compact, it is closed

in T and T has the identification topology. One can say that T is obtained by

identifying points in ß(S)—S.

Cech structure and Wallman structure of a normal space S [C] [A]. Let 5

be a normal space. The Wallman compactification consists in imbedding 5 in

the space ( Q,w, Xf) of closed ultrafilters over 5. A closed set in tlw is the set of

all closed ultrafilters finer than some closed filter of a finite family (ga). Let

g = n„g«. Every ultrafilter of the closed set is finer than g. Let conversely 11

be a closed ultrafilter finer than g. If it does not contain any g„, it is in-

compatible with all of them. Hence, for each a, there exists AaEi5a, BaE$a

such that Aar^Ba = 0. A=OaAa is in 11 since the family (Aa) is finite.

B = \JaBa is in g. But then BC\A=0, which contradicts %QU. Notice that

this fact, namely that every closed set of (Qw, Xf) is a set ßg, depends only on
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the fact that the directed set of closed sets in 5 is a distributive lattice.

Notice also that the trace of ßg on 5 is the closure of the filter/ in 5 (or the

intersection of all the closed sets in g).

The uniform structure of the Wallman space ßjy is defined by the graphs

of the finite open coverings, or equivalently by the finite families of closed

sets with empty intersection. These are defined by the finite families of closed

filters (gt) such that U¿g¿ is incompatible. Let Ai be the closure of g¿ in 5.

The trace on 5 of the finite open covering of Slw determined by the g¿ is clearly

composed of the open sets Ui = S—Ai, which form a covering of 5.

Conversely every finite open covering { Ui} of 5 is obtained in this way.

(Take Ai = S— Ui, for g< the principal closed filter generated by At; since

n,-v4¿ = 0, the filters gi are incompatible. Hence flißgi = 0, and the ßw — ßg,-

form a finite open covering of Qw-) Therefore:

Proposition 9. The Wallman structure 2B of a normal space S is defined

by the graphs of the finite open coverings of S.

Remark. The fact that the graphs of the finite open coverings form a

base for a uniform structure characterizes normal spaces: given 2 disjoint

closed sets A and B, their complements form a finite open covering. Let

V=(S-A)X(S-A)\J(S-B)X(S-B) be its graph. Suppose there exists a

symmetric surrounding TF such that W2EV; then V(A) =5 — BZ)W2(A), so

that BC\W2(A)=0, and hence W(A)C\W(B) = 0; and this implies

normality.

A proof of the converse, which does not use Wallman's results, is the

following:

Let 5 be a normal space, F the graph of the binary open covering {A, B}.

Let .4i and Bx be two closed sets such that AiEA, PiCP, A¿JBi = S. It is
clear that the three open sets {S—Ai, 5 —Pi, A US} form a covering of 5. Let

TF be the graph. One checks easily that IF2C V. Noticing now that the graph

F of any finite open covering is the intersection of a finite number

{ Fi, • • • , F„| of graphs of binary open coverings, we deduce from the

existence for each F,- of a Wi with TF?C Y i that TF= WiC\ ■ • ■ (~\Wn is such

that IF2CF. Consequently the filter generated by the graphs of the finite

open coverings of a normal space 5 satisfies the axioms for a uniform struc-

ture; and this uniform structure is clearly compatible with the topology of 5.

From Proposition 9 and the proof of Proposition 7, we deduce that every

precompact uniform structure on 5 is defined by the graphs of the finite

open coverings { Ui} which satisfy some condition (condition (1) of the proof

of Proposition 9). Hence the Wallman structure is finer than all of them.

Consequently :

Theorem XII. For a normal space the Wallman structure SB and the Cech

structure £ are identical.
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Corollary. If A is closed in the normal space S, the sets V(A) (FG2B)

form a base of neighborhoods of A.

That is: every open set B containing A contains some V(A). In fact the

Wallman surrounding V=(BXB)VJ(S-A)X(S-A) works: V(A)=B.

Remark. The same is true, a fortiori, with the universal uniform structure

of 5.
Remarks on the Cech uniform structure. (1) The Cech structure of a product

of uniformizable spaces is, in general, different from the product of the Cech

structures of its factors.

In fact, if they were identical, one could use the Cech structure of a topo-

logical group G in order to complete it: by Theorem XI the continuous map-

ping (x, y)^>xy~x would be uniformly continuous, hence could be extended to

the completion. Thus every topological group G wrould be a subgroup of a

compact group G~~. This is clearly false : the unique uniform structure of G^

is invariant by translations, hence also the precompact uniform structure in-

duced by it on G. Any infinite discrete group or the additive group of real

numbers gives a counter example.

(2) The trace of the Cech uniform structure of 5 on a subspace A is not

always the Cech structure of A : take A infinite and discrete, 5 the Alexan-

droff compactification (by one point "at infinity"). The induced structure

is defined by the graphs of the finite partitions |^4i} of A, one of the Ai being

the complement of a finite subset. The Cech structure on A is defined by the

graphs of all finite partitions, without restriction. One could have noticed

also that the Cech compactification of A is the space of all ultrafilters over ^4,

and not 5.

The Cech structure of A and the induced structure are identical in the case

where A is a retract of 5 (in particular if A is open-closed in 5, or if A is a

factor when 5 is a product space). In fact let r be the retraction. For a con-

tinuous mapping/ of A in a precompact space P, the composite mapping maps

continuously 5 into P, and is therefore uniformly continuous for the Cech

structure of 5. Its contraction to A, which is f, is therefore uniformly continu-

ous for the induced structure, and this property, holding for all f, char-

acterizes the Cech structure of A (Theorem XI).

By Theorem X the same is true for the universal uniform structures.

The Cech structure of A and the structure on A induced by the Cech

structure of 5 are also equal when 5 is normal and A closed in 5: this result

is clear if one uses the Wallman form of the Cech structure. Cech has proved

that, if this equality holds for every closed subset of 5, then 5 is normal [C].

I opological characterization of uniformizable spaces. We consider again a

topological space (5, X), and now the class of all continuous mappings of

(5, X) into all compact spaces. For such a mapping f the cardinal number of

f(5) is at most the cardinal number of 5; and the cardinal number of the com-

pact space, closure of f(5), is at most 22<!ar     (the cardinal of the set of ultra-
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filters over f(5) [P]). Consequently we can restrict ourselves to compact

spaces with bounded cardinal number. The continuous mappings of (5, X)

into all compact spaces with cardinal iS 22 car form a set j fT}. Let (Ty, Xy' ) be

the compact space corresponding to the mapping fT; since fT is continuous, the

inverse image topology ^^(X-l) = Xy is coarser than X. Let ïo = l.u.b.7 Xy. In

general Xn is coarser than X. Each Xy is a uniformizable topology. If ©7

denotes the uniform structure of the compact space (Ty, Xy'), Xy =£(©•/)•

Passing to the inverse image we define @T = fT"1(©7 ), and it is clear that

Xy = X(<£>y). In other words Xy is uniformizable. Consequently the topology

Xo is deduced from the Cech uniform structure S of (5, X). Note that S and

Xo may very well be non-separated.

If (5, X) is uniformizable and separated, its injection into any one of its

compactifications is a mapping f7. Hence X is among the Xy, and Xo=X.

Consequently:

Theorem XIII. A necessary and sufficient condition for a topological space

(5, X) to be uniformizable Hausdorff is that the topology Xo defined by the

mappings of (S, X) into compact spaces be identical with X.

Remark. Using the fact that every compact space can be imbedded in

some "cube," we shall prove that the condition of the preceding theorem is

equivalent to the complete regularity of (5, X). In fact, using products of com-

pact spaces if necessary, the condition of Theorem XIII means: "given any

closed set A in (5, X) there exists a compact space T, a closed subset B of T,

and a continuous mapping f of 5 into T such that A =\~l(B)."

We may take for Pa cube. Let xES — A, then \(x)EB. T is the product

space TJ„J« of a family (Ia) of intervals Ia= [O, l]. Since B is closed, there

exists a basic neighborhood U<,F„ of f(x) which does not intersect B. All

the Va are equal to Ia, except a finite number of them { Va„ • • • , Fa„}, by

definition of the product space topology. Let it denote the projection of T onto

the partial product P= VaiX • • • X F«n. By construction ir(f(x)) does not be-

long to 7r(P). Because ir(B) is compact, and hence closed in P, the Euclidean

distance (in P) from ir(f(x)) to ir(B) is not zero. We define now for every y ES

the following continuous bounded real-valued function: g(y) = distance^p

(x(f(y), 7r(P>)) ; g is zero on A, different from zero at x. Hence 5 is completely

regular.

Conversely let 5 be completely regular. Given a closed set A in 5, we

consider, for every xES—A, a separating real-valued continuous function

f.:f.W)-{0},M*)-l.
Consider also a family Ix of unit intervals, indexed by the set 5—.4. Let T

be the product space JJ^x^s-a.Ix- The mapping f of 5 into T defined by f(y)

= (fr(y)) is continuous, and A is the inverse image under f of the point of T

with all coordinates equal to zero. Hence the equivalence is proved.

10. Characterizations of locally compact spaces and of normal sequentially
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compact spaces. One can also ask the question "Do there exist uniformizable

spaces other than the compact ones which are capable of only one uniform

structure?" The answer is yes [D]. The examples given by Dieudonné

issue from the transfinite line; they are locally compact and sequentially

compact(17). We shall see that local compactness is always a necessary con-

dition, and sequential compactness also if one deals with normal spaces (ls).

Locally compact spaces. A locally compact space 5, as a subspace of its

Alexandroff compactification 5, is uniformizable. We denote by 21 and call the

Alexandroff structure of 5 the uniform structure induced on 5 by the unique

one of 5. SI is precompact, and can clearly be defined by the graphs of the

finite open coverings {^40,^4i, • • •, An} of 5 whereto is the complement of a

compact set and the other A i have compact closures in 5.

The locally compact spaces are characterized by the following property:

Theorem XIV. The existence of a coarsest uniform structure 21 in the set

of all uniform structures compatible with the topology of a uniformizable (non-

compact) space S characterizes locally compact spaces. 21 is then the Alexandroff

structure of 5.

(1) Let 5 be locally compact, and 21 its Alexandroff structure. Let © be

any uniform structure compatible with the topology of 5. We shall prove that

© is finer than 21. Since ©D©*, it is sufficient to prove it fora precompact @.

Let 5^ be the (compact) completion of 5 with respect to ©. Every point

xG5 has a compact neighborhood Vx in 5; hence Fp is the same as Vx and,

by the completion theorem, VÇ~ is a neighborhood of x in S^~. Consequently

5, being a neighborhood of all its points in 5, is open in 5"\ We identify in

5^" all the points of S" — S; since the saturated set of any closed set of 5" is

closed, the identification space F is compact.

Let có be the canonical mapping of 5" onto P; (p clearly maps 5 homeo-

morphically onto </>(5)• Hence F is the Alexandroff compactification of 5 (since

the compactification of a locally compact space by adjunction of one point is

unique). The continuous mapping c/> of the compact space 5^ onto P being

uniformly continuous, its restriction to 5 is also. But this restriction is the

identity mapping of the uniform space (5, ©) onto the uniform space (5, 21).

That means ©D2I. Q.E.D.
(2) We now suppose that the uniformizable space 5 is capable of a coarsest

uniform structure 23. Since 23323*, 23 = 23* and 23 is precompact. Let S~~ be

the (compact) completion of 5 with respect to 23. If 5^ — 5 contains at least

two points a and b, we consider the identification space E of 5^ obtained in

(17) For the definition of this term, see below.

(ls) These conditions are not sufficient: if E denotes the space of all countable ordinals with

the order topology, both E and EX.E are locally compact and sequentially compact. E is ca-

pable of only one uniform structure, but not EXE which can be compactified in at least two

different ways (the Alexandroff process, and by EoXEo, E¡¡ being the Alexandroff compactifica-

tion of E).
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identifying a and b. The saturated set of any closed set of 5^ being closed, E

is compact. Let c6 be the canonical mapping of 5^ onto E; </> maps 5 homeo-

morphically onto c6(5). Let © be the uniform structure of 5 deduced from

the one of c6(5) induced on cp(S) by the unique uniform structure of E. © and

23 are distinct since the completions 5^ and E are distinct. On the other hand

(f> is uniformly continuous, as continuous mapping from a compact space.

Hence the restriction of c6 to 5 is also uniformly continuous, and that means that

23 is finer than ©. Since 23 5^©, we get a contradiction. Consequently S^ — S

contains only one point (it is not empty, since we have excluded the trivial

case where 5 is compact). Now 5, as an open set of the compact space 5",

is locally compact. And 23 is clearly its Alexandroff compactification. Theorem

XIII is thus proved.

Remark. Another proof of the first part is the following. Let 21 be the

Alexandroff structure of the locally compact space 5, © any uniform structure

of 5 compatible with its topology. We are given a basic surrounding ¿7G2I

defined by the open covering {AoAi • • • An}, Ai having compact closure for

i^O. Let B be the complement of Ao; PCU"_i Ai, hence B is compact, and

contained in the open set U"=1 A{ = A.

For every xEB, there exists a surrounding FXG© such that Vx(x)EA.

Yet Wx be a symmetric surrounding of © such that WlEVx. For any

yEWx(x), Wx(y)EWl(x)EVx(x)EA.
One can cover B by a finite number of neighborhoods Wx(x), say

WXl(xi), • • ■ , Wx (xq). Let W' be the surrounding H^jPFx.G©; clearly

W'(a)EA for every aEB; in other terms W'(B)EA. Because it is a

symmetric surrounding, W'E(AXA)*U(AoXAo).

Now let us operate in the compact set B. The trace on BXB of the sur-

rounding 11G2Í is a surrounding of the unique uniform structure of B, and is

therefore also induced on B by a surrounding W" of the uniform structure @.

The surrounding W=W"C\W' of © is clearly contained in U. This proves

again that © is finer than 21.

Sequentially compact spaces. We call sequentially compact a Hausdorff

space in which every sequence has a cluster point. By reasoning entirely

similar to that establishing the equivalence of the diverse forms of the com-

pactness axiom, one proves that, for a Hausdorff space, sequential compact-

ness is equivalent to each of the following:

(1) Every filter with countable base has a cluster point.

(2) Every decreasing sequence of closed sets has a nonempty intersec-

tion.

(3) From every countable open covering one can extract a finite covering.

(4) Every closed discrete subspace is finite.

One proves readily that :

(1) Every closed subset of a sequentially compact space is sequentially

compact (but not conversely).
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(2) Any separable, or any metrizable, sequentially compact space is

compact.

Examples of nonregular sequentially compact spaces are known (19).

Theorem XV. All the uniform structures compatible with the topology of a

uniformizable sequentially compact space are precompact. Conversely if all the

uniform structures compatible with the topology of a normal space S are precom-

pact, S is sequentially compact.

(1) Let 5 be sequentially compact, and © a uniform structure of 5. If

@ were not precompact, there would exist a surrounding FG© such that no

finite union of sets small of order V is the entire space 5. Let WE® be sym-

metric and such that W2EV. We form the following sequence of points: Xi

arbitrary, x2 in the complement of IF(xi), • • • , x„+i in the complement of

U"_1IF(xy) (this complement is nonempty, since every W(xf) is small of order

F). Since for p^q, (xp, xq)^W, the sequence |x„} cannot have any cluster

point in 5; a contradiction. Hence © is precompact.

(2) Let 5 be normal but nonsequentially compact. Then there exists a

closed, countable, discrete subspace A = {an}. On A we define a real-valued

function f by \(a„) =n. Because A is discrete, f is continuous. By Tietze's ex-

tension theorem we can extend f to a continuous real-valued function g de-

fined on 5. Q is uniformly continuous for the universal uniform structure 11

of 5. Hence so is its restriction f for the structure induced on A. But the con-

dition |f(ap)— \(aq)\ <l/2 can only be fulfilled for ar — aq. Hence the diagonal

of A XA is a surrounding of the induced structure. This one is consequently

not precompact (A is an infinite set). Hence @ cannot be precompact.

Theorem XIV is proved.

Remark. If one wants the uniformizable space 5 to be capable of only one

uniform structure ©, Theorem XIII shows that 5 must be locally compact.

If one requires also normality, the fact that © = ©* is precompact shows, by

Theorem XIV, that 5 has to be sequentially compact.
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