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I. Introduction

Given two topological spaces X and Y, let us consider the totality of the

mappings (that is, continous transformations) /: X—*Y. These mappings are

divided into homotopy classes, those in each class being homotopic to each

other. The problem of determining these classes by means of known invari-

ants of X and Y is of great importance in modern topology.

For the most interesting special case where Y=S", an »-sphere, Hopfs

brilliant results and their various generalizations solve the problem com-

pletely, if X is a compact ( = bicompact) Hausdorff space with(1) dim Xsi«.

As newly formulated by Alexandroff [l, p. 17 ](2), this theorem may be stated

as follows:

Hopf classification theorem. The homotopy classes of the mappings of a

compact Hausdorff space X with dim JVsi» into an n-sphere Sn are in a (1-1)-

correspondence with the elements of the n-dimensional Cech cohomology group

H"iX) with integer coefficients. The correspondence is determined by the opera-

tion f—f*isn), where sn is a generator of the cohomology group H"iSn) with

integer coefficients and f: HniSn)^H"iX) is the homomorphism induced by the

mapping f: X—>Sn.

On the other hand, in the case where X is a geometric complex, finite or

infinite, and Y a topological space, Eilenberg [9] gave some far reaching

general theorems on the extension and homotopy of these mappings, which

include the original Hopf theorems as mere particular cases. These beautiful

theorems of Eilenberg can not be generalized to the case where X is a topo-

logical space, unless some suitable restrictions are to be put either on X or on

Y. A glance at the Hopf classification theorem given above will justify our

preference of restriction to Y instead of X.

The object of the present work is to build up a generalization of Eilen-

berg's theory under the assumptions that X he a normal space [14, p. 26]

and that F be an absolute neighborhood retract (ANR) [15, p. 58], which

includes the generalized Hopf theorems as special cases. Owing to the Cech
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(') For a given topological space X, by dim X £» we mean that any finite open covering of

X has a refinement whose nerve is of dimension not exceeding n.

(2) Numbers in brackets refer to the bibliography at the end of the paper.
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cohomology theory, the undesirable condition of compactness has to be as-

sumed in the most of the paper; however, it can clearly be removed by using

a cohomology theory based on more general coverings as Dowker [6] did.

The general trend of the recent years is that most of the topologists prefer

cohomology to homology. This is probably because cohomology often simpli-

fies both the statement and the proof of many a topological theorem. Since

cohomology is no longer less intuitive than homology nowadays, homo-

logical interpretations of theorems termed naturally in cohomology seem to

be mere redundancies. On this account, no homology will be mentioned in the

present paper.

Preliminaries of our treatment are given in Part II. §1 gives a very brief

sketch of the Cech cohomology sequence, a knowledge of which will be needed

in the sequel. §2 presents the fundamental bridge theorems which are the

main tools of this investigation.

The general theory is developed in Part III as follows: Let X0 be a closed

set of X. The notion of «-extensibility of the mappings/: Xo—>Y is defined in

§3; and the obstruction sets Qn+1(/) of an arbitrary mapping/: X0—>Y are

introduced in §4. All of them are invariants under a homotopy; and by the

aid of them our general extension theorems are established in §5. On the

other hand, in §6 we introduce the notion of »-homotopy between two given

mappings /0, f: X—*Y; and in §7 we define their separation sets An(/0, f).

They depend only on the homotopy classes of the given mappings; and by the

aid of them our general homotopy theorems are formulated in §8. Set-

theoretic meanings of both the »-extensibility and the »-homotopy are

given in their respective sections.

Part IV contains the complete solution for the case where X is a compact

Hausdorff space and Y is an ANR satisfying 7rr( Y) = 0 for each r <« together

with some minor conditions. In this case, the characteristic element «"(/) of

a mapping /can be defined (§9); and thus a complete generalization of the

Hopf classification theorem is obtained in §11. Further, if F is compact we

introduce the basic element tn(F) of F in §12 as an analogue of the element

determined by the fundamental »-cocycle of an »-sphere Sn, which enables

us to formulate our generalized Hopf classification theorem exactly parallel

to the one given above for Y=Sn. An application of this formulation is given

in §13 to establish for compact ANR the theorems concerning homotopy

types, proved by Eilenberg [10, p. 464] only for geometric complexes.

II. Preliminaries

1. Cech cohomology sequence. In their axiomatic approach to the homol-

ogy theory, Eilenberg and Steenrod [ll] formulated the homology sequence

(called by them the natural system of the homology theory) as an axiom

which should be satisfied in all admissible homology theories. The sequence

given in this comprehensive form is a weapon far more powerful than the
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classical duality theorem of Alexander. Since no detailed exposition of the

Cech cohomology sequence has appeared in print, a brief sketch seems to be

desirable for the convenience and clearness of the applications in this paper.

Let X denote an arbitrary topological space, X0 a closed subset of X, and

X* =X — Xo its open complement. Following Lefschetz, we shall call (Xo, X*)

a dissection of X. Let G denote a discrete abelian group written additively.

A finite open covering will be simply called a covering. Let © denote the

set of all coverings of X, partially ordered by the statement a <ß if ß is a re-

finement of a [14, p. 13]. @ is a reflexive directed set [14, p. 4].

Let a= {a1} a2, • ■ • , ar} be a covering of X and let A denote the nerve of

a [14, p. 244]. The nonvoid sets of XoC\ai (i = 1, 2, • ■ ■ , r) form a covering

a0 of Xo whose nerve At¡ is a closed subcomplex of A. Let A* denote the open

complement A —A0. Let us denote by H"iA, G), HniAo, G), H"iA*, G) the

«-dimensional cohomology groups of the complexes A, Ao, A* respectively.

We shall use these notations as typical ones for the coverings a, ß, ■ ■ • of X.

Suppose <x<ß, that is, let ß be a refinement of a. Let us select for each

member of ß a member of a containing it. This gives a simplicial mapping

pßa: B-^A, called a simplicial projection. Clearly pßaiBo)(Z.Ao. AH the possible

simplicial projections pßa induce uniquely the homomorphisms of the cohom-

ology groups of A, Ao, A* into those of B, B0, -B* respectively, which will be

denoted by hag. If a<ß<y, then clearly pßapyß is a simplicial projection pya.

Hence

iH*(A,G)},        {H"(Ao,G)},        {#*(4„G)}

are direct systems of groups with haß as the homomorphisms [14, p. 57].

By the »-dimensional Cech cohomology group 2?n(X, G) of X with coeffi-

cients in G we mean the limit group of the direct system {H"iA, G)}. The

limit group of the direct system \HniA*, G)} is defined to be the »-dimen-

sional Cech cohomology group of X modulo X0 with coefficients in G, denoted

by HniX mod Xo, G). The isomorphism

H"iX0,G) «lim {H*(Ao,G)}

is obvious; but the groups HniX mod X0, G) and i?"(X*, G) need not be

isomorphic. This justifies the notations we used.

For each »ïïO there are unique homomorphisms

tt:   H"(X mod Xo, G) -> //"(X, G),

v:   H*iX,G)-+H*iXo,G),

a :    H "(Xo, G) ->• H»+\X mod X0, G)

described as follows. For each covering a of X, the projection A—+A* and

the injection .4o—>.4 induce a homomorphism ira of the cocycles of A* into

those of A and a homomorphism rja of the cocycles of A into those of A o
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[14, p. 113]. Following Whitney, we shall denote by ba the coboundary oper-

ator in A. Let ££-if"(X mod X0, G) he an arbitrary element represented by

a cocycle z" in A* for some covering a of X; then 7r(£)£ií"(X, G) is the

element represented by the cocycle 7r„(zn), which is actually zn considered as

a cocycle of A. If ££iï"(X, G) he an arbitrary element represented by a

cocycle z" in A for some covering a of X; then rj(^) £iJ"(Xo, G) is the element

represented by the cocycle naizn) of ^4o, which is actually the part of z" on

^4o- Let ^G-ff"(Xo, G) he an arbitrary element represented by a cocycle z" of

^4o for some covering a oí X; then ô(£) £iï"+1(X mod Xo, G) is the element

represented by the cocycle Sa(z") in A*.

The theorem of Cech cohomology sequence of the dissection (Xo, X*) is

stated as follows:

(1.1) Cech cohomology sequence. The homomorphisms it, -q, b form a co-

homology sequence

-'-+ HniX mod Xo, G) -^ H"iX, G) -^ #n(X0, G)

-^ II"+1iX mod Xo, G) A

which is exact in the sense that the kernel of each homomorphism coincides with

the image of the preceding.

Now let X' be another topological space, Xo' a closed set of X', and

X* = X' —X0' its open complement. Let/: X'—*X be a given mapping with

/(Xo')CXo. / induces homomorphisms of the cohomology groups HniX, G),

Hn(X0, G), HniX mod X„, G) into H*(X', G), H*(X¿, G), HniX' mod Xi, G)

respectively. All of these homomorphisms will be denoted simply by/* and

described as follows.

Let £ £iin(X mod Xo, G) be an arbitrary element represented by a cocycle zn

in A* for some covering a = {au a2, ■ ■ ■ , ar} of X. Let a' = {a/ , a2 , • • • , a/ }

denote the covering of X' which consists of the open sets

•i = t\<H) (/ = 1, 2, • • • , r).

The correspondence ai—*a< (¿ = 1, 2, • • • , r) defines a simplicial mapping

t:A'—*A such that ¿04o' ) C^4o-1 induces a homomorphism t* of the cocycles of

A* into those of A'*. Then/*(£)£ iin(X' mod X0', G) is the element repre-

sented by the cocycle ¿*(z") of A'*. The homomorphism /* for the groups

H"iX, G) and i?"(X0, G) is similarly defined.

(1.2) Induced homomorphism. The homomorphisms /* o/ i/ze cohomology

groups of X, Xo, X mod X0 ¿«¿o those of X', X0', X' mod X0', induced by the

mapping f: X'—»X toíía /(Xo')CX0, /or«? a homomorphism of the cohomology

sequence in the sense that the following conditions of commutativity are satisfied :

(i) /»» = ,r7*.

(Ü) /*! = v'f,
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(iii) f*S = ô'f*,

where ir', 77', S' denote the corresponding homomorphisms in the cohomology se-

quence of the dissection (X0', X*). Further, if g: X"—>X' with g(X0")CXo',

then we have (fg)*=g*f*-
2. Fundamental bridge theorems. Hereafter, we shall assume that (1) X

be a normal space and Xo a closed set of X, (2) F be a connected ANR (and

hence arcwise connected), (3) either X0 or F be compact. Denote by

X*=X—Xo the open complement. We shall use the typical notations of the

foregoing section and understand that the nerves of the coverings are all

geometrically realized. Without danger of ambiguity we may denote the

vertices of the geometric nerve A of a covering a= \ai, a2, • ■ ■ , ar\ still

by the symbols ax, a2, • • • , aT. The simplicial mappings of a finite geo-

metric complex into another can also be considered as mappings in the

set-theoretic meaning, linear on each simplex; and we shall so understand in

what follows.

Let a be an arbitrary covering of X. A mapping <pa: X—>A is called a

canonical mapping of a., if for each point x(EX, (paix) is contained in the

closure of the simplex <z¿0 a,-t • • • a,„ of A, where o¿0, a,-,, • ■ • , a¿n denote

the members of a containing x [15, p. 40]. According to the fundamental

mapping theorem of Lefschetz [15, p. 41 ], every covering a of X has a ca-

nonical mapping [15, p. 45]. Clearly 4>aiXo)(ZAo- It is also trivial that the

canonical mappings of a given covering a of X are homotopic to each other.

Let /: Xo—»F be a given mapping and a a covering of X. A mapping

\pa: Ao—>Y is called a bridge mapping for/, if the partial mapping ipa<po\Xo

is homotopic with/ for each canonical mapping <pa: X—>A of the covering a.

If such a bridge mapping ipa exists, a is said to be a bridge for the mapping/

(2.1) Bridge refinement theorem. For a given mapping f: X0—*Y,

any refinement ß of a bridge a is a bridge.

Proof. Let ^„: v40—>Fbe a bridge mapping for/; and <pa: X—>A, <bf. X—>B

he arbitrary canonical mappings. Choose a simplicial projection pßa: B-+A. It

remains to prove that ^pß = ipapßa\B0 is a bridge mapping for /; that is,

ipapsa<Pß\Xo is homotopic with/. It is obvious that both <baix) and ppa4>ß{x)

are contained in the closure of the simplex ai0a^ • • • a,n of A, where a¿0,

ß»i> ' " " . a¿„ denote the members of a containing x. Hence <pa and pßa(f>ß are

homotopic; and our theorem follows from the relation

f~ta<pa\X0~ll,apßa<l>ß\Xo. Q.E.D.

(2.2) Bridge existence theorem. Every mapping f: Xo—>, Y has a bridge a.

Proof. According to a theorem of Wojdyslawski [18, p. 186], Y can be

imbedded as a closed set of a convex subset Z of a separable Banach space
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W [2, p. 53]. Since F is an ANR, there exist an open set V of Z containing

Fand a retraction d: V—+Y [14, p. 40]. For each point y(EY, let S(y) denote

the greatest open spherical neighborhood of y in Z such that 5(y) C V. Let

us denote the distance function of W by p; then for each positive number

e, y¿£ F (í = 1, 2) and piyi, y2) <e implies that the radius of Siy2) is at least

equal to that of 5(y1) diminished by e.

Now let/: Xo—*Y be a given mapping. We are going to prove the existence

of a covering «o*= {a*, a*, ■ ■ ■ , a*} of Xo such that for each a¿*G«o*

(í=l, 2, • • • , r) there is a corresponding point yiG.Y with /(a!*)C5(y,).

First, let us assume the compactness of F. Then there exist a finite number

of points y\, y2, ■ ■ ■ , yr such that the open sets 5(y<) ii — 1, 2, • • • , r) cover

F. Let a*=/_1(5(y¡)n F), then a0*= {ai*, a2*, • • • , ar*j is a covering of X0

of the kind required. Second, let us assume the compactness of X0. The in-

verse images f~1iSiy)f~\Y), yÇEY, cover Xo- The compactness of X0 implies

the existence of a finite number of these, say/-1(S(y¿)P\ F) (i = l, 2, • • • , r),

already cover Xo. Set a*=/_1(5(y,)P\ F) ; it follows that the covering ao*

= [a*, a*, ■ • ■ , a*} of Xo is of the kind required. This proves our assertion.

Having given a covering a0*= {a*, a*, ■ ■ ■ , a*] described as above, we

denote for simplicity 5¿ = 5(y<). For each a¿*Gao*, choose an open set <z< of X

such that aif\Xo = a*. Set ar+i = X — X0. Then a= ¡<zi, a2, • • • , ar, ar+1) is a

covering of X with «o =oto*. We shall complete our proof by showing that a is a

bridge for/

We are going to construct a bridge mapping \pa: A0^Y. The vertices of ^4o

are also denoted by a\, a2, ■ ■ • , ar. Let Q denote the first barycentric sub-

division of A o ; then a vertex v of Q is the centroid of some simplex Oifl,^ • ■ ■ a^

of Ao- Since fiaf^CZSi^ (p = 0, 1, • • ■ , w) and the intersection of the

sets afp (m = 0, 1, ■ • ■ , ») is nonempty, the spherical neighborhoods Si^

(/x = 0, 1, • • • , tt) have a nonvoid intersection. In this intersection, let us

choose a point giv). Since Z is a convex subset of a Banach space W, we can

extend g to be a mapping g: Ao~^Z which is linear on each simplex of Q. Let

o = VoVi • ■ ■ vq be an arbitrary simplex of Q, then it follows from the

construction of g that there exists some Si containing all the points givß)

iß = 0, 1, ■ • • , q). Since 5¿ is a spherical neighborhood in a convex set Z, we

have that gi<r)(ZSi. Hence g(^4o)C V. Define a mapping \pa: Ao—*Fby taking

\¡/a = dg. It remains to prove that \pa is a bridge mapping for /.

Let xGXo be an arbitrary point and denote by a¡*, a*v • ■ • , afn the mem-

bers of the covering a0* containing x. Then fix)ÇzSi C\ Y (u = 0, 1, ■ • • , «).

Let <pa: X—>A be an arbitrary canonical mapping of a; then <pa{x) is a point of

the closure of the simplex ai0ail ■ ■ ■ a¡n of A0. The existence of some Si^

(OsÍjuSím) which contains g<baix) follows. Let ¿((x) denote the point which di-

vides the line-segment joining/(x) to gcpaix) in the ratio ¿:(1 — t) for each 0 Si

{SI- Since both/(x) and g</>a(x) are points of S< , we have £t(#) £•$< (0 Si/ Si 1).

Define a homotopy /<: X0—>F (0 sí ¿sil) by taking
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ftix)=eUx) ix EX o, O Si ¿g 1);

then we have fa=f and f = ipa<pa\Xo. Hence ^„ is a bridge mapping for/and

our theorem is proved. Q.E.D.

The following corollary is an immediate consequence of (2.1) and (2.2).

(2.3) The set 33/ of all bridges for a given mapping f: X0—>F is residual

[16, p. 10 ] iand hence cofinal) in the directed set © of all coverings of X.

(2.4) Bridge homotopy theorem. If a, ß be two bridges for a given map-

ping f: X0—»F, where Xo is compact, and if \pa: Ao^>Y, \bß-. 5o—»F be bridge

mappings ; then there exists a common refinement y of a and ß such that ipapya \ Co

and ipßpyß | Co are homotopic, where pya : C—*A, pyß : C—*B are arbitrary simplicial

projections.

Proof. We shall use the notations in the proof of the bridge existence

theorem. From the definition of the spherical neighborhoods 5(y) follows

quite obviously the existence of a sufficiently fine simplicial subdivision ^40'

of Ao such that for each vertex a' of ^4o' we have ^aCl(St ai')ClSiipaix)),

where x is an arbitrary point of the closure Cl(St ai) of the star St ai in

A¿ ■ Let A' he a simplicial subdivision of A which coincides with ^40' on Ao-

Let B' be a simplicial subdivision of B defined similarly for the mapping \pß.

The totality of the open sets «^'(St ai), where the ai are vertices of A' and

<j>a is a canonical mapping of a, form a covering a* of X which refines a.

Similarly, the covering ß* = {<pß '(St bi )} of X refines ß.

By the definition of bridge mappings, f„i/i«|lo and \pßqbß\X0 are both

homotopic with/; hence there exists a mapping F: X0 X I—► Y, where I denotes

the closed interval (0, 1) such that

Fix, 0) = ïcïaix),        Fix, 1) = Mß(x) ix G Xo).

From the continuity of F and the definition of S{y), it follows that for

each xGXo and each ¿G-f there exist an open set £/(x) of X0 containing x and

an open set Tit) of / (which may be assumed to be an interval) containing t

such that
FiUix) X T(t)) C SiFit)),

where f is an arbitrary point of Z7(x)xr(¿). Since XQXl is compact, there

exist a finite number of points (x¿, ¿¿) (¿= 1, 2, • • • , p) such that the open

sets { Uixi) XT(ti)} (*-l, 2, • • • , p) cover X0X/. For each xGX0, let

Mix) denote the intersection of the members of the collection { Uixi)}

ii= 1, 2, • • • , p) which contain x. Since the collection { Uixi) ] is finite, Mix)

is an open set. The collection {Mix)] (xGX0) has a finite subcollection

5o= {di, d2, • ■ • , dq] which covers X0. For each d< (t= 1, 2, • • • , q) choose an

open set d* of X with di = d*C\Xo, and let d*+1=X-X0. Then b* = {d?, d2*,

• • • , d*, d*+1] is a covering of X with ô0* = ô0.
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Let 7= {ci, c2, ■ ■ ■ , Ci\ be a common refinement of the coverings«*, ß*,

and ô*; further let

pya: C—>A,        pyß: C^B

be arbitrary simplicial projections. We are going to prove that ipapya\ Co and

ipßptß | Co are homotopic.

For each ¿G-T, the intersection of the members of { Titi) ] (¿=1,2, • • ■ , p)

containing ¿ is an open set; choose a closed interval Jit) containing ¿ in its

interior and contained in this intersection. There are a finite number of such

closed intervals J%, J2, ■ ■ • , Jk which cover /. Let

0  =  T0 < Tl <   • •  •   < Ts_l < ts  =   1

be the set of end points of these intervals J\, J2, • • • , Jk- Then it is easily

seen that for each c¿Gy and each closed interval (t,_i, t,) (i= 1, 2, • • • , s)

we have ir((iinio) X(t,_i, t,)) (ZSiF(Ç)), f being an arbitrary point of

(ct-nX0)X(rt_1, t,).

By the constructions of the coverings a* and ß*, their nerves A* and B*

can be identified with subcomplexes of A' and B' respectively by the cor-

respondences a *—>a/ and e¿*—>&/.

Take arbitrary simplicial projections

pya:C^A*CA',       p*ß:C^B*CB'

and define a mapping G: CoXl—*Z described as follows.

For each point cGCo, let us define

G(c, 0) = <papyaic),       Gic, 1) = tßpyßic).

If <j = dfi1 • • -cin he an arbitrary simplex of Co and x he an arbitrary point of

the intersection

L = c-o n ch r\ ■ ■ ■ r\ cin r\ x0,

then it is not difficult to see the following inclusions:

Gio- X 0) C SiFix, 0)),       Gio- X 1) C S(F(x, 1)).

Next, for each vertex c¿GCo, choose a fixed point .r,-Gc<CX0. For each

vertex c¿GCo and each tc (t = l, 2, • • • , 5 — 1), define Gicit t,) = F(xí, t,).

If o- = Ci0c,I • • ■ c<„ be an arbitrary simplex of Co and x be an arbitrary point

of L = Ci0C\Cil(~\ ■ ■ • r\Cini~\Xo, then we have

Gid„ r.) C SiFix, r_0) n 5(F(x, r.)) A 5(F(*. rl+1))

for each /i = 0, 1, • • ■ , «. Extend G over crXr, linearly for each crGCo and
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each r, (i=l, 2, • • ■ , s—í). Then we have

Gio- X r.) C SiF(x, r^i)) H SiFix, r.)) H S(F(z, rt+1)).

Since, for each point cG<r, both Gic, t,_i) and G(c, r,) (i=l, 2, • • • , s) are

contained in SiFix, r,)), one can extend G linearly on each cX(t,_i, t»). This

completes the construction of the mapping G: C0X/—>-£. It is trivial that

G(CoX/)CF.
Define a homotopy g*: Co—»F (Osi¿SÍ 1) by taking gtic) =0Gic, t) (cGCo,

0SÍ¿;£1); then we have go=i/ap*a and g\ = ^ßp*ß. Since it is obvious that

P%a—Pt« and p*ß~pyß, we have

iapya |  Co !Ü ía^„ j  Co 2Ü l^-flS |  Co U¿ ^7Í I  C0 ¡

hence our theorem follows. Q.E.D.

III. The general theory

3. «-extensibility. We shall denote by An the »-skeleton of a complex A,

that is, the totality of the simplexes of A with dimensions not exceeding ».

A mapping/: X0—>F is said to be n-extensible, if / has a bridge a with a

bridge mapping i/v : ^40—»F which has an extension \¡/á : Ao^JAn—>Y. Since F

is arcwise connected, the following statement is trivial.

(3.1) Every mappingf: Xo—>Yis l-extensible.

For a given mapping/: X0—*Y, the least upper bound of the set of integers

n such that / is »-extensible is called the extension index of the mapping /.

The following statement is obvious from the very definition.

(3.2) Homotopic mappings have the same extension index.

Some set-theoretic meaning of the »-extensibility is shown by the follow-

ing theorem.

(3.3) If X be metric separable with dim (X —X0) Sim and if f: X<>—>F be

n-extensible, then there exists a closed set X1 of X contained in X — X0 such that

dim Xi<m — « and f has an extension f : X — Xx—»F.

Proof. By the definition of »-extensibility, there exist a bridge a and a

bridge mapping ipa: A0^Y for/, which has an extension \pá : Ao^JA"—>F.

Let <p: X—>A he an arbitrary mapping. We shall prove an assertion that

there exist a closed set Xi of X contained in X —X0 with dim Xi<m — n and a

homotopy ht: X — X^A (Osíísíl) such that h0=qb\X-X1, hiiX — Xi)CA0

yJAn, and htix)=4>ix) for each xÇL4>~liAo^-)An) and each 0sj¿^l.

Our assertion is trivial if dim A^n. Assume the assertion for dim A sj/>— 1,

and now suppose dim A =p>n. Let eri, a2, • • • , o~q be the ¿>-simplexes of

A—Ao, and denote by <r¿, óV¿ respectively the closure and the boundary of

the open simplex <r,\ Let

Fi = ^iti),       Bt = ^ido-i) ii = 1, 2, ■ ■ •    q).
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Fi, Bi are closed sets of X and Fí — BíQX — Xo. Hence we have dim iFi — Bi)

Sim. It follows from the duality theorem of Eilenberg-Borsuk [4, p. 162]

that there is a closed subset Hi of Fi contained in Fi — Bi and with

dim Hi Si m — ip — 1) — 1 < m — n

such that the partial mapping <p\ B( has an extension 0¿: F,- —iï,—»ÓV,-. Let H

denote the union of all the subsets Hi {i = 1, 2, • • ■ , q), then H'\s a closed set

of X which is contained in X —Xo and with dim H<m — n. Define a mapping

0: X-H-^Ao^JA*-1 by taking

(Oiix) ixGFi- Ht),
6(x) =  <

W) (*Gx-im).

For each xÇzFi —Hi, both<£(x) and 0(x) are contained in ai. Define a homot-

opy £<: X — H—+A (Osj¿síl) as follows: If x belongs to some Fí — Hí,

let ¿¡(x) be the point which divides the line-segment joining </>(x) to 0(x) in

the ratio ¿:(1— ¿) ; otherwise, let £¡(x) =<£(x). Then we have ¿o = </>|X — H,

£i = 0 and £((x) =4>ix) for each xG<p~1iAo'UA1'~1) and each Osí¿^l. From our

assumption of the induction follows the existence of a closed subset J of

X — H contained in X—iH\JXo) and with dim J<m — n and a homotopy

,,:I-fl-;^i0Ui'-1 (Oáígl)

such that rio = 9\X — H—J, riiiX-H-J)CA0^JA", and that t?í(x)=0(x) for

each xG0_1G4o^4") and each OSÍ¿<íl. Let Xi = i2\J7. Since J is closed in

X — H and if in X, Xi is a closed set of X contained in X —X0. Since H is

closed, it follows from the sum theorem of dimension theory [13, p. 32]

that dim X\<m — n. Define a homotopy ht: X — Xi-^A (Osí¿^l) by taking

ttuix) ix e X - Xi, 0 SS t á 1/2),

U<-i(*) (xGX- Xi, 1/2 si ¿ ̂  1);

then Âo = <ê|X-Xi, äi(X-Xi)C^4oU^», and ht(x)=<p{x) for each Osí¿gl

and each xG<£-1 (^4oW^4n). Hence our assertion is proved.

Now let 0 =</><* be a canonical mapping of a; then \pihi: X — Xi—>F is an

extension of ^„</>a| Xo. It follows from Borsuk's theorem [13, p. 86] that/ has

an extension/': X — Xi—>F. This completes our proof. Q.E.D.

4. Obstruction sets. In the present section, we shall assume an additional

condition that F be »-simple in the sense of Eilenberg [8]. Let 7rn = 7r''(F)

denote the «th homotopy group of F.

Let /: X0—>F be a given mapping. We are going to define the (» + 1)-

dimensional obstruction set Qn+1if) C •r7n+1(X mod X0, f") of the mapping/ as

follows.

If/ is not «-extensible, we define fl"+1(f) to be the vacuous set. Now sup-

pose / to be «-extensible. Then there exist a bridge a and a bridge mapping
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\pa' Ao—* Y which has an extension \pá : Ao^JAn—>Y. For each (» + 1)-simplex

o-"+1G^4 the partial mapping i¡r¿ \d<rn+1, the »-sphere cV"+1 being oriented by

the «-cycle óV"+1, defines uniquely an element i\j/¿ , on+1) of the group irn. Then

the (»-|-l)-chain

W        W« )   =   ¿^  W* .   °~i      )"i
i

is a cocycle in A—A0 [°, p. 237]; hence it represents an element con+1ifá)

of the group Hn+1iX mod X0, wn), called an obstruction element oí f. fi"+1(/) is

defined to be the set of all obstruction elements of / in the group

Hn+1iX mod Xo, Ti").

The following statements are trivial.

(4.1) A mapping f: X0—>F is n-extensible if and only if £2n+1(/) is non-

empty.

(4.2) Homotopic mappings have the same in+ 1)-dimensional obstruction

set.

(4.3) Fundamental extension lemma. A mapping f: X0—>F is (» + 1)-

extensible if and only if £2"+1(/)  contains the zero element of Hn+1iX mod

Xo,  7T").

Proof. Necessity. Suppose/: X0—>F to be (m + 1)-extensible; then there

exist a bridge a and a bridge mapping \f/a: Ao~*Y which has an extension

\pi : A0\JAn+1^Y. Since ^«' is defined over <r?+1, tyU, <r?+1) is the zero ele-

ment of it". Hence wn+li4/á) =0 and ßn+:(/) contains the zero element of

Hn+1iX mod Xo, it»).

Sufficiency. Suppose that Çln+1(f) contains the zero element of

Hn+1iX mod Xo, 7T"). Then there exist a bridge a and a bridge mapping

ypa: Ao—*Y which has an extension \pá : Ao^JAn—>-Y such that the cocycle

wn+1iip<i ) represents the zero element of Hn+1iX mod X0, irn). According to the

definition of Cech cohomology groups (§1), there exists a refinement ß of a

such that the cocycle p%x(wn+li\¡/á)) in B — B0 induced by a simplicial projec-

tion pßa: B^>A is cohomologous to zero in B — B0. Let \pß = ibapßa\B0. One

can see from the proof of (2.1) that fo is a bridge mapping for/. \pß has an ex-

tension \pß : B0yJBn—>• F given by \j/¿ =\papßC,\B0,<JBn. It is quite obvious that

W+KH) = pUwn+litá)).

Since wn+xi\pß) cobounds in B — B0, it follows from the first extension theorem

of Eilenberg [9, p. 239], that there is mapping \pß" : _B0W.Bn+1—>F such that

lW=lA/ on Bo^JB"-1. Hence/ is (w+1)-extensible and our proof is com-

pleted. Q.E.D.
The following theorem is an immediate consequence of (4.3) and (4.1).

(4.4) If Y is r-simple and Hr+1iX mod X0, irr) =0 for each 0<r<n, then

every mapping f: Xo—>Y is n-extensible.
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Now suppose X' to be another normal space and g: X'—>X to be a given

mapping. Let a = [ax, a2, ■ ■ ■ , ar] be an arbitrary covering of X and

a' = {a{, a2 , ■ ■ ■ , ai } be the covering of X' which consists of the open sets

ai =g-1(a<) (¿= 1, 2, • • • , r). Denote by A and A' the geometric nerves of a

and a'. The correspondence a/—»a,- (i=l, 2, ■ ■ • , r) determines a unique

simplicial mapping t:A'—*A Let <b: X—>^4, <p': X'—>A' he canonical mappings

of a and a' respectively.

(4.5) The mappings <pg and t(p' of X' into A are homotopic.

Proof. Let x' be an arbitrary point of X'. Let a'it¡, a^, • • • , a¿ be the

members of a' containing x'. Then g(x')Ga»,, for each /¿ = 0, 1, ■ • -, ». Hence

both <pg{x') and ¿<£'(x') are contained in the simplex a¿0atl • • • a,n of ^4 ; and

the mappings </>g and t<p' are then homotopic. Q.E.D.

Let Xo' be a closed set X' and g: X'—>X be a mapping such that g(X0')

CX0. Denote by g*: Hn+1(X mod X0, Tr^-^+HX' mod X0', ir") the homo-

morphism induced by g (§1).

(4.6) If f: X0—>F is n-extensible, then so is the mapping f =fg\Xó and

rj"+1(/') contains the image g*(ßn+1(/)) under the homomorphism g*.

Proof. Let ¿G^"+1(/) be an arbitrary element. By definition, there exist

a bridge a and a bridge mapping \pa: Ao-^Y which has an extension \f/a :

Ao^JAn—>Y with the cocycle wn+1i\pi) representing the element Ç. Let the

members of a be the open sets a\, a2, • • • , ar; and denote by a'— {a{, a2 ,

• • • , ai ] the covering of X' which consists of the open sets ai =g~1iai). Let

4>: X—>A and </>': X'—*A' he canonical mappings, and t: A'—>A denote the

simplicial mapping determined by the correspondence ai'-^ai. Since \pa is a

bridge mapping for/, we have i/v/> | X0^/. Hence, by (4.5),

taUp' [ X¿ ae \Mg | Xo' ^/g | Xo'  = /'.

Therefore, a' is a bridge for/' with \pat\Aó as a bridge mapping. Since

\pat\Ao has an extension ^a' ¿ | A ó ^-JA '", /' is »-extensible. Since it is obvious

that

co"+W¿) =g*(co"+1(^')),

the inclusion fi"+1(/')3g*(^"+1C/)) follows. Q.E.D.

5. General extension theorems. In the present section, let mbea finite

positive integer. If X is metric separable, we assume dim (X —X0) Sim; other-

wise, we assume(3) dim C1(X — X0) Sim, where C1(X —X0) denotes the closure

of X —Xo. As in §4, denote by 7rr the rth homotopy group of F.

(5.1) If Y is r-simple and Hr+1(X mod X0, 7rr) =0 for each n^r<m, then

every n-extensible mapping f: X0—»F has an extension/': X—*Y.

Proof. By the recurrent applications of (4.1) and (4.3), one can see that/

(3) Further, we assume that Xo has the homotopy extension property in X with respect to

Y; that is to say, Borsuk's theorem [13; p. 86] holds.
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is m-extensible. Then there exist a bridge a and a bridge mapping \pa: Ao—>Y

which has an extension \¡/á : Ao^-JAm^>Y.

First suppose dim Xsim. Then there exists a refinement ß of a with

dim B Sim. Let pßa: B—>A he a simplicial projection, then pßaiB)(ZAo[JAm.

It follows from (2.1) and its proof that ß is a bridge with \pß = \['apßa\ B0 as a

bridge mapping for/. Let <bß: X—»5 be a canonical mapping of ß, then the

mappings / and \pß<bß\Xa are homotopic. Since \pß(pß\Xa has an extension

i'apßa'pß'- X—>F, it follows from Borsuk's theorem [13, p. 86] that / has an

extension/': X—>F and the particular case of our theorem is proved.

To the general case when dim C1(X —Xo) Sim, we first prove an auxiliary

assertion: For an arbitrary mapping p: X—>Ao^JAp+1 (p^m) such that

p(Xo)CZAa, there exists a mapping 0: X-^A0^JAP with 0(x)=p(x) for each

xC;p-KA¿JA*)\
Let <ii, o2, ■ • ■ , <rq he the open (J>-f-l)-simplexes of Ap+1—A0. Let

d = p-\o-i) C X - Xo (t - 1, 2, • • • , q);

then d is an open set of X with dim G.sim [14, p. 14]. Let F¿=G,— G<,

then p(Fi)C¿V¿. Since do\- is a ¿»-sphere and p^m, the conditions of our

theorem are satisfied by X= G,-, X0 = F», Y=dffi, and « = 0. By the particular

case proved above, the partial mapping p | F» has an extension pi : G,—>clo'j.

The mapping 0: X^Ao^JAp stated in our assertion is given by

.. .        (Pi'(x) (x GGi, i = 1, 2, • • • , q),
dix) = <

lp(x) (x G X - U d).

Since ^4 is finite, we may apply the auxiliary assertion to the canonical

mapping <ba: X—>.4 successively. Then follows the existence of a mapping

(pá : X—>.4o^4m with (pi (x) =<£«(x) for each xG<Aä1(^4oW^4m). Since / and

^o0a| Xo are homotopic and \b¿4>¿ : X—>Y is an extension of i/v^l Xo, it fol-

lows from Borsuk's theorem [13, p. 86] that/ has an extension/': X—-*F.

Last, if X is metric separable with dim (X — Xo)sim, then our theorem

follows from (3.3) and the m-extensibility of/. Q.E.D.

(5.2) If Y is r-simple for each r<m and

Hr(X mod Xo, 7Tr) = 0 (0 < r < m, r ?¿ «),

¿Âe» every mapping f: X0—>Y is n-extensible and f has an extension f : X—>Y

if and only if its in-\-l)-dimensional obstruction set ßn+1(/) contains the zero

element of the group iTn+1(X mod X0, 7rn).

Proof. The first part of the theorem is contained in (4.4), and the second

part follows from (4.3) and (5.1). Q.E.D.

As a corollary of (5.2) we state the following generalization of a classical

theorem [13 II, p. 522].
(5.3) // F is r-simple and Hr+\X mod Xo, 7rr)=0 for each 0<r<m,

then every mapping f: X0—*F has an extension f : X—>F.
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Setting F=Xo, we obtain a sufficient condition for retraction as follows.

Let X be a metric separable space, and XoCX be a connected compact ANR

with dim (X —Xo) Sim.

(5.4) Xo is aretract of X, if X0 is r-simple and Hr+1(X mod X0, irr) = Ofor

each 0<r<m, where Trr = 7rr(Xo).

More generally, the following generalization of a theorem of Borsuk [4, p.

166] is an immediate consequence of (3.3) and (4.4).

(5.5) If Xo is r-simple and Hr+1 (X mod X0,7rr) = Ofor each 0 <r <», where

7rr = 7rr(Xo), then there exist a closed set Xx of X contained in X —X0 with

dim Xi<m —» and a retraction d: X — Xi—>Xo.

6. »-homotopy. In the §§6, 7, 8, we shall assume (1) X to be a normal

space, (2) F to be a connected ANR, and (3) either X or F to be compact. The

bridge theorems in §2 hold with Xo = X.

Let/o,/i: X—>Fbe two given mappings. According to the bridge existence

theorem (2.2), there exists a bridge a,- for/i (i = 0, 1); and by the bridge re-

finement theorem (2.1), every common refinement is a bridge for both/0 and

f. Such coverings of X are called the bridges for the pair (/0, /j). Then we

have proved the following bridge theorem.

(6.1) The set S3/0 ,/j of all bridges for a given pair (/0, f) of mappings is

residual iand hence cofinal) in the directed set © of all coverings of X.

Two mappings/o, f: X—>F are said to be n-homotopic, if there exists a

bridge a for the pair (/o,/i) with bridge mappings ^¿: A—* Y for/,- (¿ = 0, 1)

such that 4*o = 4*\ on the »-dimensional skeleton An of the geometric nerve A

of the covering a. Since F is arcwise connected, the following statement is

trivial.

(6.2) Every pair of mappings fo, f: X—>F are Q-homotopic.

The following statement is an obvious result of the definition.

(6.3) Homotopic mappings are n-homotopic for every »2:0.

The relation of being »-homotopic is clearly reflexive, symmetric, and

transitive: hence the mappings /: X—>F are divided into classes by this

equivalence relation, which are called the »-homotopy classes. By (6.3), each

homotopy class in the sense of Brouwer is contained in one and the same

«-homotopy class.

For a given pair of mappings/o,/i: X—>Y, the least upper bound of the set

of integers « such that they are w-homotopic is called the homotopy index of

the pair (fo, f). From (6.3), we deduce the following statement.

(6.4) The homotopy index of a pair of mappings fo, f: X—»F depends only

on the homotopy classes of fo and f.

Some set-theoretic meaning of »-homotopy is shown by the following

theorem.

(6.5) If X be metric separable with dim X Sim and fo, f\-, X—>F be n-homo-

topic mappings, then there exists a closed set Xi of X such that dim Xi<m —»

and the partial mappings fi\ X — Xx (¿ = 0, 1) are homotopic.
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Proof. By definition, there exists a bridge a for the pair (/o,/i) with bridge

mappings \pi : A —> F for /< (i = 0, 1) such that \po = if'i on A". Let (ba- X—».4 be

a canonical mapping of a. By an auxiliary assertion given in the proof of

(3.3), there exist a closed set XiCX with dim X\<m — n and a homotopy

ht: X-XX->A (0á*ál) such that h0=(pa\X-Xl, h(X-X1)CA", and

ht(x) =(pa(x) for each xG^1^") and each 0si¿síl. Our theorem follows

from the three facts: (i) \pohi = ipihi on X —Xx; (ii) /0|X — Xx and ^o^i are

homotopic; and, (iii) /i|X —Xi and \pihi are homotopic. Q.E.D.

7. Separation sets. In the present section, we shall assume an additional

condition that F be «-simple. Let 7rn = ir"(F).

Let/o, f: X—>F be a given pair of mappings. We are going to define the

«-dimensional separation set A"(/0, f) in Hn(X, irn) as follows.

If/o,/iare not (w — l)-homotopic, we define An(fo,f) to be the empty set.

Now suppose /o,/i to be («— l)-homotopic. Then there exists a bridge a for

the pair if, f) with bridge mappings ^.-: A-+Y for/,- (¿ = 0, 1) such that

^o = ^i on ^4""~1. According to Eilenberg [9, p. 240 ], \po and i^i determine a

cocycle

d   W'O, ̂l)   =   X (lAo, ̂1,  O-i )(Ti
i

where  (\p0, \pi, o") is an element of  irn. dn(ypo, ipi)   represents an element

bn(\{/o, \pi) of HniX, 7Tn), called a separation element of (fo,f). An(f0,fi) is de-

fined to be the set of all separation elements of (/o,/i) in HniX, irn).

The following statements are trivial.

(7.1) The mappings fo, f: X—>F are in—\)-horn oto pic if and only if

A"(/o, /i) is nonempty.

(1.2) The n-dimensional separation setAnifo,f) of the mappings fo,fi'- X—>F

depends only on the homotopy classes of fo andf.

(7.3) Fundamental homotopy lemma. The mappings fo, f: X—>F are

n-homotopic if and only if An(fo, f) contains the zero element of H"(x, irn).

Proof. Necessity. Suppose fo, f to be »-homotopic. Then there exists a

bridge a for (fo,fi) with bridge mappings^;: A—>Y (i = 0, 1) respectively for/,-

such that ^o = ^i on An. The cocycle dn(\f/0, \px) =0, and hence A"(/0, f) con-

tains the zero element.

Sufficiency. Suppose that A"(/o,/i) contains the zero element of Hn(x, 7rn).

Then there exist a bridge a for (/o,/i) and bridge mappings \pt: A—+Y for/<

ii = 0, 1) such that \po = 4/i on An~1 and the cocycle dn(\b0, \p\) represents the

zero element of Hn(X, irn). By the definition of Cech cohomology groups (§1),

there exists a refinement ß of a such that the cocycle p*a(dn(\po, ipi)) of B

induced by a simplicial projection pßa: B^A cobounds in B. It follows from

(2.1) as well as its proof that ß is a bridge for (/o,/i) and \pipßa: B-+Y (i = 0, 1)

are bridge mappings for/¿. Obviously rpopßa = if/ipßa on Bn~l and

d"itoPßa,  tlpßa)   =   P¡a(dn(to,  ti))-
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Since d"iipoPßa, ipipßa) cobounds, it follows from the first homotopy theorem

of Eilenberg [9, p. 240] that ¡¡/opßa\Bn and \p\pßa\Bn are homotopic. Hence,

by Borsuk's theorem [13, p. 86] there is a mapping \b( : B—*Y suchthat

ipopßa = ipí on Bn and \f/ipBa —ypl. One can see clearly from the definition

that \¡/{ is a bridge mapping for f; hence fo, f are »-homotopic. Q.E.D.

The following theorem is an immediate consequence of (7.1) and (7.3).

(7.4) If Y is r-simple and Hr(X, ivr) =0 for each 0<r^n, then every pair

of mappings fo,f: X—* Y are n-homotopic.

Now let X' be another normal space and g: X'—»X be a given mapping.

Denote by g*: Hn(X, irn)-^Hn(X', tt") the homomorphism induced by g (§1).

(7.5) If fo, f- X—>Y be (n — i)-homotopic, then so are fog, fg: X'—*Y and

A"(/0g,/ig) contains the image g*(An(f0,f)) under g*.

Proof. Let £GAn(/0, f) be an arbitrary element. By definition, there

exist a bridge a for (fo,f) and bridge mappings ^<: A—* F for/,- (i = 0, 1) such

that 4/o = ^í on An~1 and the cocycle dn(\¡/0, xpi) represents £. Let the members

of a be the open sets a\, a2, ■ ■ • , ar; and denote by a' = {a{, a2 , • • • , ai }

the covering of X' which consists of the open sets ai = g_1(a>)- Let (p: X—>>A

and tj>'': X'—>A' be canonical mappings, and t: A'-^A denote the simplicial

mapping determined by the correspondence a,'—>a,-. Since \pi is a bridge

mapping for/,-, we have \p,(b u¿/< (i = 0, 1). Hence, by (4.5),

íit(l>'~X¡,i(t>g~fig (¿ = 0,1).

Therefore, a1 is a bridge for the pair (/og,/ig) with ipd: A'—>Y as bridge map-

pings for fig ii = 0, 1). Since \f/ot = \pit on A 'n_1,/og and/^are (« — l)-homotopic.

Since clearly

Î»(M *l0  = ^(«"(jr-o, W).

we deduce the inclusion A"(/og,/1g)Z>g*(An(/o,/1)). Q.E.D.

8. General homotopy theorems. In this section, we assume dim Xsim,

where m is a finite integer. Let irr = 7rr(F).

(8.1) If Y is r-simple and HT(X, irr)=0 for each n<r^m, then any two

n-homotopic mappings fo, f : X—» F are homotopic.

Proof. By the recurrent applications of (7.1) and (7.3) one can see that

fo, /i are m-homotopic. Then there exist a bridge a for (fo, f) and bridge

mappings t^,: A—>Ffor/,- (i = 0, 1) such that \po = 4'i on Am. Since dim Xsim,

there exists a refinement ß of a with dim B si m. Let ¿>0a: 5—*.4 be a simplicial

projection, then pßaiB)CAm. Since, according to (2.1) and its proof, ß is a

bridge for (/0, f) with -fyipßa'- B—*Y as bridge mappings f or /,• (¿ = 0, 1), we

have

tipßa<pß =*; /< (* = 0, 1)

for any canonical mapping qbä : X—>B of ß. Since î/'n = ^i on .4m and pßaiB) QAm,
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we have ipopßa(pß = ipiPß«<t>ß- This proves f —/i. Q.E.D.

(8.2) // Y is r-simple for each r^m and if Hr(X, 7rr) =0for each 0<rSim

except r = n, then any two mappings fo, f : X—> F are (n — \)-homotopic and they

are homotopic if and only if their n-dimensional separation set A"(/0, f) con-

tains the zero element of H"iX, irn).

Proof. The first part of the theorem is contained in (7.4), and the second

part   follows   from   (7.3)   and   (8.1).

As corollaries of (8.2), we state the following generalizations of two

theorems of Hurewicz [12 II].

(8.3) If Y is r-simple and Hr(X, 7rr) =0 for each 0<rSim, ¿Ae« every map-

ping f: X—>F is null-homotopic.

If we set X= F, then X becomes a connected compact ANR with

dim Xsim.

(8.4) X is contractible to a point, if and only if X be r-simple and Hr(X, irr)

= 0 for each 0<r^m, where 7rr = 7rr(X).

The following statement is an interesting result of (8.4).

(8.5) A necessary and sufficient condition that wr(X)=0 for each 0<rsim

is that X be r-simple and H'iX, irr) =0 for each 0<r^m, where 7rr = 7rr(X).

Let X and X0CX be connected compact ANR, then the following sufficient

condition for deformation retracts [3] follows easily from (5.4) and (8.2).

(8.6) X0 is a deformation retract of X, if the following conditions are satisfied:

(i) X0 is r-simple and Hr+1iX mod X0, 7rr(X0)) =0 for each 0<r<m.

(ii) X is r-simple and Hr(X, ivr(X)) =0for each 0<rSim.

IV. The case X compact And 7rr(F) =0 (r <»)

9. Characteristic element. Throughout the remainder of this work, we

assume that X be a compact Hausdorff (and hence normal) space and Y be

a connected ANR with 7rr(F)=0 for each r<n. If «>1 the latter condition

implies ir1 i Y) = 0 and hence the ¿-simplicity of F for all i. If » = 1 we assume

the ¿-simplicity of F for each ¿Sim, where m is an integer to be specified in the

sequel. Choose a fixed point yoG Fas the base point for the homotopy groups

Tr = lV(Y).

Let X0 denote a closed (and hence compact) subset of X, and let/: X0—>Y

denote a given mapping.

Let a he an arbitrary bridge for/ with \pa: Ao—>Y as a bridge mapping.

Since irr(F)=0 for each r<n, we may assume that \pa(A01~1)=y0. For each

oriented «-simplex er"G-4o, the partial mapping \pa\ <r" determines an element

iipa, of) of the homotopy group 7r" = 7rn( F). Since x[/a is defined throughout Ao,

the «-chain

is clearly a cocycle of .4o-
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(9.1) All the possible cocycles kn(\pa) represent a unique element «"(/)

of H"iXo, irn), called the characteristic element of the mapping f: X0—>F.

Proof. Let kn(ipß) he another such cocycle defined by the bridge ß and the

bridge mapping í/'p: Bo-^Y with \pß(B^'1) =yo.

According to the bridge homotopy theorem (2.4), there exists a common

refinement 7 of a and ß such that ipapya\ Co and ^ßpyß\ Co are homotopic,

where pya: C^A and pyß: C^>B are arbitrary simplicial projections.

Since xpaiAÔ-1) =yo = 4'ßiB0'~1) and pya, pyß are simplicial, we have

tyapya(Co      )   =   3'0   =   foPyßiCo      )■

Hence, the cocycles k"(ipapya) and k"(\pßpyß) are defined.

Since ipapya\ Co and ¡bßpyß\ Co are homotopic, and since 7rr(F) =0 for each

r<«, we have ib<*Py>\ Co—ipßPiß\ Co reí. C¡~2. Hence it follows from the first

homotopy theorem of Eilenberg [9, p. 240] that kn(\papya) and kn(\pßpyß) are

cohomologous in Co. It is obvious that

kn(tapya)   =   py«(kn(4>a)), k»(i,ßpyß)   =   pyß(kn(tß)),

where pya,  p*ß denote  the  homomorphisms   of   cocycles  induced   by  the

simplicial projections pya: C^A and pyB: C—*B. Hence, it results from the

definition of Cech cohomology groups (§1) that k"(\¡/a) and kni\pß) represent

the same element of H"(Xo, ir"). This completes the proof. Q.E.D.

The following statement is obvious from the definition.

(9.2) Homotopic mappings have the same characteristic element.

The following statement can be easily proved for an arbitrary compact

Hausdorff space X0'.

(9.3) Iff:Xo-^>Yand g: Xo'-+Xo be mappings, then nn(fg) = g*(nn(f)), where

g*: Hn(Xo, ir")—>iJn(X0'., 7Tn) denotes the homomorphism induced by g.

(9.4) The obstruction set Q,n+l(f) consists of a single element co"+1(/) = 5k"(/),

called the obstruction element of the mapping f: Xo—*Y.

Proof. First, let us prove that ô/c"(/)G^"+1(/)- By definition, there exist

a bridge a for/and a bridge mapping ij/a: Ao—>Fsuch that ^„(Aq-1) =y<¡ and

the cocycle kn(4>a) of Ao represents the element Kn(f). ypa has a trivial exten-

sion rp«' : AoUi"^F defined by taking

MS) (SGAo),

Jo (SGA"-Ao).

It is not difficult to verify the fact that wn+1(\[/á ) = 5k"(\pa) ; hence, it follows

that ôk"(/) is an obstruction element of/.

Second, suppose w"+1 be an arbitrary element of fi"+1(/). Then there exist

a bridge a and a bridge mapping \¡/a : A 0—» F for/ such that \ba has an extension

xpá : A0^An—»Fand the cocycle wn+l(\pá ) of A —A0 is a representative of the

element <on+1. Since 7rr(F)=0 for each r <», there exists a bridge mapping

K (?)-
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0a: A 0—> F for/ such that da^-tya and da(A" ') =yo- öa has a trivial extension

0¿:AoyJA«-+Y defined by

(».(9 «e^.).
(yo (ÉG¿"-¿0).

According to a theorem of Eilenberg [9, p. 241], the cocycles w"+1(\f/J) and

wn+1(0a) are cohomologous in A —Ao- On the other hand, we have wn+1(0á)

= ôkn(da); hence co"+1 = 5/c"(/). This completes the proof. Q.E.D.

Now, let us consider the case X0 = X. For a given pair of mappings fo,f:

X—>Y, the following theorem can be easily proved.

(9.5) The separation set A"(/0, f) consists of a single element 6"(fo, /i)

= Kn(fo) — Kn(fi), called the separation element of the mappings f, f: X—>F.

10. Extension theorems. An element of H"(X0, G) is said to be extendible,

if it is contained in the image n(Hn(X, G)) under the homomorphism r¡ oí the

cohomology sequence.

(10.1) For a given mapping f: X0—»F the following statements are equiva-

lent:

(i) fis (n + l)-extensible.

(ii) co«+1(/)=0.

(iii) /£"(/) is extendible.

Proof. The equivalence of (i) and (ii) follows from (4.3) and (9.4) ; and

that of (ii) and (iii) follows from the exactness of the cohomology sequence.

Q.E.D.
The following statement, which is an immediate result of (10.1), gives us

a weaker sufficient condition than the condition Hn+1(X mod Xo, 7r") =0 for

every mapping/: Xo—»F to be (» + 1)-extensible.

(10.2) If all elements of iJ"(X0, 7rn) are extendible, then every mapping

f: Xo—>Y is in + 1)-extensible.

In particular, we state the important special case as a corollary of (10.2).

(10.3) If Hn(Xo, 7T") =0, then each mapping f: X0—»F is in+ 1)-extensible.

In the remainder of this section, let m he a finite positive integer. If X

is metric separable, we assume dim (X —Xo) sí m ; otherwise, we shall assume(3)

the stronger condition dim C1(X — Xo) Sim.

The following extension theorem is an obvious consequence of (5.1) and

(10.1).
(10.4) If Hr+1iX mod X0, ttt) =0 for each n<r<m, then, for a given map-

ping f: Xo—>F, the following statements are equivalent:

(i) / has an extension f : X—>■ F.

(ii) ü)«+1(/)=0.

(iii) Kn(f) is extendible.

As a corollary of (10.4) we state the following generalization of a classical

theorem [12 II, p. 522].
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(10.5) If H"iX0, 7T")=0 and Hr+1(X mod X0, irr)=0for each n<r<m,

then every mapping f: Xo—»F has an extension f : X—»F.

11. Homotopy theorems. In the present section, we take X0=X. The

following theorem results from (7.3) and (9.5).

(11.1) For given mappings fo, f: X—>Y the following statements are equiva-

lent:

(i) fo, /i are n-homotopic.

(n)   O»(fo,f)=0.

(iii)   K"(/o) = K»(/i).

Then (8.2) becomes the following theorem.

(11.2) If dim Xsim and H'(X, irr) =0for each n<r^m, then the following

statements are equivalent:

(i) f», fu are homotopic.

(ii) 5"(/o,/i)=0.
(iii) /c"(/o)=Kn(/i)-

(11.3) Existence theorem. If dim Xsim and Hr+1(X, ttt)=0 for each

n<r<m, then for each element £G-ff"(X, irn) there exists a mapping f: X—>F

with its characteristic element «"(/) =£.

Proof There exist a covering a\ of X and a cocycle C = ^¿¡0" on the

nerve A\ of «i which represents the element £, where CíGtt".

Define a mapping 0i: ^4"+1—> F described as follows. First, let 0i(A"~1) =yo-

Since CíGtt", one can define öi over A" so that 0i| i" defines c,- for each o"QA".

Since cn is a cocycle, for each cr"+1G^4i, we have

E     Ci = 0.

Hence, 0i|dcr"+1 is nullhomotopic and 0i can be extended throughout A"+1.

For each (« + 2)-simplex cr"+2 of A\, oi|ôcr"+2 determines an element

(fli, o-?+2) of *-"+»( F). The chain cï+2= ¿< (0X, o-?+2)<r?+2 is a cocycle of Ax [9,

p. 237], and hence it represents an element of Hn+2(X, irn+1). Since

Hn+2(X, 7Tn+1) =0, there is a refinement a2 of «i and a simplicial projection

p:A2—>Ai such that the cocycle

n+2 « n+2     n+2 n+2

C2        =   2Li (QlPt °~i     )°~i      t °~i       G A2,
i

cobounds in A2. According to the first extension theorem of Eilenberg [9,

p. 239], there exists a mapping 02:A2l+2->Y with 02 = dxp on A". 02\â" deter-

mines an element (02, <r") of irn for each <7"G^2. The cocycle E>(^> °'")or"

clearly represents the given element £.

By the successive use of the above argument, one can prove the existence

of a covering am_„ of X and a mapping 0OT_„ :;!"_„—> F such that flm-nC^m-1.»)

= yo and the cocycle ^2i(0m-n, o?)o-" of Am-„ represents the given element Ç.
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Since dim Xsim, there is a refinement a of am-n with dim A Sim. Let

p:A-+Am-n be a simplicial projection; then 4/a = 0m-np is a mapping A^>Y

such that ^a(y4n_1) =y0 and the cocycle kni\f/a) represents £. Let <£„:X—>.<4 be

a canonical mapping of a, and define a mapping /:X—> F by taking / = i^a</>„ ;

then a is a bridge and \pa a bridge mapping for/. Hence «"(/) =£. Q.E.D.

From (11.2) and (11.3) follows our generalized Hopf classification theorem

stated below.

(11.47 Classification theorem. If dim X^m and HriX, irr)=Q

= Hr+1iX, 7rr) for each « <r¿m, then the elements of Hn(X, irn) are in a (1-1)-

correspondence with the homotopy classes of the mappings f'.X—>F. The corre-

spondence is determined by the operation «"(/).

12. The basic element i"( F). In addition to the conditions given at the

beginning of §9, we shall assume F to be compact for the remaining sections.

The characteristic element *"(<.) G-f7"(F, it") of the identity mapping

i : F—> F is defined to be the basic element of F, denoted by i"( F).

(12.1) The basic element i"/ F) = 0 if and only if irn( F) = 0.

Proof. Sufficiency is trivial. To prove the necessity, let us assume tn(F)

= 0. There exist a bridge a for t which is a covering of F and a bridge \pa'A-^Y

such that t/'a(^4n_1) =yo and the cocycle c"= E.'W'«. <r")<r? represents the zero

element of Hn(X, ir"). By passing to a refinement of a if necessary, we may

assume that cn cobounds in A. Hence, according to the first homotopy theo-

rem of Eilenberg [9, p. 240], if/a\An is nullhomotopic relative to An~2; and,

therefore, there exists a mapping 0a: A—»Fsuch that 0a^ipa rel. ¿4n_2, 0a(An)

= y0. 0a is clearly a bridge mapping for t, that is, 0„<£„~i for each canonical

mapping 0„: F—>.4 of a.

Now let g: S"—>F be an arbitrary mapping; then we have g—0a(pag. By

the classical process of simplicial approximation, there is a sufficiently fine

triangulation of Sn (still denoted by Sn) such that the mapping (pag: S"—>.4 is

homotopic with a simplicial mapping r : Sn—*A. Hence g is homotopic with the

constant mapping dar(Sn) =y0. This proves ir"(F) =0. Q.E.D.

(12.2) For an arbitrary mapping f: X0—>F, the characteristic element k"(/)

=/*((,"( F)), where f* denotes the homomorphism induced by the mapping f.

Proof. Since / = t/, where t: Y—*Y denotes the identity mapping, our

theorem follows directly from (9.3).

By the aid of (12.2) and in the terms of the basic element t"(F) and the

induced homomorphism/*, our generalized Hopf classification theorem (11.4)

can be stated in a form which is completely analogous to the Hopf classifica-

tion theorem given in the introduction.

If F=S\ then 7rr(51)=0 for each r>l. The conditions in (11.4) are all

satisfied for any compact Hausdorff space X with finite dimension. Hence

(11.4) includes also the following theorem of Bruschlinsky [5].

(12.3) For an arbitrary compact Hausdorff space X of finite dimension, the
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elements of the l-dimensional Cech cohomology group i/J(X) of X with integer

coefficients are in a (l-l)-correspondence with the homology classes of the

mappings f: X—^S1. The correspondence is determined by the operation /*(i)>

where t denotes a generator of the free cyclic group Ü1 (•$')•

13. Homotopy type. In this section, we shall establish for connected com-

pact ANR the theorems concerning the homotopy types [12 III, p. 124],

which were proved by Eilenberg [10] only for geometric complexes. His

original proof is complicated by the use of homology.

(13.1) Two connected compact absolute neighborhood retracts X and Y of

finite dimensions are of the same homotopy type, if the following conditions are

satisfied :
(i) 7rr(X)=0=Tr(F)/or each r<n.

(ii) 7Tn(X) and irn(Y) are isomorphic.

(iii) H'+\X, irriY))=0=Hr+1iY, 7r'(X)) for each r>n.

(iv) H'iX, TrriX))=0 = HriY, TTr(F)) for each r> ».

If « = 1 we replace (i) by the following :

(i)' X and Y are i-simple for each ¿ = 1,2, • • • , k, where k = max (dim X,

dim F).

Proof. Let h: 7rn(X)—>7rn(F) be an isomorphism onto, h induces two

isomorphisms onto:

hx: H'(X, 7r"(X)) -» H'iX, r»(F)),

hy: H"iY, ir"(X)) -* HniY, tt"(F)).

Let Ln(X)<EHn(X, tt"(X)) and in(Y)(=H»(Y, tt"(F)) denote the basic ele-    ■

ments of X and F respectively. By the existence theorem (11.3), there exist

mappings/: X^>Y and g: F—>X such that

«'(/) = f*("(Y)) = htfiX)),

«"(g) = g*(i"(X)) = K\in(Y)).

Since it is quite obvious that f*hyl = hx1f*, the characteristic element Knigf)

of the mapping gf: X—>X is given by

«*&/) = f*g*("(X)) = f*KV(Y))

= hZlf*i'iY)) = hZXii'iX)) = *(X).

Hence it follows from the homotopy theorem (11.2) that gf is homotopic with

the identity mapping on X. Similarly, we prove that fg is homotopic with

the identity mapping on F. Q.E.D.

The following statements are easy consequences of (13.1).

(13.2) A connected compact absolute neighborhood retract Y of finite dimen-

sion is of the same homotopy type as S" (« > 1) if and only if the following condi-

tions are satisfied:
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(i) 7rr(F)=0 for each r<n.

(ii) ir"i Y) is infinite cyclic.

(iii) HT+1iY, wr(S")) = 0 for each r>n.

(iv) H'iY, 7Tr(F))=0 for each r>n.

(13.3) A connected compact absolute neighborhood retract Y of finite dimen-

sion is of the same homotopy type as the circle S1 if and only if the following

conditions are satisfied:

(i) 7t1(F) is infinite cyclic.

(ii)   Y is i-simple for each ¿ = 2, 3, • • • , dim F.

(iii) H'iY, ir'iY)) =0 for each r>\.
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