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1. Introduction. In this paper we shall study the possibility of represent-

ing a function f(x) on (0,  °°) by a Neumann series of the form

00

(1.1) ^anJv+2n+i(x),
?i=0

in which v is an arbitrary real number. As a consequence of the identity [9,

p. 404](i)

«^ 0

¿-1/x(¿)/M(¿)¿¿ = 2t-1(a2 - ¿i2)"1 sin 2-1 (X - u)w (X + u > 0),

we conclude that the functions (2í'4-4« + 2)1/2/,+2n+i(¿) (» = 0, 1, • • • \P>— 1)

are orthonormal on the interval (0, oo ) with weight function t~\ Thus the co-

efficients anv corresponding to a function f(t) when v > — 1 are

/►  00

¿-1/(¿)/,+ 2n+1(¿)¿¿,

0

and the Neumann series (1.1) assumes the form

00 f,  00

SÁX)   =   Z 2(" + 2W +  l)J*+2n+l(x)    j       ¿-1/W/,+2n+l(¿)¿¿.
ra-0 ^ 0

If x~'f(x), regarded as a function of a complex variable x, is regular

and odd interior to a circle (\x\ =p), then it is known [9, pp. 524-525] that

f(x) admits an expansion of the form (1.1) which converges to f(x) inside the

circle (|x| =p). Moreover, if x~"f(x) = ^"_0 bn^c2n+1, then it is true that

n

a„ = 2(v + 2« + 1) X) 2"+2'"i> + » + m + l)im,/(» - m) !.
m=0

The theory for functions of a real variable has been restricted in the past

entirely to the case when v = 0. The results of the earlier writers [10, 4, l]

have been summarized in [9, pp. 533-535] where it is shown that when f(t)

is in L(0, °°),/(0 + ) exists and has the value zero(2), and the derivative f'(t)

Presented to the Society, April 25, 1947; received by the editors August 15, 1947.

(*) Numbers in brackets refer to the bibliography at the end of the paper.

(2) This hypothesis is not explicitly stated by Watson.
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exists and is continuous on (0, X), then the series So(x) converges to/(x) on

(0, X) if and only if the function

(1.3) Fit) m fit) -- r\-V,(v)[f(t + v) - f(t - v)]dv
2 J o

vanishes identically on (0, X). Here f(t) is defined for negative values of t

as —/( — /). More recently Titchmarsh [7, pp. 352-358] has shown that the

same conclusion is valid provided that /(¿)(l+¿3)-1'2 is in L(0, oo), /(0+)

exists and has the value zero, and the derivative exists and is continuous on

(0, X). He also investigated solutions of the equation F(v)=0.

For the case of an arbitrary real number v we shall weaken Titchmarsh's

integrability conditions and consider the class *A, of functions/(¿) possessing

the properties that t"f(t) / (l+t)p+v+1>2 is in 1,(0, ») for some nonnegative

integer p and that the limits

(1.4) f      ¿-3/2/(¿) cos (t-wr H-x J dt,

/»-•" / 1 1     \
(1.5) I       ¿-6'2/(¿) siní¿-vw H-Adt

exist when a > 0. When p = 1 and v = 0 these conditions are equivalent to those

of Titchmarsh. When p = l the integrals (1.4) and (1.5) are absolutely con-

vergent and when p = 2 the integral (1.5) is. In order to make full use of our

hypotheses we shall assume throughout the rest of the paper (as we may

without any loss of generality) that p 5:3.

The class zA, is significant because of the following theorem.

Theorem 1.1. If f(t) belongs to zAv, then the series

oo /» —,00

(1.6) x~"sv(x) = X) 2(? + 2» + \)x-"Jr+2n+iix) I       t-lfit)J,+2n+lit)dt
n-0 J 0

defines an entire function x~"s,ix).

It is not difficult to extend the analysis in [9, pp. 533-535] to which we

have already referred and to prove the following theorem.

Theorem 1.2. Let v = 0 or — 1 and x>0. If fit) belongs to zA, and is ab-

solutely continuous on (0, x) then we have that

(1.7) s,ix) = /(* -) - /(0 +)/„(*) -  f   Joix - v)Fiv)dv,
J 0

where F(v) is defined by equation (1.3) and f(t) is defined for negative values of

tas -i-iyf(-t).
An attempt to generalize this result to zA, and s„ fails, as we shall see
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in §8, because of the exceptional character of the values 0 and — 1 for v in

an analytical expression for the particular Neumann series

00

(1.8) X 2(v + 2« + l)/,+2n+1(z)/,+2n+1(¿).
71-0

Since this is the case other methods must be devised to handle the situa-

tion when ^(ïz-f-1) =í0. These methods are found by generalizing a result of

Bateman [l ] who discovered an entirely different analytical expression for the

series (1.8) when v = 0. The result obtained in this manner is stated in the

following theorem.

Theorem 1.3. Suppose that x>0 and that either v> — 1 or v is an integer.

Then iff(t) belongs to <vf„ and is of bounded variation in some neighborhood of x,

we have that

sÁx) = — {/(*+)+/(*-):

(1.9)
2

x
it

/ —» oo /» N

rJ,(xr)dr |     fit)J„itr)dt.
1 "a

The proofs of these three theorems depend upon a number of auxiliary re-

sults on Bessel functions which are stated as lemmas and proved in §§2, 3, 4

and 5. Although zA, is defined only for real values of v, we have endeavored to

establish some of these auxiliary results for as wide a class of values of v as pos-

sible. In particular this is true in §2 where we shall derive various analytical

expressions for the sum of the series (1.8). The proof of Theorem 1.1 is given in

§6 and the proof of Theorem 1.2 in §7. A generalization of the methods

used to prove Theorem 1.2 is carried as far as possible when viy-\-\)-£§ in

§8. In the proof of Theorem 1.3 we need to know conditions on v and git)

which insure the validity of the Hankei formula [9, p. 456]

/l  00 >»  00rJ,ixr)dr I     tgit)J\itr)dt,
0 •/ 0

when git) is zero except on an interval interior to (0, oo). A result of this

nature which is somewhat more general than that stated by Watson [9,

p. 456] is stated and proved in §9. With the help of this result Theorem

1.3 is proved quite easily in §10. If fit) is subjected to more stringent

integrability requirements, the limit in equation (1.9) may be written as

J:i"°rJ,(xr)drf0~"°f(t)J„(tr)dt. A result of this nature is given in §11, and the

methods used to prove it are also used to prove that the Hankei formula

(1.10) holds under considerably weaker hypotheses than those generally as-

sumed. In §12 we consider very briefly expansions of functions fix) defined

over ( —   oo ,   oo ) into series of the form
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(l.li) 2>«/.(*).
n-0

Finally, in §13 we discuss two simple examples when v = 0.

2. Summation of a particular Neumann  series.  Of  fundamental   im-

portance for our theory is the series

00

(j>y(x,  t)   =   X) 2(v +  2« +   l)/„+2n+l(x)/„+2„+l(¿).
n=0

This series is the sum of the alternate terms of the series

OO

M*,  t)   =   X) 2(" +  n)Jv+n(x)Jv+n(t).
71=0

Kapteyn [3] deduced the formula for 4>o(x, t) which is given in Lemma 2.1

below and Watson [9, pp. 532-533] used similar methods to derive equation

(2.3) for \pv(x, t), although this formula is not so generally valid as he asserted.

Titchmarsh [7, pp. 329-331] has used entirely different methods to obtain

equation (2.4) for \po(x, t). A third approach was made by Bateman [l] who

obtained (with a typographical error) (2.10) for (po(x, t) given in Lemma 2.3.

We are going to prove the following lemma.

Lemma 2.1. If v is an integer such that v(v-\-l) ¿¿0, then

1 f '
(pv(x, t) = — xv I    J„+iit — v)\ix — v)  :/„(x — v)

2 Jo

— (x + v)~lJvix + v)\dv
(2.1) ^ ,      '

-\-xiv+\)  |     /,(/ -»){(*- v)-lJv+lix - v)

2 Jo

+ ix + v)-xJ,+iix + v)]dv.

This formula is still valid when — l<i?(j>) provided that the real parts of x, t

and x — t are all positive. In the exceptional cases when viv-\-\)=Q we have that

1 f ' i
fpoix, t) = — x I    Jo(t — v) \ (x — v)~xJiix — v)

2 Jo

+ ix + v)-iJ1ix + v)}dv,
(  •   } 1 Í

4>-iix, ¿) = — x |    J0(¿ — v) [ ix — »)_1/i(x — !))
2     J o

— (x + !))_1/i(x + v) ] dv.

Lemma 2.1 is an immediate consequence of the following lemma.

Lemma 2.2. If v is an integer such that viv— 1) 5¿ 0, ¿Ae«
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\f/v(x, ¿) = xiv — 1)  I     (x — d)_1/„_i(x — v)J,it — v)dv
J 0

(2.3)

+ xv I     (x — v)~xJ,ix — v)Jv-iit — v)dv.
J 0

This formula is still valid when 0<R(v) provided that the real parts of x, t and

x — t are all positive. In the exceptional cases when v(v—l) =0 we have that

x |     (x — v)
J 0

(2.4) ^o(x, t) = ^i(x, t) = x \     ix - vy^Jxix - v)Joit - v)dv.
•d 0

To deduce Lemma 2.1 from Lemma 2.2 we merely observe that 0,(x, t)

= 2-1 [^+i(x, ¿) +<r*«'+«^,+1(-*, ¿) ].

Watson [9, p. 533] asserted that equation (2.3) was valid provided that

R(v)>0. But it is quite clear that the right-hand side of this equation fails

to exist when 0 <R(v) < 1 and x <t because of the singularity of the integrand

at v = x. Moreover, if ^ = 1/2 and x and ¿ are equal real numbers, the right-

hand side of equation (2.3) vanishes identically, whereas the left-hand side

is surely positive. In view of these remarks it seems worthwhile to examine

carefully the method of proof Watson suggests to find out just what is true.

The main tool is the formula [9, p. 176]

(2.5) /„(z) = (l/2iri)  I     u-"-1 exp < — z(u - w"1) \ du,

where C, is the familiar loop contour beginning at — oo in the third quadrant,

circling the origin once in the positive direction, and returning to — oo in

the second quadrant. This formula is valid for an arbitrary v when R(z) >0.

When v is an integer we can, and do, choose Cv as a circle with center at the

origin [9, p. 20] and then the formula is valid for all values of z.

When Rix)>0 and i?(¿)>0 we have from the identity [9, p. 45]

(2.6) /,+i(x) + J^iix) = 2ßx-Uix),

1 °°
i',(x, t) = —- x X {/>.+n+i(x) + /,,+n_i(x) }/„+„(/)

2 Ti-o

87T

T Í     í   ¿ (s-'-n~2 + s-'-")u-'-"-1
'    J C„   J C„ n=0

(1 1 )
X exp   <— x(s — s-1) H-t(u — u~x) > duds

x    r     r     (s2 + 1) exp {x(s - s^)/2 + t(u - u~1)/2)
- I       I       -> duds,
87T2JC   Jc, s"+V(sw-l) j
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the interchange of summation and integration being valid provided that

\su\ ^A > 1, where s and u are any points on their respective contours. Let

us define

/(/) = - I    u~v(su — l)"1 exp <—/(« — u~l)ldu.
2-n-i J cv i 2 )

Then we find that

I'it) -\-is - srl)Iit) =—: f   is-1 + »-1)«-' exp -j— ¿(« - M"1)]-du

7(0) = —   I    u-'isu - l)~ldu.
2-KlJ c„

We shall show presently that 7(0) =0 when Riv) >0, although it is clear that

1(0) =s"~1 when v is a nonpositive integer (for in this case \/s lies inside the

circle d and is the only singularity of the integrand). Taking this result

for granted we conclude that when i?(p)>0

Ux, t)=~f     Í ' s-'-is2 + 1) exp |4 (s - *-*)<* - v)\
(2.7) 8iri J cv J o U ;

X {J,(t - v) + s-V^iit - v)]dvds.

If i?(i')>0 and i?(x —¿)>0 we may interchange the order of integration in

equation (2.7) and find with the help of equation (2.5) that

(2.8)

1       f '
^„(x, ¿) = — x I    /v(¿ — n) [/,_2(x — v) + Jvix — v)]dv

4     Jo

1       f '
-\-x I    /,_i(¿ — v) [7„_i(x — ») + /„+i(x — tí) ]¿í).

4     Jo

In view of equation (2.6), equations (2.8) and (2.3) are equivalent.

This verifies equation (2.3) when the real parts of v, x, t and x — t are all

positive. When v is a positive integer, equation (2.7) is valid for all values of

x and t. When v is a nonpositive integer, an extra term of the form

— I    7/(0)(s2 + I)»"""1 exp {— is - s^)ix - t)\ds
4;r¿ JCy i 2 )

must be added to the right-hand side of equation (2.7). Since 1(0) =s"-1, it

is seen with the help of equations (2.5) and (2.6) that this term has the value

zero. Hence equation (2.7) is valid for all values of x and t when v is any
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integer. The interchange of order of integration is trivial since C, is a circle

and so equation (2.8) is valid for all values of x and ¿. When ^ = 0 or 1, equa-

tion (2.8) reduces to equation (2.4) and otherwise to equation (2.3). This

completes the proof of Lemma 2.2 except for proving that 1(0) =0 when

Riv)>0.

To establish this result we use the well known result [ll, p. 245 ]

1/T(v + m + 1) = ■—- I     w-y~m~1ewdw.
2iri J cr

Set w = au where a>0. Then

a"+m/Tiv + m + 1) = —- I    u-^-m~xeaudu,

2x¿ J c,

K s    c
a"]C ia/s)m/Tiv + m + 1) =-: J     u~'isu — lyWHu,

m-o 2iriJ cv

the interchange of integration and summation being valid since \su\ ^A > 1.

Since the integral on the right converges uniformly in a when 0 ^ a and

0<i?(i'), it approaches 7(0) as a approaches 0 through positive values. When

Riv)>0 the left-hand side clearly approaches 0. Therefore, 7(0) =0 when

i?(j')>0, as desired.

We shall now generalize Bateman's analysis [l] and prove the following

lemma.

Lemma 2.3. For all values of v,x and t we have that

(2.9) 4>,ix, t) = { x¿/(x2 - ¿2)} {*/„+1(x)/„(¿) - ¿7„(x)7,+i(¿)},

so that when Riv) > — 1 or v is an integer we have that

(2.10) <p,ix,t) = xt\    Jyixr)Jvitr)rdr.
J o

We shall refer to the class of numbers v which are either integers or have

a real part greater than — 1 so often that it is worthwhile to introduce the

letter V to stand for this class.

The proof we are about to give of Lemma 2.3 is not a generalization of

Bateman's analysis when v = 0. He used properties of Legendre polynomials

which do not seem to have an obvious extension to the case when v^0. Our

proof depends upon the Lommel polynomials 7?mfl(x) which are defined as

[9, p. 296]

Rm,(x)= E(-1)M— x)       TÍp+m-k)im-k)l/k\TÍp+k)im-2k)l,
¿..o \ 2     /

where [m/2] is the largest integer which does not exceed m/2. These poly-
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nomials have the property that [9, p. 294]

(2.11) /„+2n+i(x) = R2n.,+iix)Jr+iix) — R2n_iiV+2ix)J,ix).

The equivalence of equations (2.9) and (2.10) when v is in V follows

from [9, p. 134].

Let 0„(x, t) denote the right-hand side of equation (2.9). Since t~~"0r(x, t)

is an entire odd function of t when x^O, it follows from the theory outlined

in the second paragraph of the introduction that 0t(x, t) may be expanded

into a convergent series of the form 0„(x, t) = Et7-o Anr(x)Jr+2n+i(t). More-

over, if the power series for t~v0,(x, t) is of the form

oo

¿-0,(x, 0 - £ Bm,ix)t2™+\

then we have that

n

A„{x) = 2(y + 2» + 1) E 2'+2T(i< + » + m + l)5»,(*)/(» - m) !.
m=0

It is easy to show with the help of the power series for /„(¿) and J>.+i(¿) that

[9, p. 40]

m

Bm„ix) = 7,+i(x)E i-l)>x2>-2™/2>+2>jlTiv + j + 1)
i-o

m—1

- /,(*) E (- i)'x2'-2m+1/2»+!!'+iy!r(>' + j + 2),

j-0

whence it follows that

(2.12) A„{x) = 20» + 2» + l){F„(x)J.+i(x) - (?„,(*)/,(*)},

where F„,(x) and G„K(x) are defined as follows:

n      m

FnÁx)= E E (-l)'T(H-n+«+l)
m=0 2=0

n   m—1

G.,(*)- E E (-l)T(H-n+«+l)
771=0   7=0

If m=j-\-n — k, we find that F„„(x) may be written as follows:

¿(- *)      E (-i)ír(v+2n+y-É+i)/;!r(v+y+i)(*-i/)i
4—0 \ 2       / ,_o

"    / 1        \ 2*—2n

= E(— *)        r(»'+2»-Ä+l)F(-Ä,»'+2»-*+l;y+l;l)/*!r(»'+l)
i-o \ 2     /

T-
8 j—2 m     /

/i!r(v+7 + l)(n-»)!,

H'
2i-2ro+l      /

/ j\Tiv+j+2)in-m)\.
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= £(}*)

= 7^2n,v+l(x).

2fc—2n

(-l)*T(I'+2»-Ä+l)(2»-Ä)!/r(j/+H-jfe)*!(2M-2Ä)!

Similarly, we prove that G„v(x) =R2n-i,,+2ix). It then follows from equations

(2.11) and (2.12) that Anv(x) =2iv + 2n + l)J,+2n+iix). This completes the

proof of Lemma 2.3.

3. Recursion formulas for the remainder in the asymptotic expansion of

Jn(t). We shall use quite frequently the expansion

[nip

cos(¿-5fl)E(-l)"'(M, 2m)/(2¿)2-

(3-D
mp-i -I

- sin it - 8„) £ (-l)mG", 2m + l)/(20*"+1    + Ä„(/; p),

where 5)1=/i7r/2+x/4, mp= [ip — 2)/2] is the greatest integer not exceeding

ip-2)/2, and

(3.2) (M, q) = rO* + q + l/2)/gir0* - ? + 1/2).

Here p is an arbitrary complex number. It is therefore important to investi-

gate the behavior of the remainder Ry.it; p) as a function of p. Our first result

is stated in the following lemma.

Lemma 3.1. If p is even we have that

-Rji+i + Rp—i ~ 2pt~1R^

= 2paptll2-p cos (¿ - ôjTip + p - 1.5)/r(/x - p + 2.5),

while if p is odd we replace cos (¿ — 5„) by — sin (¿ — ô„). TTiere ap ¿5 defined as

follows: ap= (-l)m>(2/ir)1l22p-2(p-2)L

If we use equations (3.1) and (2.6) we find that the left-hand side of the

above equation has the value

(2/*/)1'2 cos (/-5„) U^p(-1)»'(m, 2mp)/(2t)1+2m>

mp-i -i

- E (-l)'"{(M+l,2m+l)-(M-l,2m+l)-4M(M,2m)}/(2¿)2'"+i

(3.3) "~° J

-(2/ir¿)1'2 sin it-dMinil-AJi-l)«*-^, 2mp)/i2t)2+2mv-i

mv -l

+ E (-1H(m+1, 2m)-ip-\, 2m)-Mp, 2m-l)}/(2¿)2'»   ,
m-0 J
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where Ap = 0 or 1 according as mp-\ = mp or mp-i<mp, that is, according as

p is odd or even. It is easy to see that

Ox + Í, f) - 0» - 1, q) - 4ju(M, q - 1) = 0

for every nonnegative integer q. The expression (3.3) therefore reduces to the

right-hand side of the equation in the lemma.

The result of Lemma 3.1 clearly provides a generalization of equation

(2.6) to which it reduces when p = 1. A generalization of the identity [9, p. 45 ]

(3.4) 27; (x) - f-xix) + 7„+1(x) = 0

is supplied by the following lemma.

Lemma 3.2. If p is even we have that

27?M — R»-i + R/i+i

= (2f - 3)apt1<2-p cos (¿ - fyTip + p - 1.5)/r(M - p+ 2.5),

while if p is odd we replace cos (¿ — S„) by — sin (¿ —5„).

If we use equation (3.4) we find that the left-hand side of the above equa-

tion multiplied by (7r¿/2)1/2 is equal to

cos (*-«„) r2(4»p+l)¿p(-l)"»Gí, 2mí,)/(2¿)1+2'"»

77177-1

+ E i-l)m{2ip, 2«+l)-0*-l, 2m+l)-(u+l, 2«+l)
771=0

+ (8f»+2)0i, 2m)}/(2¿)2-+1J

(3.5)

+ sin (í-ím)[~2(3+4«,_1)(¿1i-1)(-1)«>.(m. l + 2mp_1)/(2¿)2+2»^>l

+ E (-1)*"{2(m, 2m)-(M-l, 2m)-Gu+l, 2»)

+ (8m-2)(M, 2m-l)}/(2¿)2"'J,

where Ap is defined as in the proof of Lemma 3.1. It is easy to see that

2(M, q) - 0* - 1, q)-iu+ 1, q) + (4? - 2)0», ? - 1) = 0

for every nonnegative integer q. The expression (3.5) therefore reduces to

(7r¿/2)1/2 times the right-hand side of the equation in the lemma.

Although we shall use Lemma 3.1 in its entirety we shall only use Lemma

3.2 in order to prove the following lemma.
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Lemma 3.3. As a function of t we have that

(3.6) *,(#; p) = Oit1'2-»),       Ri it; p) = Oit1'2-»).

The first equation is well known [9, 198-199]. The second equation fol-

lows from Lemma 3.2 and the first equation.

It is quite plain that by mathematical induction we can show that

RpHt; p) —Oit1'2-") for any nonnegative integer q.

4. Some auxiliary lemmas. In this section we shall prove a few miscel-

laneous results needed for the proofs of the main theorems.

Lemma 4.1. There exist nonpositive functions ag(x, p) iO^q^p — 2; 0<x)

such that if
P-2

(4.1) «„(*, p) = E <*«(*. P)ß2g>
3=0

then we have that

U,¡+i — 2/UX-1WM — Mji-l

â 2M I apT(ß + p - l.5)/Tip- p+ 2.5)|     (** 2).

Define ßp as max„iè2 \T(p.+p-i.5)/p2p-iTip-p + 2.5)\. The existence of

ßP follows from well known properties of the gamma function [8, p. 58]. We

define aa(x, p) by recursion as follows:

p-2

(4.3) aP^2(x, p) = — x| ap\ ßp,    aqix, p) = x E «*»(*• P)t™C2q+i.
m=q+l

Hence aq(x, p)^0. If »„(*, p) is defined by equation (4.1), then the left-

hand side of the inequality (4.2) has the value 21 ap\ ßpp2p~%. This is seen in

the following manner:

E <*•»(*- P)[b + l)2m - 0* - l)2m] - 2x-»E a«(*. Í)m29+1
m—0 q=0

p—2 m—1 p—2

= 2 E «»(*. />) E 2mC23+iM23+1 - 2x-!E at(x, p)a2"+1
m=0 q=0 q=0

p— 3 p—2 p—2

= 2 Em25+1 E   «-»O- Ph™C2q+1 - 2x-!E »«(*. /0m2'+1

= - 2x-1ap_2(x, p) p2p~3 = 2 | ap | ¡5pM2p-3,

by virtue of equation (4.3). The inequality (4.2) now follows from the defini-

tion of ßp.

Lemma 4.2. There exists a nonnegative function BPix) such that

(4.4) t»-1'21 *,(<; P) I á BPix)K¿x) + «„(*, #)
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whenever ¿^x>0 and p^O.

Define X to be p.— [p], so that 0^X<1, and then define BPix) so that

BPix)Koix) = - u2ix, p) +    l.u.b.     {¿"-1'2! R,it; p)\}.

It follows from this definition that Bp{x) ^0 and, when t^x, that

¿"-1'21 Riit; p) | g «¡(a?, p) + BPix)Koix),

t»-1'2] J?x+i(¿; p) | ^ «2(x, p) + BPix)Koix).

Since o5(x, p) ^0, u^fx, p) is a decreasing function of p. Therefore,

»2(x, p) ^ «x+i(x, p) ^ uxix, p).

Moreover, it follows from the identity [9, p. 185]

/>  00

cosh py exp (— x cosh y)¿y
o

that X0(x) ^Xx(x) SXx+i(x). We conclude that the inequality (4.4) holds

when p is replaced by X or by X + l, and hence whenever 0^p<2. Suppose

that p}±2 and that the inequality (4.4) holds for p and for p— 1. Then we

have from Lemma 3.1 when t^x that

t»-1'21 R,+iit; p) | á 2ßx-Hp-1'21 £„(/; f) | + ¿"-1'21 R^it; p) |

+ 2p\apTiß + p- l.5)/Tip- í+ 2.S)|

^ BPix) 12uxr1Kltix) + X„_i(x)} + Up+iix, p)

— [uM+1ix, p) - 2px~1ullix, p) - m„_i(x, p)

- 2M | apr(M + p - 1.5)/r(/i- i + 2.5)|J.

Since [9, p. 79] the coefficient of BPix) is X^+j^x), and since we have from

Lemma 4.1 that the term inside the square brackets is nonnegative, it follows

that the inequality (4.4) holds for ju + 1. This completes the induction and

verifies Lemma 4.2 for all nonnegative values of p.

Lemma 4.3. When x>0 and p>0 we have that

(4.5) K„(2x) 2¡ —Tip)x-".

We use the identity [9, p. 185]

K„ix) = r(p-\-V— xj   ir"1'2 f   (w2 + l)-"-i/2 cos xu du

to conclude that
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X,(2x) iru-i—jx-"^-1'2 f («2 + i)-*-»'»a« = — ro»)«~».

Lemma 4.4. When x¡±0 and p^O we have that

(4.6) l^(*)|$(-*)yr^+y).

This result is well known [9, p. 49].

5. Some general remarks about Neumann series. Before we take up the

proof of Theorem 1.1 in the next section, it is convenient to amplify some

remarks of Pincherle [6] (see also [9, pp. 526-527]) on the region of con-

vergence of arbitrary Neumann series of the form (1.1) in which v is a real

number and we do not assume the existence of a function fit) in terms of

which a„, may be defined by equation (1.2). We first prove the following

lemma.

Lemma 5.1. If the series (1.1) converges when x=ß, then

(5.1) am = o[T(v +2n+ 2)(2/0)"+2«+1].

Therefore, the series

(5.2) E a„x-"J,+2n+1ix)
71—0

converges absolutely-uniformly to an analytic function when \x\ < \ ß\.

If equation (5.1) did not hold, there would be a positive number e and an

increasing sequence {nk} of integers such that

| ant,, | > eTiv + 2nk + 2)(2/0)'+1+2»*.

Since the series (1.1) converges when x = ß, we have that

r(v + 2«, + 2)i2/ßy+1+2»*jr+l+2nkiß) = oil).

But we know that [9, p. 44]

y ß\       /r(, + 2«/t + 2)Wi + <?4,

in which (for sufficiently large k)

(5.3) | 0*| < exp <—\ß\2/iv + 2»i+2) j - 1.

Therefore, |l+0¡t| =o(l), so that lim*.» dk—— 1. Since it follows from the

inequality (5.3) that 0k approaches 0 and not —1, we have reached a con-

tradiction. This completes the proof that equation (5.1) is true.
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To prove the second part of the lemma, pick a number M such that

| a„| Í MTiv + 2« + 2)(2/j3)"+2n+1.

By virtue of Lemma 4.4 the series (5.2) is dominated by the series

00

M\ß\-'T,\ x/ß\2n+1 < + oo
71=0

when \x\ <\ß\ and v> — 1. If v£—-1 we apply the same argument to the

infinite series obtained by omitting the first 1 + [(— v —1)/2] terms of the

series (1.1). This completes the proof of the lemma.

Lemma 5.2. 7/¿&e series (1.1) converges to 0 on any interval of the real axis(3),

the coefficients any must all vanish.

For in this case the series (5.2) defines an analytic function a(x) which

vanishes everywhere in its region of analyticity, and in particular in a neigh-

borhood of the origin. Since the series is uniformly convergent we may

compute the derivatives of a(x) at the origin by termwise differentiation.

Thus we find that

0 = a^+^O) = E <**>{ x->J,+2n+iix) } <**■"
71-0

P / 1 \ v+2p+l

= E(-l)p-"M — ) (2p + l)\/ip - n)\Tiv + n + p + 2).
n=0 \ 2 /

We now find by an easy induction that a„» = 0 (w = 0, 1, • • • ).

6. Proof of Theorem 1.1. By virtue of Lemma 5.1 the proof of Theorem

1.1 requires merely a demonstration that the series (1.1) converges for every

positive value of x when v is real, ft) is in zA„ and

r1/(¿)7,+2n+i(¿)¿¿.
0

Suppose first that v> — 1. If we define

(6.1) añria) = 2iv + 2« + 1)  f   ¿-^(¿)J,+2n+i(i)^,
J 0

(6.2) aZiN) = 2(v + 2« + 1) f~ry(¿)/,+2n+1(¿)¿¿,
J AT

then any = a'nli2x)-\-a¡„i2x). We see from Lemma 4.4 that

(3) It is clear that this lemma may be extended to other sets of points besides real intervals.

The present lemma, however, is sufficient for the discussion of the uniqueness of representation

of a function on (0, » ) by a Neumann series.
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/> 2z f | f(f) | dt.
o

If we apply Lemma 4.4 again and remember that fit) is in zAr we conclude

that the series

00

E a'nvi2x)J,+2n+iix)
71=0

is convergent.

If we now use equation (3.1) with p replaced by <v + 2» + l we find that

| a"l2x) | g 2(v + 2« + 1) I" J   " r1 |/(¿)^+2n+i(¿; p) \ dt

/ 2 \    1/2   /    mp

+ ( —)     1 HCvim, 2x)iv+2n+ 1, 2m)/22'»
\ IT / V m=0

TTlp-l \     -1

+ E &(»». 2x)(v + 2« + 1, 2m + \)/22m+1\    ,
771=0 J    J

where dm, N) and S„(m, N) are defined as follows:

If-" /        1 1     \
dm, N) = t-<-im+V'2fit) cos ( ¿-ft + — n )

IJ w \        2 4     /

S„(m, X) =    f      ¿-«"•+5)/2/(¿) sin ( ¿-kx + — ir )
\Jn \        2 4     /

dt

dt

Since/(¿) is in zA„, there is a number M,iN) such that

C,(«, X) ^ M„(X),       5,(», X) g M,(N)    (0 ^ m ^ mp),

/i oo
¿-p-1/2 | f(fi |  ¿/  ̂    Jf,(iV).

w

It now follows from Lemmas 4.2 and 4.3 that

/, oo

¿-1|/(¿)£K+2n+l(<;/')U¿
tJ

g M,(2x)[7ip(2x)X,+2„+i(2x) + »„+2n+1(2x, p)]

^ Mri2x)[BPi2x)Tiv + 2« + l)/2x'+2«+1 + «,+2n+1(2x, p)].

We conclude from the above inequalities and Lemma 4.4 that the series

oo

E anv(2x)Jr+2„+i(x)
71=0
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is dominated by

2M,i2x) E^(— x) /Tiv+ 2n+ 1) V <BPi2x)Tiv + 2«+ l)/2x"+2»+1

(6.4)       -°U2     ' M

+ «,+2,i+i(2x; p) + (2/x)1'2E (" + 2» + 1, k)/2"\ .
k-0 )

If we examine the definitions (4.1) and (3.2) of m„(x, p) and (p, q) we see that

this last series is convergent.

It follows that the series (1.6) is convergent and defines an entire function

when v> — 1. The proof when v^— 1 may be made with the help of the

identity,

(6.5) s,(x) = E 2(f + 2» + l)/„+2„+1(x) I       ¿-»/(¿)7„+2n+i(/>^ + «*+*(*).
71=0 J   0

which is valid for any integer q such that q^i. \i v^—\ we may define q to

be 1+ [( —j»—1)/2]. Then v + 2q> —1. Since e/f„ is a subset of zA,+2q it follows

from our previous analysis that x-"-2qsv+2qix), and hence also x-"sv+2qix), is an

entire function. Since the finite series in equation (6.5) obviously becomes an

entire function after multiplication by x~", we conclude that x~"s,ix) is an

entire function for any real value of v. These remarks complete the proof of

Theorem 1.1.

The analysis used to prove Theorem 1.1 may be modified slightly and

used to prove the following lemma which asserts the possibility of inter-

changing the order of integration and summation in the definition of s„(x).

Lemma. 6.1. 7//(¿) is inzA, and x>0, then

(6.6) í,(x) =  f"V^)E 2(v + 2« + l)7,+2n+i(x)7,+2„+i(¿)¿¿.
J  0 71=0

Since the series

OO

t-^'frix, ¿) = E 2(" + 2» + l)7v+2n+i(x)7,+2n+i(¿)¿-1-"
71=0

converges uniformly in t on any finite interval, and since ¿"/(¿) is integrable

over any finite interval, it is sufficient to show that

(6.7) lim   E K:(A07,+2n+1(x) I = 0,
N="   n=0

in which a¡¿iN) is defined by equation (6.2). Since fit) is in zA„ for each posi-

tive e we can choose N0 so large that M,iN) <e and N>2x when N>N0
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and v> — 1. We conclude that the series (6.7) is dominated by the series

(6.4) in which the term M,(2x) is replaced by e. This proves the relation

(6.7) and hence also the lemma when v> — 1. When v^ — 1 we merely apply

the idea behind equation (6.5) to see that the relation (6.7) still holds.

For future reference we note as a consequence of the inequality (6.3)

that when f(t) is in zA, we have that

00

(6.8) lim  E I <C(a)/„+2n+i(aO | = 0,
«=»     71=0

in which a'„Xa) is defined by equation (6.1).

7. Proof of Theorem 1.2. From Lemmas 6.1 and 2.1 we conclude when

c=0or — 1 that

1        /» —»00 /»  X

i„(x) = - I       fit)dt I     Z„(¿, v)Joix — v)dv,
2 J o Jo

where Lr(t, v) is defined as follows:

L,it, v) = it- t.)-1/1(¿ -v) + (-l)'(f + vyu.it + v).

If it is permissible to interchange the order of integration we find that

1 /*  X /* —»so

sÁx) = — I    7o(x - v)dv j       t-Viit) [fv + ¿) - /(» - ¿) }dt

(7.1) 2J° J°

Joix - v)dv I    rxJiit)fiv - t)dt,
o Jo

provided that/(¿) be defined for negative values of ¿as — ( —1)'/( — t). This

interchange will be valid provided that the integral

/;
L,it, v)fit)dt

converges uniformly in v on the interval (0, x). That this is so follows from

the definition of the class zA, if we use equation (3.1) to see that

iir/2Y'2Lrit, v) = (x/2)1'2{(¿ - vY^it - v; p)

+ (_l)'(i+ „)-*£,(*+ »;*)}

— (4, cos v + Bv sin v) cos (¿ + x/4)

— iAy+i cos v — B,+i sin v) sin (/ + x/4),

in which A, and B, are defined as follows:

flip

A, =  E (-!)"(!. 2w){(¿ - z))-<4'»+3)/2 + (-1)'(¿+ Z))-(^+3)/2}2-<^+3)'2,
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77>p-l

By=  E (-l)m(l, 2m+ 1){(¿-d)-«4^6"2

(_1)"(t; -j- j,)-(4m+S)/2J2-(47n+5)/2_

We now transform the second integral in equation (7.1) with the help of

the identity [9, p. 380] f%t-lJiit)J<>iu—t)dt = Ji(u), and find that it is equal to

/» X        f*  tí y» X

I    7o(« - ¿)/(x - «)r1/i(¿)d¿áí) =   I    Jiiu)fix - u)du
o   J o Jo

-/(*-)- /(0 +)7o(x) -  f   Joiu)f'ix - u)du
J 0

=/(* -) - /(o +)/o(x) - r /o(x - P)/(«)<ft).
J 0

Introducing the function F(v) defined by equation (1.3) we see that equation

(1.7) holds, as desired.

Corollary. Suppose that v(v-\-V) =0, that f(t) belongs to zAv, and that f(t)

is absolutely continuous on (0, X). Then f(x) =s,(x) on the open interval (0, X)

if and only if

(7.2) /(0+)=0,       i(»)ffl    on    (0, X).

By virtue of equation (1.7) and the continuity of/(x) when 0<x<.X it is

clear that s„(x) =/(x) when equations (7.2) hold. Suppose conversely that

s,ix)=fx) on (0, X). Then on (0, X)

/(0 +)/o(x) + f   7o(x - v)Fiv)dv = 0.
J o

Letting x approach zero we find immediately that/(0+) =0, and hence that

(7.3) f  Jo(x- v)Fiv)dv = 0.
J o

By Theorem 1.1, Fiv) is continuous on (0, X) and so we may differentiate

equation (7.3) to obtain

F(x) =  f  7j(x - v)F(v)dv.
J 0

This equation is an integral equation of Volterra type of the second kind

and hence [5, p. 14] has the unique continuous solution, Fiv)=0 on (0, X),

since the kernel 7i(x — v) is bounded.

8. Extension of Theorem 1.2 for a general values of v. When viv-\-\)^Q
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an attempt to obtain a result like that of Theorem 1.2 with the help of equa-

tion (2.1) evidently fails, since it is necessary to know<£„(x, ¿) when x —¿<0,

and equation (2.1) does not hold when x — ¿<0 unless v is an integer. Even

then the best we can do is to prove the following theorem.

Theorem 8.1. When v is an integer such that viv-\-\) ¿¿0 and fit) is in zA„

we have that

1   rx r~"*
s„(x) = —v |    7y+i(x — v)dv I       u-T-Jviu) [/(« + v) — fiu — v)]du

2    J o Jo

1 rx (•-*-
-\-iv + 1)  I    7„(x — v)dv I      m_17„+i(m) [fiu + v) + /(« — v) ¡du,

2 Jo Jo

provided that ft) be defined for negative values of t as —(— 1 )'/( — /).

We conclude from Lemmas 6.1 and 2.1 that

1 « — rx
s,ix) = — v J       ft)dt I    H,it, v)Jr+iix - v)dv

2 J o Jo

+ — (» + 1)  f ~*f(t)dt f   Kvit, v)Jvix - v)dv = o-/ + ai ,
2 Jo Jo

where Hit, v) and K,it, v) are defined as follows:

H,{t, v) = it- t»)-1/,(¿ - v) - it + »)-17„(¿ + v),

K,it, v) = (¿ - »)-1/,+i(¿ - i») + (¿ + v)-Uy+1it + s).

Manipulations like those in the preceding section show that

J /• Z /» —.00

a',  = — j» J    Jw+1ix — c)d» í       77„(¿, v)fit)dt
2    J o Jo

1 rx f—**
= — v I    Jv+iix — v)dv I       m_1/„(w) [fiu + v) — fiu — v) ¡du

2 J o Jo

7„+i(x - v)dv I    r17»(¿)/(¿ - n)á¿,
o Jo

/• X n —.oo

<r" = — iv + 1) I    J,ix - v)dv I       #„(<, v)ft)dt
2 Jo Jo

1 rx r->"
— — iv + 1)  I    7„(x — v)dv I       m_1/„+i(«) [/(« + ») + /(« — v) ]du

2 Jo Jo

/> x j% v
/,(* - v)dv I    ¿-17,+i(¿)/(¿ - »)<«,

o Jo
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the inversions of order of integration being justified by the uniform con-

vergence of the integrals

P°°77,(¿, v)ft)dt, f~*'K,(t, v)ft)dt
J o       ■ Jo

when Q-^vèx. Since we have when v is a nonzero integer and p> — 1 that [9,

p. 380]

v Í    flJß(u - t)J,it)dt = /„+,(«).
Jo

it is clear when ^(^ + 1) ?=0 that

/» X /» VJy+iix - v)dv i    ¿-1/,(¿)/(¿ - v)dt
o Jo

/* x /% v
J.ix - v)dv I    r1J,+i(¿)/(¿ - v)dt.

o Jo

Theorem 8.1 now follows from the definitions of a[ and cr".

9. An elementary Hankel formula. In order to prove Theorem 1.3 we

shall need the Hankel identity

/l  00 •»  00rJ,ixr)dr   I    tgit)J„itr)dt,
o Jo

which is known [9, p. 456], [7, p. 240] to hold under certain restrictions on

v and git). Ultimately (see Theorem 11.2 below) we are going to establish the

validity of equation (9.1) under much weaker restrictions which do not imply

the absolute convergence of the infinite integrals. For the present, however, it

is sufficient to restrict attention to functions g(t) which vanish outside of a

finite interval (a, N), where 0<a<N. Concerning such functions we can

use the asymptotic expansion (3.1) to prove the following theorem.

Theorem 9.1. Suppose that (i) 0<a<x<N, (ii) g(¿) is in Lia, N), (iii)

git) is of bounded variation in some neighborhood of the point x, and (iv) v is

in F(4). Then we have that

(9.2) — [gix +) + gix -)]  =  \~*~rj,ixr)dr f   tgit)Utr)dt.
2 Jo Ja

An attempt was made in [2, pp. 96-97] to prove the validity of equation

(9.2) when (i) and (iv) are true and g(¿) satisfies Dirichlet's conditions on

(a, N). The proof there given seems incomplete because of a failure to discuss

(4) See the paragraph just following Lemma 2.3 for the definition of V.
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adequately the remainder terms in the asymptotic expansion for /„(y).

Watson [9, p. 464] has made a similar criticism of the original proof of

Hankel.

Let (p(x) stand for the right-hand side of equation (9.2). Then

rJ,ixr)dr I      tgit)Jritr)dt
0 Ja

/. N phtgit)dt I    rJ,ixr)J,itr)dr.
a J 0 ■    ■

When v is in F we have from [9, p. 134] that

/»»
(x2 - t2)-Hgit)Koix, t, h)dt,

a

in which Koix, t, h) is defined as follows:

Koix, t, h) = h{xJ,+1ixh)J,ith) - tJ„(x/z)7,+iith)}.

We have from equations (3.1) that

J,iu) = (2/xw)1'2 cos (w - 5,) + R,iu; 2),

R„iu; 2) = - (4ív2 - l)(32xw3)-1/2 sin (m - ô„) + £,(«; 3).

Hence we have that 7t"o(x, ¿, h) = Ei-i Ki(x, t, h), in which K,(x, t, h) are

defined as follows:

Ki = {l/w(xty2} {it - x) cos [(x + t)h - vw] + (x + ¿) sin (x - t)h],

K2 = - {(4v2 - l)(x2 - ¿2)/4xA(*V)1/2} sin ixh - Ô„) sin (¿Ä - 8t),

K3 = i2h/ir)1'2{x1'2Rrith; 3) sin ixh - Sy) - t^R^xh; 3) sin (¿& - 5„)},

Ki = (2Vx)1/2{ xt-^Ry+iixh; 3) cos (xA - 5„) - tx-ll2R,+iith; 3) cos (¿A -&,)},

Ki = h{xR,+1ixh; 2)R,ith; 2) - tR.ixh; 2)R,+1ith; 2)].

Let us define <£,-(x, h) as follows:

(bi(x, h) =   f    (x2 - t2)-Hgit)Kiix, t, h)dt.

Then it is clear that

it + x)-1(¿/x)1/2g(¿) cos [(x + t)h - vir]dt
a

+ x-1 I     (¿/x)x'2g(¿)(x - t)-1 sin (x - ¿)A<7¿.
.     - Ja

Since g(¿) satisfies conditions (i), (ii) and (iii) it follows from well known



380 J. E. WILKINS [September

results  [7,  pp. 11, 25] that lim,,.«, <¿i(x, Â)=2-1{g(ie+)+g(x;-)}.  More-

over,

/,iV

¿"1/2g(¿) sin ixh - 5„) sin (¿A - ôr)dt
a

= oihr1).

We shall show that <£<(x, h) = 0(A~1) when i = 3, 4 or 5, and this will be suffi-

cient to prove the theorem.

Consider first i£3(x, t, h). Using the mean value theorem we see that

/ 1 V'2 1
( — x/Aj    Ksix, t, h)/ix - t) = — y-V'R^th; 3) sin iyh - 5r)

+ hy1'2R,ith; 3) cos iyh - 5„)

- ht^Rl iyh; 3) smith- Ô,),

where y is between x and t. As a consequence of Lemma 3.3, the right-hand

side is 0(A_3/2) uniformly in x and t when 0<aí¡x, t^N. Hence,

rN
0,(*, A) =  I     (x + ¿)"1¿g(¿)0(A-1)á¿ = OÍA"1).

J a

It is plain that a similar use of the mean value theorem and of Lemma 3.3

is sufficient to prove that 4nix, A) =0(A_1), </>s(x, A) =0(A_1).

10. Proof of Theorem 1.3. Suppose that x>0, that i> is a real number

belonging to the class V, and that/(¿) is in zA, and of bounded variation near

the point x. Choose a and N arbitrarily so that a<x<N and define/(iV, a, ¿)

to be/(¿) if a^t^N and zero otherwise. It is clear that fiN, a, t) is in zA, if

fit) is, and we conclude from Lemma 6.1 that if

•0 /» —.00

*,(#, a, x) = E 2(v + 2« + l)7,+2„+i(x) |       *-»/(#, a, ¿)7,+2n+1(¿)<¿¿
7i=o Ja

is the Neumann series expansion for fiN, a, t), then

/• —»00

s„(¿V, a, x) =   I       tr^iN, a, ¿)<^„(x, t)dt,
J o

whence it follows from equation (2.10) that

/' —.00 /»   IfiN, a, t)dt I    Jyixr)I,itr)rdr.
o Jo

Since /(TV, a, /) = 0 when t > N we may invert the order of integration and

find that
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s,iN, a, x) = x I    rJ,ixr)dr I     ft)Jritr)dt,
Jo Ja

/»—.oo /» AT
rJ,ixr)dr I    fit)J,itr)dt

0 Jo

rj,ixr)dr J     ft)J,itr)dt.

Since g(¿) =¿_1/(¿) satisfies the conditions of Theorem 9.1, we have that

s„(iV, a, x) = — {fx +) + /(x -)} - x rl,ixr)dr \     ft)J„itr)dt.
2 J i Ja

Therefore, Theorem 1.3 is true since it follows from equations (6.7) and (6.8)

that limAr_oo,a-o s,iN, a, x) =s»(x) when v is real.

11. Further results. We wish now to investigate the possibility of passing

to the limit as N approaches °o and a approaches 0 under the integral sign

in equation (1.9). We shall prove the following theorem.

Theorem 11.1. Suppose that ¿-1/2/(¿)(l+¿)-1 is in 7,(0, oo), thatv^-l/2,

and that the integral

(11.1) f~"°f(t)J,(tr)dt
J o

converges uniformly in r on any interval interior to (1,  oo). Then we have that

(11.2) s,(x) =—{/(*+)+/(*-)} - x   Ç^'rJ,ixr)dr f   'f(t)J,(tr)dt.
2 J i Jo

It is worth noticing that the hypotheses of Theorem 11.1 will surely hold

if ¿~1/2/(/) is in 7.(0, oo ). When v^-i/2, the function fit) is surely in zA„. It

follows that in order to prove Theorem 11.1 it is sufficient to show that

/, —*oo /    p a /» —7oo\

rJrixr)dr[   I     +  |       )/(¿)7„(¿r)d¿ = 0.
1 V J 0 J N     /

Choose numbers a, b and c such that l<o<c, 0<a^x/2. Then

rJ,ixr)dr \    fit)J,itr)dt =   I    ft)dt I    rJ,ixr)Jritr)dr.
b Jo J 0 J b

The inner integral on the right has the value [9, p. 134]

r=c

(11.5) (x2 - t2)-1 {rxJr+1ixr)Jritr) - rtJvixr)J,+1Qr) ]
r-b
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Since t^a^x/2, we have that 0g(x2 — ¿2)_1:S4/3x2. Moreover since v ̂  —1/2,

there exists a constant 7?„ such that ull2\jyiu)\ ^By, ull2\ 7„+i(w)| ^Bv.

Therefore, the expression (11.5) is dominated by (852/3x2)(x1'2¿-1'2+x1'2¿1/2)

:£47?*(x8/)_1/2, and the expressions (11.4) are dominated by

A   ID2    -3'24£„x 'Mm
•J 0

dt.

If we let b approach one and c approach  oo, and then let a approach zero,

we conclude that

/> —»oo p a

rJv(xr)dr J    /(¿)/„(¿r)¿¿ = 0.
i Jo

Now choose numbers b, c, N and P such that 1 <b<c, 2x^N<P. Then

/' c p P p P p  C      -rj,ixr)dr I    fft)J,itr)dt =   I    /(¿)¿¿ |     rJvixr)J,itr)dr.
b J N J N J b

Since t^N^2x, we have that 0^(¿2 — x2)_1á4/3¿2.  Reasoning as  in the

preceding paragraph, we obtain upon letting P approach  oo  that

(11.8)       f     f(t)dt f   rJvixr)J,itr)dr   ^egfs*" f
\Jn J b J 1

t 3/21 fit) | dt.

For each choice of b, c, N and a positive quantity e, we may select P so that

P>N and that

< e/2c ibúr^ c),
!f* —»oo

rJv(xr)  j       f{t)Jv(tr)dt
J p

/»   00

—3/2 i

t       | /(/) | dt < e/2.
p

It now follows from equation (11.7) and the inequality (11.8) that

Ip 0 p —»oo p —.00 p  c

I     rJ,ixr)dr I       fit)J,itr)dt -   I       ft)dt j     rJ,ixr)J,itr)dr\
J b J N J N Jb I

Ip —»00 p  C p  C   I p —»00
I       ft)dt I    rJ,ixr)J,itr)dr\+  j    \rJrixr)dr \      ft)Jvitr)dt   < e.

J P J 6   •   . I J 6    I .dp

If we let e approach zero and use the inequality (11.8) we find that

If*  C                                             /• —»00                                                                                                        /»  00
2   _-i/2    / _3/2 -   r

I    rJrixr)dr J       ft)J,itr)dt   £ 45„x        I    <       I /(O I di-

If we let ô approach one and c approach oo ( and then let N approach oo t we
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can conclude that

/\ —»00 /% —»00rJ,ixr)dr J       /(¿)7,(¿r)á¿ = 0.
1 J N

Equation (11.3) now follows from equations (11.6) and (11.9), and this

completes the proof of Theorem 11.1.

The methods used in proving Theorem 11.1 may also be used to prove the

following version of the Hankel formula.

Theorem 11.2. Suppose that (i) x>0, (¡i) ¿1/2g(¿)(l+¿)-1 is in 7(0, oo),

(iii) git) is of bounded variation in some neighborhood of the point x, (iv)

R(v) > — 1/2, awá (v) the integral

/» —.00

tg(t)J,(tr)dt
0

converges uniformly in r on any interval interior to (0,  oo). Then we have that

1 p —»00 p —»OO

— {g(x+) + g(x-)}  =   I       rJ,ixr)dr   \       tg(t)J,(tr)dt.
2 Jo Jo

Let fit) =tg(t). It follows from Theorem 9.1 that if a <x <N we have that

- {/(*+) +/(*-)}  = * f     rJvixr)dr f   ft)I,itr)dt,
2 Jo Ja

so that Theorem 11.2 is valid if its hypotheses imply that equation (11.3)

holds when the interval of integration (1, oo) is replaced by (0, oo). The

proof of this result is identical with that of equation (11.3) except that b is

now made to approach 0 instead of 1. The fact that v may be complex causes

no difficulty.

12. Combination of two expansions. Suppose that/(x) is neither even nor

odd. Then it is natural to attempt to expand it into a series of the form       ;

CO

(12.1) E«n/n(x)
71=0

in which Bessel functions of all integral orders occur. Such a series may be

formally obtained by splitting fix) into an even and an odd part, say

f(x)=g(x)-\-h(x), and expanding g(x) and A(x) into series of even and odd

Bessel functions respectively. We find from Theorem 1.2 that if g(t) is in

zA-\ and is absolutely continuous on (0, x), then

s_i(x) = g(x -) — g(0 +)/o(x) -   I    7o(x - v)Giv)dv,
J o
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where Giv) is defined by equation (1.3) with/(¿) replaced by git). Similarly,

if A(¿) is in zAo and is absolutely continuous on (0, x), then

so(x) = A(x -) - A(0 +)/o(x) -  I    7o(x - v)Hiv)dv,
J 0

where Hiv) is defined by equation (1.3) with /(¿) replaced by A(¿). Adding

these last two results shows that

(12.2) soix) + 5_i(x) = fx-) - /(0 +)7o(x) -  f  7o(x - v)Fiv)dv.
J 0

The left-hand side of equation (12.2) may be written in the form

(12.3) six) = E 2»7„(x) f   " \ t\-Vn(t)f't)dt,
71=0 J-»-«)

if one remembers that g(x) = {fix) +f-x) ] /2,  A(x) = {fix) -f-x) ] /2. We

may now prove the following theorem.

Theorem 12.1. Suppose that ¿_1/(¿)(1 + |¿| )1/2_p is in Li~ », oo) for some

nonnegative integer p, and that the limits

/:
eilfi±t)t-3'2dt

exist when a > 0. FAe» if x > 0 and fit) is absolutely continuous on the interval

( — x, x), we have that

j(x) = fx-)-  f  Joix - v)Fiv)dv,
J 0

while if x<0, ¿Ae term fix — ) is replaced £y/(x + ).

For the integrability hypotheses imply that g(¿) is in zA-\ and that A(¿)

is in zAo- Moreover, since fit) is continuous at the origin and ¿_1/(¿) is inte-

grable in a neighborhood of the origin, it must be true that /(0) = 0. The

theorem when x>0 now follows from equation (12.2). We deduce the result

when x<0 from the result when x>0 by considering the function/( —¿)-

13. Some examples. The function used by the early writers to show that it

was not true that s0(x) —fx) for all functions fit) was sin at. If Ogaá 1 and

v = 0 this function satisfies the hypotheses of Theorem 11.1 and the integral

(11.1) has the value zero [9, p. 405]. Hence the Neumann series So(x) con-

verges to sin ax when O^a^l. If a>l the integral (11.1) is not uniformly

convergent on an arbitrary interval (o, c) interior to (1, =o), the point r=a

being exceptional. The integral is, however, uniformly convergent to 0 on

any interval interior to (a, =o) and to (a2 — r2)~112 on any interval interior to
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(1, a)  [9, p. 405]. It is easy to see that Theorem 11.1 remains true under

these circumstances. When a>l we therefore have that

Jo(x) = sin ax — x j    r/0(xr)(a2 — r2)~1/2dr.

We may also conclude from Theorem 1.2 and [9, p. 405] that

s0(x) = sin ax — (a2 — 1)1/2 I     70(x — v) cos avdv
J o

when a>l.

Another example when v = 0 is /(¿) =¿_1{ 1— Jo(at)}. This function also

satisfies the hypotheses of Theorem 11.1. In fact, ¿-1/2|/(¿)| is in L(0, <»).

By [9, p. 406] the integral (11.1) has the value 0 if r^ia and log (a/r) if r ^a.

Therefore, the Neumann series so(x) converges to/(x) if a^l, while if a>l

it converges to

x_1{l — 7o(ax)} + x I     r log (r/a)Joixr)dr = x~1{l — 70(x) + x7i(x) loga}.
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