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1. Introduction. There is an extensive literature devoted to the study of

the expansion of analytic functions into the interpolation series defined by a

sequence { T„} of linear f unctionals. Some of these deal with specific series,

and the problem is to determine the largest class of functions for which a

given series is convergent [6; 11; 15; 21; 23](0- Others treat a more or less

general class of interpolation series; the results obtainable here are seldom as

sharp as those obtained for a single series [l; 5; 10; 19; 20; 24]. A closely

related problem is that of determining uniqueness classes. If C is a class of

functions, { Tn\ is said to be total over C if/G^ and Tn(J) =0 for all n imply

that/=0; Cis also said to be a uniqueness class for { Tn\, since if T„if) = TJg)

for all n, and for/ and g in C, then/ = g. If C is an expansion class for { T„)

then it is also a uniqueness class. This remark has been used to obtain unique-

ness classes for certain special sequences of functionals.

In the present paper, certain aspects of the convergence and summability

of interpolation series will be discussed, following a method outlined in [4].

§§2 and 3 are devoted to the general treatment; succeeding sections take up

in more detail the results which follow for special series. These contain and

extend many of the known results. In addition, the theorems dealing with

Mittag-Leffler summability are applied in §10 to obtain uniqueness theorems

which in particular include all those of Gelfond [10]. Some of these results

have been announced in a previous paper [4].

2. Integral formulae. We are concerned with the class K of entire func-

tions of exponential type. If f£.K, then the growth function of/ is defined

by

(2.1) hid, f) = lim sup r"1 log | firea) \.

If H is any real function with period 27r, then K[Hid)] is the class of all/ in

K such that hi$,f) ^Hi0) for all 6; infinite values of H are admissible. Thus,

K[A] is the class of entire functions of at most order 1 and type A. If ^ is a

positive real function, then K[ipir), Hid)] will be used for the class of all/ in

K such that the inequality

(2.2) | /(«*) | =£ *(r) exp tH{6)

holds for all 6, and all sufficiently large r. The class K [Hid) ] is the intersection
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of the classes K[eXr, Hid)] for all X>0. As in previous papers, Kia, c) will be

used in place of K [Hid) ] when H is chosen as the special function which

takes the value c at ±7r/2, and the value a at 0 and tt. (This class arises when-

ever / is studied from its behavior on the real axis.)

If G is a closed set of the plane, a supporting function for it is defined by

(2.3) kid,G) =  sup dtiwe*)
»6s

where w — pe^. (This differs from the usual definition in the sign of d.) The

function kid, G) is continuous in 6, has period 2-7T, has left and right deriva-

tives everywhere, and is unchanged if G is replaced by its convex hull. If

d and G2 are subsets of the plane then GiG2 is the set of all points of the

form ZiZ2 where Si£Gi, z2ÇzG2i2). G is a star set (with respect to the origin) if

XzGG for all X, O^X^l, whenever s£G. The set (P'-G')' will play a special

role in succeeding sections, and will be referred to as the £-star of G. If E is

chosen as the whole plane with the interval [l, + °° ] of the reals deleted, then

the £-star of G becomes simply the star of G—that is, the maximal star set

contained in G.

A classical result of Pólya relates the growth function of / to the

supporting function of a certain convex set. Let /(Ei? and suppose that

fiz) = 2^1oanZn/nl ; let <£(w) be the function regular at infinity having the de-

velopment 2~loan/wn+1. <f> is usually called the Borel transform of/. Let Dif)

be the closed convex hull of the set of singularities of </>, a bounded set. Then,

the fundamental theorem of Pólya may be stated as follows [16, p. 585] :

If f£K, then h{d,f) =kid, Dif)) for all d. Moreover, if T is a simple con-

tour enclosing Dif), then for all z,

(2.4) fiz) =-   i   ezw<¡>iw)dw.
2iriJ r

Recently, S. Schmidli [20] has obtained a stronger form of this representa-

tion which may be stated in the following form(3) :

\îf<E.K[\pir), hid,f)] where

tir).dr < 00,

then

(2) Not to be confused with the intersection of Gi and Gi which will be denoted by G\C\Gt.

The union will be denoted by G\JGï, the complement of G by G', and the boundary of G by dG.

(3) Schmidli obtained this for \p{r) = l/r1+e by showing that <j> is then continuous on dD(j).

The more general case requires no alteration in his proof. R. P. Boas has observed that if (2.5)

holds, then <f>(w) is uniformly bounded outside D(f), and the formula (2.6) may be obtained

from (2.4) by shrinking T.
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(2.6) fiz) = •—  |        e™4>iw)dw.
2tÍ J 3D (f)

We turn now to complex-valued functionals T defined on K. Let g be

any entire function, and define T by

(2.7) Tif) = — f giw)<biw)dw
¿ttiJ r

where <b is the Borel transform of/, and Y encloses Dif). Since the Borel trans-

form is linear, so is T. In the present paper, only functionals T of the above

form will be discussed(4). The function g is referred to as a generating func-

tion for T. If / is chosen so that/(z) =ewz, then Tif) =g(w) ; thus, Tif) can be

formally described as gid/dz)fiz) \ 2=0 [3].

3. Interpolation series. Let { T„} be a sequence of linear functionals, de-

find on all or part of K. A class C(ZK is said to be a uniqueness class for { Tn}

if Tn(f) =0 for all n implies/ = 0 for any/GG. Thus, a function of C is de-

termined uniquely by the sequence of complex numbers {?"„(/)}. Suppose

that it is possible to find a sequence of functions {m„(z) } which are orthogonal

to {Tn} in the sense that r„(wm)=0 for all n^m, while Tniun) = 1. Then

any function / may be represented by the formal series

oo

(3.1) E«-r»c/).
0

Such a series will be called an interpolation series for { 7"K} •

We will discuss classes of functions / for which the interpolation series is

convergent, or is summable to / Such classes must clearly be subclasses of

the corresponding uniqueness class; this enables us to prove uniqueness

theorems, which, however, can not be expected to be best possible, since there

is reason to believe that a uniqueness class need not be an expansion class.

The argument for convergence is familiar [l; 10]. If fiz)=ezw, then

T„if)=gn(w), the generating function of Tn, and formally

00

(3.2) e"> = E uniz)gniw).
0

If this converges uniformly for all w on a simple contour T and for all z,

and/ is such that D(f) lies in the interior of Y , then using (2.4) and integrat-

ing termwise,

oo 1        n oo

/OO = EM»O0— I   gniw)<l>iw)dw  = 2Zuniz)Tn(J),
0 ¿TlJ T 0

(4) If K is given the weak topology in which /„—>/ whenever lim /„(z) =/(z) for all z, then

any continuous linear functional T has the representation (2.7). See also [3].
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convergent for all z.

If/ satisfies the stronger growth conditions required to apply the Schmidli

representation, we can say more: if (3.2) holds uniformly on Y, and if/ is such

that fGK[pir), hid, /)] where /°°^(r)¿r< », and Dif) lies in the closed in-

terior of T, then the interpolation series again converges to/(z).

Turning to summability, we digress to describe the familiar notion of

£-summability, of which Borel exponential means and Mittag-Leffler are

special cases. Let Eiz) = 2~lodnzn be an entire function, not a polynomial,

with dn^0. If [sn] is a sequence of complex numbers with | sn| 1/n = 0(l),

then the series Eo^»5*^" converges for all X, 0^X< «, to a function HÇK).

Consider the "mean," <r(X) =H(\)/E(k). If lim*..«, <r(X)=S exists, then we

write (E)-lim sn = S. This defines a totally regular method of summability.

We use (-E)-Eo>a" f°r (-E)-lim sn where sn= Eo"0*:- These methods are of

particular importance when applied to power series. Let E denote an open set

associated with £(z) such that limx,«, -E(zX)/£(X) =0, uniformly in any com-

pact subset of E. The importance of the set E is that (£)- Eo°sn= 1/(1 ~z)

for all z in E, and the summability is uniform in any compact subset of E.

This can be extended to a general function / and its Taylor series. The fol-

lowing proof differs slightly from that usually given for Borel summability [7].

Theorem 3.1. Letfiz) be regular in a region R containing the origin. Then,

oo

/(*) = (£)-E/(n)(0)z«/w!
0

uniformly in any closed compact subset of (i?'•£')', the E-star of R.

If zGE and Oápál, then |£(/¿zX)/£(X)| g \EipzK)/Ei\p)\ =o(l) as X
increases, so that E may be assumed to be a star set. It follows that

G = iR' ■ E') ' is also a star set. Let G0 be any compact subset of G. We can then

choose an open set E<¡ whose closure is a compact subset of E, and a region

RoQR such that GoC(£o' -Eá)'. In fact, since G is a star set, we can take

Ro to be simply connected, and its boundary Y=dR0 as a simple contour.

Since 1 does not belong to E, and therefore not to Eo, iRó ■EÓ)'CZRo and

GoC-fvo- For any z in Go, we have

" 1    /*     fit)   / z \n+1
sniz) = E/(t,(0)zV¿! = m - —        -^-(-J     di,

o 27TW r   t — z\ t /

/(z) — (riz, A) = - I-dt.
2-wiJv  t- z    t      E(K)

Since GoQiRo -EÓ)' and Y(ZR¿ , z/t lies in Eo for all z in Go and t on Y. Thus

,.     Ei\z/t)
hm-= 0
x—    £(X)
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uniformly in z and /. Moreover, fit) is bounded on Y, and \t — z\ is

bounded away from zero, since Go is a compact subset of Ra. Hence,

limx-.M |/(z)—<r(z, X)| =0 uniformly in G0.

If we choose £(z) as ez, then E is the set of all z, $R(z) < 1, and (£'■£')' is

easily seen to be the Borel polygon of R. If £(z) is taken as E(2/1°S (w + 2))",

then E is the whole plane with the half line y = 0, x ^ 1 deleted, and the £-star

of R becomes simply the (Mittag-LefHer) star of R. Since the interval [l, + <» ]

always lies outside an E set, the £-star of 2? is a star set lying in the star of R.

Returning to the discussion of interpolation series, we can replace con-

vergence by summability. If, for all z,

00

(3.3) e» = (£)- E uniz)gniw)
0

uniformly on Y, then for all/such that D(J) lies in the interior of Y, and for all

z,

(3.4) fiz) = (£)-E<z)7;„(/).
o

If / is such that fGK[xpir), hid, f)] where fx\pir)dr < °o, and Dif) lies in the

closed interior of Y, then (3.4) still holds.

We now assume that the generating functions of \Tn\ are of a special

form. We suppose that gniw) = [Çiw)]n where f(w) is an entire function. Let

ß» be a set containing the origin in which f iw) is univalent, and let ßr

be the image of Qw under f = f(w); let Af be the largest open circle |f | <R

in ñf, and let Aw be its image under w = w(f) in ß„,; let Q* be the £-star of

ßj, and let Q„* be its image in ßw. The central theorem of [4], proved there

for a general kernel yiz) and stated below for the special kernel yiz)=e*

becomes :

Theorem 3.2. The formal interpolation series Eo*M*»(z) F„if) converges to

fiz) for all f such that Dif)(ZAw, and is E summable to fiz) for all f with

Difcaj*.

To obtain the sharper convergence forms, we must have Ec°Mn(z) [f(w)]n

converging uniformly to eiw on Y. This usually requires a separate treatment;

however, since ezw is a regular function of f for f in 0¡-, we can state that if

lim uniz)Rn = 0, EMn(z)rn converges uniformly on all arcs of |f | =R where it

is regular, considered as a function of z. In the succeeding sections, we take

up special interpolation series and apply the results of this section in detail.

4. Newton series. To obtain this, we define the functionals {T„} by

rn(f)=A»/(0) = (-l)»ESC„,4 (-l)*/(*). The generating functions g„(w)
have the form [f(w)]n where £"(w) =ew— 1, and the functions un are the poly-

nomials m„(z) = Ci,„ = z(z—l)(z —2) • • • (z — »+!)/»!. For ß„, we take the
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strip \v\ <ir; ßj- is then the f-plane with [— °°, — l] deleted. The circle Ar

is | f | < 1, and Aw is the set lying in ß«, and satisfying | ew— 11 < 1 ; the bound-

ary of Aw has the equation w = log (2 cos v). Applying Theorem 3.2 for con-

vergence, we at once have:

Theorem 4.1. If D(f) (ZAW, the subset of ß„, containing zero and bounded by

w = log (2 cos v), then the Newton series

(4.1) EC,,„A«/(0)
o

converges to fiz) for all z.

The condition Z>(/)CAW may also be expressed in the form: fad, Dif))

<fad, Aw) for all d. Since kid, Dif))=h(d,f) and since [18, vol. 1, part III,
no. 114]

fad; Aw) = cos d log (2 cos d) + 0 sin d

for all d, \d\ <ir/2, we can rephrase this theorem [6].

Corollary 1. If hid, f) <cos d log (2 cos d)+d cos 0 for all \d\ <tt/2, then

the Newton series (4.1) converges to fiz) for all z.

Since the least value of kid, Aw) is log 2, the condition/Gi£[A ], A <log 2,

is sufficient to insure the convergence of the Newton series [24, p. 55].

We can also obtain sharper results on convergence. Since lim n~x\ Cz,„\ = 0

for all z such that 9î(z)>l, the series E^nf" converges uniformly in any

closed subset of the closed circle | Tl = 1 not containing the point — 1. If /G£,

the set Df) is bounded; thus, if Dif) lies in the closure of Aw, its image under

r = ew— 1 is a compact subset of the closed unit circle and does not contain

— 1. Hence, if D(f) lies in the closure of A„ and / obeys condition (2.5), we

can again infer the convergence of the Newton series; the resulting theorem is

not as strong as has been obtained by Nörlund who assumed only that/ was

regular in a half plane [15].

Theorem 4.2. Iff£K\\pir), d sin 0+cosd log (2 cos 0) ] where/°°^(r)¿r < »,

then the Newton series (4.1) converges to fiz) for all z, 3î(z) > — 1.

We now consider summability of the Newton series. In applying Theorem

3.2, we first observe that the £-star of ßf is simply { — 1} •£, which we write

as — £; applying the general theorem, we have:

Theorem 4.3. If Dif) lies in the image of the set —E under w = \og (1+f),

then

m = (£)- E c2.„a»/(o).
0
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If we specialize this to Borel summability by choosing £(z) =ez, then —E

is the half plane 9î(z) > — 1, and its image is the strip \v\ <7r/2(6).

Corollary 1. IffÇ^Kia, c) withc<ir/2, then

(4-2) fz) = iB)- E C,,„A»/(0).
o

For Mittag-LefHer summability,  — £ is exactly ßf, and  ßw* is therefore

Corollary 2. If fÇ:K(a} c) with c<7r, then

00

(4.3) f(z) = (Jf£)- E C2,nA«/(0).
0

Convergence may also be established by the addition of Tauberian con-

ditions. Two examples of this will be sufficient illustration of the method.

Corollary 3. IffÇLKia, c), c<w/2, and A"/(0) =o(l/«1/2) then the Newton

series (4.1) converges to fiz) for all z, 8î(z)> —1.

Corollary 4. IffEKia, c), c<ir, and (-l)"A"/(0) ^0 for w = 0, 1, ■ • • .

then the Newton series (4.1) converges to fiz) for all z.

The first of these follows from Corollary 1 ; the Newton series is Borel

summable for z= — 1, and C—i,» = (— l)n so that the terms of this series satisfy

the Tauberian condition o(l/«1/2). Applying a theorem of Hardy [14], the

series converges; it then follows that since the Newton series converges for

z= — 1, it also converges for all z with 9î(z) > — 1.

The second arises in a similar manner from Corollary 2; the series is ML

summable for z= — k, and C_¡t,„A"/(0) is by hypothesis positive for each n.

Since ML summability is totally regular, the series must in fact converge for

z= — k, and since this holds for any k, we have convergence for all z.

5. Stirling series. To obtain one form of this interpolation series, we take

r»(f)=A»/(-n/2) = (-l)»E;C,.t i-m(k-n/2). The generating func-
tion gn(w) is iew— l)ne-»W2 which is (r(w))n for f(w) = 2 sinh (w/2). The func-

tions m„(z) are
z

Uoiz)   =   1, «nOO   = -Cz_i+„/2,n-l.
n

(6) Using results of Dienes [8], it may be shown that e"° = (B)- 2^,C,,n [ü(w)]n, uni-

formly in compact subsets of 5K(f) = l, if 5R(z) >0. We can then obtain a stronger form of

Corollary 1. If |/(z) | £^(r) exp [a\x\ +(ir/2)|y| } where fy(r)dr < «, then /(z) = (B)

— 2^C,«A"/(0) for all z with 9î(z) >0. This method will not work for ML summability, since

we cannot expect the expansion of e"° to be summable on the boundary of 0¡-; for this reason

no attempt will be made in the present paper to obtain sharper forms of the summability

theorems.
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f(w) is univalent in the strip |»| <x, which we may therefore take to be the

set ß„,; ßf becomes the ¿"-plane with cuts from 2i to +«>¿, and from —2i to

— <x>i deleted. The circle A{ is |f | <2, and the set A„ is the subset of ß«, de-

scribed by |sinh(w/2)| <1. The supporting function of ß„is [18, III, no 115]:

'2 cos 6 log [21'2 cos 6 + (cos 20)1'2]

+ 2 sino sin"1 (21'2 sino), | 0 [ ^ x/4,

ir | sin 0 |, x/4 ^ | 6 | ^ tt/2,

.£(0 ± x, A«,),        r/2 ¡S|«| á f.

(5.1)    ¿(0, A„) =

Applying Theorem 3.2, we obtain the following result first proved by

Nörlund using different methods [15].

Theorem 5.1. If hid,f) <fa0, Aw), given by (5.1), then the Stirling series

(5.2) /(0) + E — Cz_i+n/2,n_iA"/(-w/2)
i     n

converges to /(z) for all z.

Since |m„(z)| ^0(2_n«~3/2), the expansion of ezw in powers of f converges

for all f, |f| ^2. This gives at once the following extension of a result of

Schmidli [20].

Theorem 5.2. IffSK[\pir), kid, Aw)] where f°°\pir)dr< m, then the Stirling

series (5.2) converges tof{z)for all z .

The least value of fad, Aw) is log (3 + 23/2); thus, the condition that

f£K[A] with ^<log (3 + 23/2) or fEKtyir), log (3 + 23'2)] is sufficient to

insure convergence. (The first of these is due to Pólya [17].)

For Borel summability we consider the corresponding £-star of ßj-

which in this case is the strip | 3(f) | <2, the Borel polygon of ßf. Its image

ß„* is the set bounded by the curves cosh (m/2) sin (z>/2) = 1. We therefore

have Borel summability whenever £>(/) lies in the interior of this set. We can-

not make use of the supporting function of this set as a bound on fad,f) since

this set is not convex. However, since cos t cosh t^i for all /, 0^íáx/2, the

square 5 with vertices x, — x, iri, —tri lies in ßw*, and is convex. Its support-

ing function is seen to be

lit | cos 0 | for   | 0 | < x/4 or | 0 — x | < x/4,
fad, s) = \  .       , .   .

U | sin 0 I for    x/4 ^ | 0 | ^ 3x/4.

Theorem 5.3. // Dif) lies in the region bounded by the curves cosh (m/2)

•sin iv/2) = 1, or if fad, f) <fa0, S), then

fiz) = iB)-{fiO) + z/WC,_i+n/2,„-iA«/(-«/2)}.
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Corollary. If fÇiK[ir/2112], then the Stirling series (5.2) is Borel sum-

mable tofiz) for all z.

For the circle \w\ =x/21/2 lies in S.

Theorem 5.4. (f /GX(a, c), c<x, then the Stirling series (5.2) is ML

summable to /(z) for all z.

6. Generalized difference series. If we take Tnif) =A"/(0«) = (— l)n

• 2~^Cn,ki— l)kf(ßn+k), we obtain a general class of interpolation series of

which the Newton and Stirling discussed in the preceding sections are special

cases. The generating functions are gn(w) = (ew— l)"eßnw, and f(w) =eßwiew— 1).

The functions m„(z) are defined by

(6.1) Mo(z)   =   1, M„(z)   =   iz/n) C-^n-i.n-i.

We shall study these series for ß>0. The special case arising from 0=1

has been used by Selberg, and studied briefly by Gelfond [10; 22].

Lemma, f(w) =eßwiew— 1) is univalent in the region ß«, containing the origin

and bounded by the curve Y whose equation is u = log sin ßv— log sin (0 + l)z;.

Computation shows that cos (arg f ) = — 1 on Y ; angles at w = log (0/(1 +0J)

are doubled.

This gives us the set ß«,. Its boundary Y is convex, opens to the right, cuts

the v axis at w= ±xi'/(20+l), the u axis at w = log (0/(1+0)), and has the

lines v= + x/(0+l) for asymptotes. The image of ßM under f = f(w) is the

f-plane, with a cut from fo = f (log 03/(1+0))) to — » deleted, which is there-

fore the set ßf.

Applying Theorem 3.2 for ML summability, we have:

Theorem 6.1. If' Dif) lies in the region ß„ bounded by the curve Y whose equa-

tion is M = log sin /3d —log sin (0+l)n, then

(6.2) /(*) = iML)- if iff) + E - d-^.^A fißn)\ .
{. i     n )

It can be shown that the circle \w\ <log (l+0)/0 lies inside Qw if 0 is

greater than ß0 (~1/12), the positive root of log (l+/3)//3 = 3/(2(3+l). This

is the value for which the circle described becomes the circle of curva-

ture. We then conclude that the expansion (6.2) holds for all/G^M] with

A<log(l+ß)/ß. _
For special choices of ß, we can obtain more detailed results. For example,

in the case studied by Selberg and Gelfond, 0=1, Y has the equation:

u= —log (2 cos v).

Corollary. If fad, f) <(x-0) sin0+cos01og (-2 cos 0) for x/2g |i| Sir,
then
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fis) = (M£)-j/(0) + E ^-C2_n_i,„_1A»/(w)| .

We can also discuss convergence. For the special case that we are treating,

fo = T (log 1/2)= —1/4, andAf is |f| <l/4andA„ is the subset of ß„ satisfying
|ew(e,0-l)| <l/4.

Theorem 6.2. If D(J) lies in the region contained in ß„ and bounded by

\ewiew-l)\ =1/4—-for example, if f^K[A] with A<\og (l+21'2)/2—then

(6.3) /(0) + E — Cz_„_i,n_iA«/W
z

n

converges to /(z) for all z.

In general, Mn(z), given by (6.1), satisfies

| m„(z) | = 0(1)«-3'2[ß-ßiß + I)»*]«

so that 2~luniz)în converges uniformly for | f | = | To| •

Theorem 6.3. // D(J) lies in the closure of Aw, and if fCüK[\pir), fad, f)]
where Jip{r)dr< <x>, then (6.3) converges tofiz).

7. Abel series. For this, we take Tn(f) =/(n)(«), and gniw)=wne™

= [r(w) ]" with fiw) =wew. The functions m„ are given by

«o(z) = 1,        Mn(s) = ziz — w)"-1/«!.

Lemma. Çiw)=wew is univalent in the region containing the origin and

bounded by the curve whose equation is

«■-—1*1

sin \ <b\

where w=pei*.

Computation shows that arg (we'°)=x when </>>0 and p = (x—</>)/sin <p,

and —x when (/><0 and p= — (x+</>)/sin </>. Angles at w= —1, f = —e_1 are

doubled.

This gives us the set ß„; its boundary, Y, opens to the right, cuts the real

axis at — 1, and has the lines v= ±x for asymptotes. Under Ç = wew, ß„ is

mapped onto the f-plane with the interval [ — e_1, — » ] deleted; this set is

then ßf. The circle Af is |f| <l/e, and Aw is the subset of ß„ defined by

[we1+,°| <1, a convex set. Computing the supporting function of Aw, we have

(sin 2^/2 sin 0 for    0 < I 0 I < 3x/4,
(7.2) fad, A.) - \. , ,       i   i

11 cos 01 for   3x/4 < | 0 | g x,

where
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0 = log {cos ^/sin 0} + sin ^(sin \¡/ + cot 0 cos \p).

Applying Theorem 3.2, we obtain the following theorem on convergence.

Theorem 7.1. // Z?(/)CA„, or if fad,f) <fad,Aw), given by (7.2), then the
Abel series

»   2(2_ n)n~1

(7.3) /(0) + E-7— fM(n)
1 n\

converges tofiz) for all z.

This result is not new [9; 11]. The least value of ¿(0, Aw) is assumed

for 0 = 0, and is the positive root of xe1+x = 1 which is approximately .278. Thus,

we have convergence of the Abel series if f£zK[A] where .4<.278 [9; 12].

Stronger results follow as before; since |Mn(z)| ^0(l)e"w_3/2 the series

EMn(z)rn converges uniformly to ezw for all f with [f ] ^e~1. This leads to the

following slight extension of a result due to Schmidli [20].

Theorem 7.2. If fE.K[\pir), kid, Aa)] where fx\pir)dr< 00, then the Abel

series (7.3) converges tofiz) for all z.

For Mittag-Leffler summability, ßf* is ßf since this is already a star set,

and ßj* is the convex set ßw, bounded by the curve (7.1). Its supporting func-

tion is

(7.4) fad, Q„) = 0(sin 0 - cos 0 cot ß), x/2 g | 0 | ^ x,

where

tan 0 = cot ß — ß ese2 0.

Theorem 7.3. If fad, f)<faB, ß„), then the Abel series (7.3) is ML sum-
mable to /(z) for all z.

The minimum value of fad, Çlw) is 1, achieved for 0=x. Hence, the condi-

tion /G-K[-<4], with A <1, is sufficient for ML summability.

Borel summability, or more generally £ summability, can also be dis-

cussed as before. The £-star of ßf is simply { — e-1} £ and ß„* is the image of

this set under w = w(f). Hence, if Dif) lies in this set, the Abel series (7.3) is

£ summable to/(z). However, the region ßj* will in general be quite compli-

cated in description. Thus, for Borel, its boundary is the curve whose equa-

tion is log p-\-p cos <£+log cos (p sin </>+</>) = — 1.

8. Generalized Newton series. Formally, the following expansion is

valid :

CO

(8.1) e™ = 0*E C,lBj8-"(e- - 0)".
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This converges for all z when

9î(z)>-l when \e»-ß\ ál/3

ew — ß\ < \ß\, and converges for all z such that

and w is finite. This expansion yields an in-

terpolation series which reduces to the Newton series when 0=1. We take 0

real and positive. If gn(w) = (eM —0)" are chosen as generating functions for

the functionals { T„}, then

Tnif)   =   i-ß)"22Cn.ki-l/ß)kfik).
0

Since f (w) =ew — ß, ß„ is again the strip | v\ <x and ßf is the f-plane, with the

interval [ — 0, — °° ] deleted; the functions u„iz), from (8.1), are seen to be

ßzCz,nß~". The results for Borel and Mittag-Leffler summability are the same

for this series as for the Newton series, since the corresponding sets ßw* are

the same.

Theorem 8.1. The series

(8.2) ß*2ZCz,nß-nTnif)
0

is Borel summable to /(z) for all z î//G£(<2, c) with c<x/2, and is Mittag-

Leffler summable tofiz) iff^Kia, c), c<x.

The interpolation series is convergent for a wider class of functions than

the Newton series, if 0> 1. The circle Af is | f | <0, and Aw is the set containing

the origin and bounded by the curve M = log (20 cos v). The supporting func-

tion of A™ is given by

fad, Aw) = 0 sin 0 + cos 0 log (20 cos 0).

Theorem 8.2. // fad,f) <kid, Aw), then the generalized Newton series (8.2)

converges to /(z) for all z.

As 0 increases, the set Aw approaches the strip \v\ <x/2. If fÇ.K(a, c)

with c<x/2, then D(f) is a compact subset of this open strip, and thus a sub-

set of A„, for sufficiently large 0.

Corollary. If fÇiKia, c), with c<x/2, then for sufficiently large 0, the

series (8.2) converges to /(z) for all z.

Making use of the convergence of (8.1) on the boundary of Af, as observed

above, we can also obtain the corresponding stronger convergence form.

Theorem 8.3. Iff<EK[pir), d sin 0+cos0 log (20 cos0) ] where fipir)dr < oo,

then the series (8.2) converges to /(z) for all z with 9î(z) > — 1.

9. Lidstone series. This well known series arises from the choice of

g2niw)=w2", g2n+1iw)=e™w2», which gives T2„if) =/(2">(0), T2n+1if) =/<2»>(l).

The generating functions are not of the form [f (w) ]" so that Theorem 3.2 does
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not apply; however, the general method of §3 may still be used. We seek an

expansion of the form

00

(9.1) e™ = E «»(z)Sn(îf).
0

Requiring that the gn have the prescribed form, we write

ezw = Fxiw2) + ewF2iw2)

(9.2) sinh (1 — z)w sinh zw
=-1- ew -

sinh w sinh w

so that

u2niz) = A„(l — z),        M2n+i(z) = An(z)

where An is a polynomial of degree 2w + l, determined by the formal identity

[25]:

sinh zw "
—r-,— - Ea»00w2b.
sinh w o

Accordingly, the formal Lidstone two-point expansion is

(9.3) fz) = E A„(l - z)/<2">(0) + E A„(z)/<2">(1).
0 0

In (9.2), the only singularities of £i and F2 occur at the points + xm,

»èl; the series (9.1) will then converge for |w| <x, be Borel summable for

p| <ir, and be ML summable for m?¿0, or \v\ <tr.

Theorem 9.1. If f^K[A], A <x, the Lidstone series (9.3) converge tofiz)

for all z. If fÇzK{a, c), c<x, then they are Borel summable.to /(z) for all z. If

D(f) does not contain any points of the lines m = 0, \v\ Six, then the series are

Mittag-Leffler summable to f(z) for all z.

The convergence result is not as strong as can be proved ; it is known that

if /GK[v(r)A1'2» ir] where ij(r)=o(l) as r increases, then the Lidstone ex-

pansion of/converges [2]. This illustrates again the limitations of the present

method, for it can be easily seen that the expansion of ezw in (9.1) does not

converge on |w| =x.

The same approach can be made to the generalized «-point expansion

and other essentially periodic type functionals [19; 20]. If au ■ ■ ■ , a, are

distinct complex numbers, we define {T„] by Trn+jif) =/(rn)ia¡) for

j=l, 2, ■ ■ ■ , r, and w = 0, 1, 2, • • • . The generating functions are given by

gm+jiw) = wrn exp iüjW).
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We first seek an expansion of the form

co r       oo

ezw = E «n(z)gn(w) = Y^Jl urn+jiz)wrn exp iOjW)

0 j=l   71=0

r

= E^K^O exp ictjw).

Let a be a primitive rth root of unity; then

T

exp o-kzw = E^i(wr) exP i<rkaiVo)

i-i

for fc = l, 2, • • • , r. Solving these for the functions Fj, they are obtained as

quotients of exponential polynomials. If

exp (iTöiw)   • ■ • exp i<rarw)

Biw) = Biw; «i, • • • , ar) =

exp i<rraiw) ■ • • exp i<jrarw)

then Fjiwr)=Biw; a-i, ■ ■ ■ , at/_i, z, ay+i, • • • , ar)/Biw), which serves to de-

fine the polynomials m„(z).

It is readily seen that F¡ is regular at w = 0, and its only singularities occur

at the other zeros of Biw). If ß„* is the star with vertices at these zeros, then

the expansion

/CO = Ê«»(*)r»(/) - EEMrn+)-(2)/<"°(aO
0 j—\ n=0

is Mittag-Leffler summable for all/ such that Dif)Ç_Çl*.

10. Uniqueness theorems. In this section, we shall use the preceding

results to obtain uniqueness classes for certain functionals { Tn}. Clearly, if

there is a formal interpolation series/(z) = EM»(z)^»(/)> then a convergence

class is also a uniqueness class. However, in most cases, the functionals { Tn}

are total over a much larger class of functions than that for which the in-

terpolation series converges. Gelfond, in an effort to treat these two problems

in a unified manner, was able in certain cases to determine a uniqueness class

for {Tn ) by constructing a new sequence of functionals { T*}, total over

the same class and therefore having the same uniqueness class, but having a

larger expansion class for the corresponding interpolation series [10].

If we observe that in order to conclude that / = 0 if it is known that

Tnif) =0 for w = 0, 1, ■ ■ -, it is sufficient to have the corresponding interpola-

tion series merely summable by some regular method; then we obtain at

once all of Gelfond's results by applying Theorem 3.2, using Mittag-Leffler

summability. This gives the following general theorem.

Theorem 10.1. If g„iw) = [r(w)]n are the generating functions of {Tn}, if
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ß„ is a region of univalence of f(w), if ßf is the image of ßw under f = f(w), if

ßf* is the star of ßf, and if Qw* is its image in ß„ under w = w(f), then the class

of all f such that D(f) C ß«>* is a uniqueness class for { Tn}.

Specialization of f(w) at once yields the results of Gelfond, as well as

new results and extensions. We give only a few of these.

Corollary 1. If /£i(a, c), c<ir, and An/(0)=0 for « = 0, 1, • • • , then

/=o.

The function /(z) = sin xz shows that the critical value of c cannot be in-

creased.

Corollary 2. IffEKia, c), c<ir, and Anf-n/2) =0 for n = 0, 1, • • -,

thenf=0.

The example/(z) =z sin xz shows that x is again best.

Corollary 3. If Dif) lies in the region containing zero, and bounded by

the curve M = log sin ßv — log sin (l+0)z; for 0>O, and if A"/(0«)=O for

n = 0,l, ■ ■ • , thenf=0.

Gelfond studied the special case 0 = 1; his result is included in the follow-

ing corollary.

Corollary 4. //A(0,/)<(x-0) sin 0+cos 0 log (-2 cos 0) for x/2 g 101
six, and An/(«)=0 for n = 0, 1, • • • , thenf = 0.

Corollary 5. If fad, f)<fad, Qw) given by (7.4), and i//(n)(«)=0 for
w = 0, 1, • • • , then /=0.

This was also obtained by Gelfond, although the function £(0, ßw) is in-

correctly given. In particular, the class K [A ], with A < 1, is a uniqueness class

for these Abel functionals. The example/(z) =ze~z shows that this value of A

cannot be improved.

Corollary 6. Iff(E.Kia, c),c<ir, and for n = 0, 1, • • • and some positive 0,

¿Cn,,.(-1/0)V(¿) =0,
¡t-0

thenf=0.

Corollary 7. If f^K and Dif) does not contain any of the points w = iv,

\v\ |ir, and if f2">i0) =f2n>il) =0 for n = 0, 1, • • • , thenf=0.

Although more general than that usually stated, this result also follows

from the general characterization theorem of Schoenberg for Lidstone series

[21]. _
It is often possible to obtain a uniqueness class for one sequence of func-

tionals from that for another. If, for example, { T*} is a second sequence so
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related to { Tn} that if £„(/) = 0 for all n implies that T*if) = 0 for all n, then

a uniqueness class for {T*} is also one for { Tn}. This is the case with

Tn(f) =/(«), and £„*(/) =A"/(0). Thus, from Corollary 1 above, we obtain

the following form of Carlson's theorem [13].

Corollary 8. Iff(E.Kia, c), c<iv, and if /(«)=0 for w = 0, 1, • • • , then

/ = 0.
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