
THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS
AND OF THE COEFFICIENTS IN THEIR TAYLOR SERIES

BY

E. M. WRIGHT

1. Introduction. Several authors have discussed the problem of deducing

the asymptotic expansion of the integral function

(1.1) /(*) = £ *.(»)*•
n-0

for large x from that of c0(«) for large n. References to most of the literature

before 1936 are given in Ford's book [2](x) which contains a systematic

account of the theory with improvements and simplifications. The most

important early articles are due to Barnes [l] and Watson [7]. Barnes'

methods have been developed and extended by Ford [2], Hughes [3] and

Newsom [5, 6], while my own work [ll, 14] is perhaps more closely con-

nected with Watson's. In the present article I carry the theory a stage

further by relaxing the conditions on Co(w) so that the class of functions/(x)

studied is considerably wider than before. We are led very naturally to this

generalisation when we consider a new but closely associated problem,

namely, that of deducing the asymptotic expansion for large n of c\{n),

where X is any number and

(1.2) /(* + X) = £cx(»)*»,
fl=0

from that of c0(n). Using the results which I obtain for the wider class of f(x)

I solve this second problem under suitable conditions on Co(n). tiff

In what follows we use 1{ to denote the real part of a complex number and

write

k   = <RXk), p = I/«, p' = %(p).

We always take k'>0, so thatp'>0 also. In [ll] I supposed that, in the half-

plane 5^(k¿)^ÍT, ca{t) is a regular function of / and

^ kA„ / I \
(1.3) co(0 = E -:- + 0[-■-)

M_l    T{Kt +  am) \T(Kt + OLM+l)/

as |/|—*oo. From these hypotheses I deduced the asymptotic expansion of

f{x) in all or part of the x-plane. Thus, if p'<l/2, we have/(x)= YLG{x")
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for ail large x, where the summation extends over all values of x" for which

| arg x"\ <7r/2 and

(1.4) G(Y) = YeY< ¿ AmY-°»> + 0(F-<V+i) j .

If p'^ 1/2, we cannot, without further information, find the asymptotic ex-

pansion of f{x) throughout the whole x-plane. But, when there is a value of

xp such that |arg xp| <7r/2 — e for some fixed e>0, we have /(x)=G(xp).

Elsewhere in the x-plane the behavior of f(x) for large x does not depend

solely on the behaviour of c0(¿) for large t; the results are of a different kind

from those with which we are concerned here and reference may be made to

the full account in [ll].

Results essentially equivalent to those of [ll], but confined to real values

of k, were found independently by Hughes [3]. Our results include as particu-

lar cases most known expansions of special integral functions defined by

Taylor series and have been used by Hughes [4] and by me [9, 10, 12, 13]

to find the expansions of the generalized Bessel and hypergeometric functions.

They do not give all the asymptotic properties of these functions, however;

any "exponentially small" expansion has to be established by different meth-

ods (see, for example, [10, 12, 13]).

In a subsequent article [14], I supposed c0(¿) to be regular and to satisfy

(1.3) in a sector of the ¿-plane lying within the half-plane ^(/rf) ¡zK or, in the

extreme case, to satisfy (1.3) only for all large, positive, integral(2) t. The

same expansions of/(x) are still valid, sometimes in the whole plane and some-

times in a more restricted region than before. The region of validity naturally

depends on the sector of the ¿-plane in which c0(t) satisfies our hypotheses. By

constructing suitable Gegenbiespiele, I showed that the restrictions on the

region of validity are necessary.

The expansion of c0(/) postulated in (1.3) is less special than appears.

We can deduce from the results of [ll, 14] the asymptotic expansion of

00

F(x) = £C0(»)*",
n-0

where Ca(t) is a regular function of t and

(1.5) Co« = *-«'««' { £ BmtP™ + 0(Af+o}

in an appropriate sector of the /-plane. If we write

Co(0 = (««-«^O'CoW.

(2) This corresponds to case (i) of Lemma 8 of [l4]. It is not there stated that (1.3) need

only be satisfied for integral t, but this is clear from the proof of the lemma.
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we have Fix) =/(e"_'/c*x) and

(1.6) c„(0 = (£)   | ¿ Bmt^ + 0(A'«)} .

The well known asymptotic expansion

(1-7)        7^ = (i )*'""{ £-**+<**>}    .

shows that (1.6) is equivalent to (1.3), provided the M, am and Am in (1.3) are

suitably chosen. The interest of (1.3) lies in the simplicity of the relation

between the coefficients in (1.3) and (1.4). This was discovered independently

by Hughes [3] and by me [ll].

In what follows the symbol ~ is used in a more restricted sense than

usual, so that gi(y)'~ga(y) denotes that gi(y) =giiy) {l+0(y~K) ] for some

fixed K>0 as j y \ —> °o. There is never any ambiguity as to which variable

(usually x, t, Y or n) plays the part of y. We suppose that fix) is defined

by (1.1), that

(1.8) c0(t)~tPe*M(e/Kty*

as I /| —>oo in a certain region in the ¿-plane and that, except when this region

shrinks to a curve or to an enumerable infinity of points, Coit) is regular in

the region. In (1.8)

(1.9) *«-Z«A
i-\

where

(1.10) /£0,        0£5Uii)<l.

If J=0, the sum is empty and so \pit)=0. The restriction 0^ir\(6y) is com-

pletely trivial since, if %{bj) <0, exp (a,-£*¡)~l for large \t\. Under these

hypotheses I shall show that, in part of the x-plane,

(1.11) Kx) ~ 2i'Vi2K-1-»X1i2+»ep^\

where X is a particular value of x". Here P(X) is the sum of a finite number

of powers of X and PiX)~X as | X\ —* » ; in particular, if 'Rib/) < 1/2 for all

j, PiX) =X+\f/(pX). When p'<l/2, I am able, under suitable conditions, to

find a result valid for all large x.

It we replace (1.8) by a relation of the form

(1.12) coit) = e*(«(«A0" { E Bmfi* + Of/*")} ,
( m=l )
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we can replace (1.11) by

(1.13) fix) = e*c> j £ B'mX^ + 0(X^«+1'2)}  = hiX)

(say). Unfortunately there is no simple relation between the coefficients in

(1.12) and (1.13) of the kind existing between those in (1.3) and (1.4). For this

reason and and to simplify my calculations, I confine myself to conditions of

type (1.8) and results of type (1.11). But I state the more elaborate results in

Theorem 4 and show (without proof) in §9 how to calculate the B'm and ß'm of

(1.13) from the Bm and ßm of (1.12).

In the second part of the paper I use my results to study the c\in) of (1.2).

If coit) satisfies (1.8) in a suitable region, I show that

(1.14) cx(»)~c0(»)ex*("'X).

Here i¡/in, X) is a polynomial in X of degree(3) [l//c'] — 1, the coefficient of

each power of X being a finite sum of (non-integral) powers of n of order less

than n; if k'>1, ipin, X) is always zero. If c0(t) satisfies (1.12) in the same

region, we may replace (1.14) by a correspondingly more detailed result.

A particular case of some interest is that in which coit) has an expansion

of the type of (1.6), so that \p(t) is an empty sum and/(x) is a function of the

class considered in [ll, 14]. If k'>1, so that i^(w, X)=0 for all X, cx(«) also

has an expansion of the type of (1.6) with t — n, and/(x+X) belongs to the

same class as fix). On the other hand, if k'<1, then^(«, X) 5^0 forX^O and so

/(x+X) belongs to the wider class of functions with which we are concerned in

this paper. Hence, as soon as we study c\(m), even for functions/(x) of the re-

stricted class previously discussed, we are led naturally to consider this wider

class of fix).

There is a further interesting difference between the cases k' > 1 and k' < 1.

When k'> 1 (and when k= 1) the approximation (1.14) to cx(») may be almost

trivially deduced, provided (1.8) is satisfied for t = n, w + 1, • • • . When

k'<1, the position is entirely different; I am able to show by a Gegenbeispiel

that (1.14) may be false even though (1.8) is true for all positive integral

values of t^n. Hence, when k'<1, I suppose that (1.8) holds for all large t

in a sector of positive (but arbitrarily small) angle having the positive half of

the real axis in its interior; from this I deduce (1.14) but not trivially.

2. Notation. The numbers

(2.1) k, A, J, ai, • • • , aj, bi, • • • , bj

are any numbers subject only to the restrictions that / is a non-negative

integer, that k'>0 and that (1.10) is satisfied. The sum if/it) is defined by

(1.9). As a minimum hypothesis, Coit) satisfies (1.8) for all sufficiently large

(s) [v] denotes the greatest integer not greater than v.
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positive integral values of /. These conditions are enough to ensure that the

series in (1.1) converges for all x, so that fix) is an integral function. The

values of the coefficients Coin) in (1.1) are, of course, insufficient to determine

the function Co(i) uniquely; this is unnecessary and the existence of any Coit)

satisfying our hypotheses and taking the value Coin) of (1.1) at t = n is suffi-

cient for our purpose.

We use 2^ and ]T*° denote summation and multiplication respectively

over all integral j such that 1 ái = /< We write

1
A¡ = pbi<ij,    b = max 'Ribj),    c =->    B = max (Z>, 1 — k').

j 1 — b

The number 5 is always a positive integer and ri, • • • , fj are any set of non-

negative integers satisfying ZrJ = í- We use 2~Z(»> to denote summation over

all such sets t\, - - - , rj (where order is relevant) for the particular value of s

shown; if J = 0, 2~3 and £(«) denote empty sums whose value is zero. We

write

(2.2) r = s-Z rjbh        T - II Mini)"1,

where, as usual, 0!= 1. It follows from the multinominal theorem that

(2.3) 4 {*'<*)}' = -~Œ afrfii-iy = £ Ttrr.
Si SÍ (,)

We observe also that

(2.4) <R(r)  ^ 5(1 - b).

We write

[c]

PiY) = Y + tipY) + Z Z (1 - ry-*Tp>-rYi-\
»=2   (s)

so that, if 6<l/2,

PiY) = Y + tiPY),

since [c] = 1.

The number e, to be thought of as small, is any assigned positive number.

K is a positive number, not always the same at each occurrence, independent

of the positive integers n and N, the real variables r, 6, v and the complex

variables x, F, u, t, but possibly depending on some or all of the numbers

e, pi, (¿i and the numbers listed in (2.1). Ku Ki, • • • are fixed numbers of

the type K. The statement gi = Oigî) denotes that there is a number K such

that |gi| <-rT|g2| for all values of the variable in the region stated. All our

statements are subject to the implied condition "for sufficiently large |x| "

(or 11\, \Y\, n), except, of course, when we sum over n as in (1.1).
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We write 7 = arg k, where —Tr/2<y <tt/2, so that

k = k'(1 + i tan 7),       p = p'(l — i tan 7).

The numbers ¿ti. M2 are any real numbers which satisfy (4)

(2.5) - tt/2 < - mi < 7 < p-2 < r/2.

We call the region in the ¿-plane in which

I 11 > K,        — mi é arg (kí) g M2

the (—Mi, M2) sector. For convenience we apply the same name to the trans-

form of this region in the «-plane, where u = Kt, namely the region in which

(2.6) I u I > K,        — mi = arg u :S M2-

If p' < 1/2, we define mo and mo by

¿irp't&ny  _  C0S 27Tp' g-îrp'toay  _   cos 2^-p

tan mo = '-' tan fi0 =-
sin 2ttp' sin 27rp'

( I Po| < ir/2,   I mo I  < t/2)-

By Lemma 3 of [14],

(2.7) Mo + Po = 27Tp',

whence and from the definitions of mo, mo we have

cos mo = e2'r'''tanT cos mo.

Hence

COS MO — COS Mo
tan xp' tan (p0 — mo)/2 =- = tanh iitp' tan 7)

cos mo + cos mo

and

(2.8) tan (mo — Po)/2 = tanh (xp' tan 7) cot irp'.

Let 7 < m < t/2 and let w = w (m, 7) be that root of the equation

cos w = cos m exp { (m + to — 2irp') tan p + 2irp' tan 7}

which satisfies —m<w<7t/2; by Lemma 1 (i) of [14] there is just one such co.

We write

coi = w(mi, —7). "2 = co(m2, 7)-

The properties of ío/wi and C02 which we require are contained in the follow-

ing lemmas. They are little more than restatements in our present notation

of Lemmas 1 and 2 of [14].

(4) In [14] we had — ¡iiStént, but here we exclude equality.
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Lemma 1. When y<p<ir/2, osip, 7) is a one-valued continuous function of

p, u>> —m and co—>— 7 as p—^y.

Lemma 2. (i) If p'^ 1/2, co increases steadily with p and us—>ir/2 as p—*ir/2.

(ii) If p' < 1/2, os increases steadily with p when 7 <p <po, attains its maxi-

mum value mo when p=po and decreases steadily asp increases when po <p<tt/2.

Lemma 3. If either (i) p'<l/2, mi = po, M2=Mo or (ii) p'àl/2, íAe» — a>2<7

<COi.

We now write

fo = (po - mo)/2    (p' < 1/2),        f. = 0    (p' è 1/2).

In any particular example of the former case the value of f0 may be cal-

culated readily from (2.8). We choose arg x and arg ( — x) so that

— x < arg ( + x) — tan 7 log | x \ — f 0/p' á ir

and write

X = x',        X' = (— x)^-*?*,        X" = ( — x)"eT"i.

Since arg X=p'(arg x —tan 7 log | x| ), it follows that

(2.9) - ttp'< arg X - fo á ttp'

and X = X' or X" according as arg X^Ço or arg X>fo- Thus arg X (but not

arg x) is bounded as \x\—>«>. If p'<l/2, (2.9) is equivalent to

(2.10) - po < arg X S Po

by (2.7). Finally Y is any large complex number with bounded argument, so

that I 71 >K and |arg Y\ <K.
3. Statement of results in the first problem. My main result is the follow-

ing theorem.

Theorem 1. Ifc0it) is regular and satisfies (1.8) in the (—mi» M2) sector and if

(3.1) — min (mi, C02) + e ^ arg X g min (m2, coi) — e,

then

(3.2) fix) = HX),

where

7(7) = 21'V^K-i-T^+V^ {1 + OiY~K)}.

When arg X satisfies (3.1), it follows from (2.5) that RiX)>K\X\. Rela-

tion (3.2) implies that

log/(x) ~P(X)~X
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so that, in an obvious sense, fix) is exponentially large. The whole of the

x-plane is not covered by (3.1) and, if p'èl/2, there may be parts of the

plane in which /(x) is not exponentially large and in which the asymptotic

behavior of /(x) does not depend solely on that of Coit) for large t. This

possibility was sufficiently exemplified in Theorems 5-8 of [ll].

When p'<l/2, however, we can find an asymptotic formula for/(x) valid

for all large x, provided Coit) satisfies the conditions of Theorem 1 in a suit-

able sector. The result is best expressed in terms of X', X" and is as follows.

Theorem 2. // p'<l/2 and if c0(t) is regular and satisfies (1.8) in the

( —Mo —e, Mo + e) sector, then

(3.3) fix) = Z(X') + HX")

for all large x.

The connection between this result and Theorem 1 is made somewhat

clearer by the following lemma, which follows from (4.12) and (4.13) of [14].

Lemma 4. If p' < 1/2, then

<H(F - Ye-2"") = K | Y | sin (p0 - arg F),

<RiY - Ye2™») = X I F I sin (mo + arg F).

When p'<l/2, arg X always satisfies (2.10). Except near the ends of this

interval iR.(X) is greater than either of RiXe±2Tip). Thus, when — fi0 + K

¿arg Xáfo, for example, X' = X and 9¿X')><RiX")-K\X'\, so that

IiX") is negligible compared with the error term in IiX'). Hence (3.2) and

(3.3) are equivalent. When f0<arg X^po — K, the same is true with X', X"

interchanged. But, when (3.1) is false and arg X is very near —po (say),

%iX') and <R,iX") are nearly equal and so both I(X') and I(X") are relevant.

It follows from Lemma 4 that (3.3) is equivalent to the statement that

fix) =     £    /(*>),
largar" Kir/2

the extra terms, if any, being negligible compared with the error term in

IiX') or in IiX"), whichever is the larger.

For allp'>0, if we know only that c0(¿) satisfies (1.8) for all large integral t,

without any condition of regularity, we can still deduce something about the

behavior of fix), namely:

Theorem 3. If (1.8) is true for all large, positive integral values of t and if

(3.4)     arg X - 7 + 3 j    E      (-1)3_1 L TV-y-X-}
I V    lásác/2 (s) /

then fix) = IiX). If b g 1/2, (3.4) becomes

< K\ X h1/2,
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| arg X - 7 | ^ K | X |~1/2.

Clearly the conditions of this theorem are satisfied when x is in the neigh-

borhood of a certain curve which behaves in distant parts of the plane rather

like the equiangular spiral arg X=7. Unless b^l/2, however, the conditions

of the theorem may not be satisfied at all points actually on this spiral.

As we remarked in §1, if we are given a more detailed approximation of

Coit) we can deduce a correspondingly more detailed approximation to/(x).

Our result is:

Theorem 4. 7/ we replace the condition (1.8) in Theorems 1, 2 and 3 by the

more precise condition (1.12), we may replace IiX) by the I\iX) of (1.13) and

correspondingly for IiX') and HX"), where the ß^ and B'm of ii(X) can be calcu-

lated in terms of the ßm and the Bm of (1.12).

We omit the proof of Theorem 4, since the extensions required to the

proof of the other theorems are more tedious than difficult. In §9, however,

we give a rule to calculate the ß'm and the B'm.

4. The functions (7(F) and <¡>iU). The following lemma is a well known

result due to Lagrange; see, for example, [8, p. 133].

Lemma 5. Let zA be the circumference of the circle \z\ =X1 in the z-plane,

let piz) and #(z) be functions of z regular on and within zA and let |«?(z) | < | z\

at all points on zA. Then the equation z=#(z) has just one root z = Z within zA

and

(4.1) piz) = pío) + £ -^-Pr-, {V(*)*'}1   •

We take#=0(z) =p^'iPYe') = J^AfrYtt-t&t-p; so that

|#(z) \ < K\ F j6"1 < Xi = | z\

on zA, provided | Y\ >K. Hence Z is uniquely defined as a function of F.

We define ¿7= ¿7(F) and 0(1/) by

(4.2) U = (7(F) = 7c*    <K(7) - U+ J^A^l - bf)UK

By (2.3),

— $° = Ya Tp'-7Y~Te-".
S\ oo

Putting piz) — z in Lemma 5, we have

-tIt-i {¿'«Hi   - Z (-r)-»rP—F-
s! Las8-1 _L_o      («)

and so
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(4.3) log (-) = Z =  ¿ (-1)-^ Tr^p^Y".
\Y / s=l (s)

If we put piz) = edt for any fixed d we have similarly

(4.4) Ud = Ydedz = Yd jl + á¿ X) (d ~ r^Tp^Y-A .
\ »-1    (s) J

Again the equation Z=i?(Z) is equivalent to

(4.5) F = ¿7 exp (- £ yl^t/6»-1).

We next take

¿(z) = e'+ J^Ajil - b,)Yhi~leb^,

so that

(4.6) <piU) = YpiZ)

and

Now

and so

p'iz) = e> + E^í&í(1 - &i)F<»-V»* « e«{l - 0'(*),.

is + l)e^'#s = e2 — #s+1 = — (ezî?«+1) - *j«#*+>

dz dz

°°    1    d"~1 "     1    d"~1
Z - —: {;*'(*)*•} = Z — —: (e^* - «"*'*•)
,_i s!  ¿z'_1 ,»i  s!  ciz*-1

00     1    ii*-1 °° 1 d*

= x - —- («■#«) - Z ——^ ~r ^s+1)
-i  s!  efe8"1 t-i is + 1)!  dz«

• 1 ci8"1
+ Y, ■-ie*â°+1)

Zi is+1)1 ¿z-1

00     1    ci*-2

= e*ê + Y"-(e^8).

Also

(4.8) piO) + 0(0) = 1 + S******-1 = 1 + Y~mPY).

The formulae (4.1), (4.6), (4.7) and (4.8) together give us

oo

(4.9) cbiU) = F + tipY) + Z Z (1 - Ty-2Tp>-W-T.
»-=2   («)
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If we put d= 1 in (4.4) and compare it with (4.9), we see that

d U
(4.10) -<K7) = —•

dY Y

It follows from (2.4) that the series in (4.3), (4.4) and (4.9) are not only

convergent for | Y\ >K but also asymptotic in the sense that, if only a

finite number of terms are taken, the error is of the order of the term of

greatest order neglected. In particular,

(4.11) U = F + OiYb),        arg U = arg F + O^1),

(4.12) <piU) = Y + OiY").

Again, when s^[c] + l>c, (2.4) shows that 'Rir) ^ s il—b)>l and so, by

(4.9) and the definition of P(F),

(4.13) <¡>iU) = PiY) + o(l),        e*w> ~<s*ar>.

5. Use of Cauchy's theorem. We write

u = kí,        r = I u 1,        0 = arg u,

(5.1) x(«) = x(«, F) = « log («7/«) + *(p«).

We choose Mi a fixed positive integer such that, if X2 = k'(«i —1/2), X2 is

greater than the K of (2.6); iV>X| Y\ is a positive integer. The contour 'S

is the segment of the straight line R.iu) =K2 on which — mi = 0^P2- The con-

tour Cjv(Öi) is the segment of the straight line 6 = 6i on which K2 sec öi^r

á(iV+l/2)| k\ , while (3(#i) is the semi-infinite straight line on which 0 = 0i

and r âX2 sec 0i. The contour Djy is the arc of the circle r = (iV+1/2) | k| on

which —Mi = 0áp2-

We now suppose Co(¿) regular and (1.8) satisfied in the (—mi. M2) sector in

the /-plane and u confined to the corresponding sector in the w-plane, so that

-Pi^e^pi and cos 6>K. By (1.8) and (5.1),

(5.2) c0(pw)F«~AV(«'1'»

and

log I coipu) 7- I = <H{ x(«, 7) } + O(log r)

= r cos 0 log (e 17 |/r) +r sin 0 (0 - arg 7) + 0(r6) < - Kr,

provided r >K\ Y\. Hence, if we write

77(01, Y) =  f       Coipu)Y"du,        77(0,, 7) =   f        I Co(pm)7" I dr,

the integrals are both convergent when —mi = 0=M2. We now prove the fol-

lowing lemma.
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Lemma 6. If coit) is regular and (1.8) holds in the (—Mi> M2) sector and if

—Miá0i, O2ÚP2, then

77(0!, 7) = 77(02, 7) + OiY*).

OnDtf,

(5.4) I co(p«)7» I < Ke~KN

by (5.3), while

(5.5) |co(p«)7»| < X| 7|Ä

on 33. The function Coipu) Y" is regular on and within the contour formed by

Ctf(0i)> CnÍ^í) and the portions of 33 and £># joining their extremities. Hence,

by Cauchy's theorem,

f -f        Coipu)Yudu = OiYK) +OiNe-KN).

If we let N—» 00, Lemma 6 follows.

Lemma 7. 7/ c0(/) is regular and (1.8) Ä0W5 in the (—ml M2) sector, then

(5.6) /(7«) = 0{ 77(-mi, 7)} + 0{ 77(m2, Ye2*")} + 0(7*),

(5.7) KfiY") = 77(7, 7) +0{ 77(-mi, Ye-2"')} + 0{ 77(m2, 7e2-")} + OiY*),

and

K/(7«) = 77(7, 7) + 77(7, 7e-2"') + 0{ Hi-pi, Ye-***)}

+ 0{ 77(m2, Ye2**)} +OiYK).

We integrate the function Coipu) Yuil—e~2iri''u)~'L round the closed contour

formed by 33, (?#(—Mi)> O^ and QnÍpz). The integrand is regular on and within

this contour except for a simple pole at each of the points u = tm (wi gw^iV),

where 27tí" times the residue is kc0(w) 7"\ On 33 and on D#,

(5.9) I 1 - e~2*i',u\ > K.

Combining this with (5.4) and (5.5) and letting N—><x>, we have

(5.10) k/(7") =   f -f       Co(p«)7«(l - cr2™'")-^« + 0(7*)

by Cauchy's theorem.

Now

/1   _   p— 2-Kipu\-~ 1   s-   1   _L_  p—1*ipu(\   _   p— 2tripu\ —1

—   1   _|_   p—lvipu _|_   p—4TÍpu/i   _   p— 2fflpu\ —1

Since (5.9) holds also on Qi—pi) by (2.5), we see that the first integral in
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(5.10) may be replaced by any one of

0{ 77(-pi, 7)},        77(-p1, Y)+0{ 77(-mi, 7<r2">)},

or

77(-mi, 7) + 77(-mi, Ye-2*") + 0{ 77(-mi, Ye-'**)}.

Similarly (1 — *-t«*»)-i = e^v«^*-.-,,« _ j)-i an¿ | e2ripu _ j | > % on (s^) ( so

that the second integral in (5.10) is 0{T7(m2,   Ye2*'")}. Since —pi<y<P2,

Lemma 6 is applicable and the three results of Lemma 7 follow at once.

6. Evaluation of 77(7,   7).

Lemma 8. If

(6.1) - Mi ^ arg í/(7) ^ p2

and if coit) is regular and satisfies (1.8) in the (—Mi. M2) sector, then

(6.2) 77(7, 7) ~ 2i/V1/2i£-^(71/2+V"7>

(6.3) 77(7, 7) - «7(7).

By (4.11), (4.13) and the definition of 7(7) in Theorem 1, (6.2) and (6.3)
are equivalent; we shall prove (6.2). Throughout this section we suppose (6.1)

to hold good; hence, by Lemma 6,

(6.4) 77(7, 7) - 77(arg (7, 7) + OiYK).

Also cos arg U>K by (2.5) and so

(6.5) %{<KU)} ~3l(¿7) > X| ¿7 I > K\ Y\

by (4.11) and (4.12). By (5.2),

(6.6) 77(arg U, Y) = ¡ß Ç uPe*™{l + Oiu~K)}du.
J C(arg U)

By (4.2), (4.5) and (5.1), we see that

(6 7) X{U) = 0(£/)'

X'iu) = log iY/u) + pfípu),        x'iU) = 0,

so that u = U is a "saddle-point" for the integral (6.6). Also

(6.8) x» = -i + 0(«s-!)

for large u. In the integral (6.6) we put u= (7(l+i')i so that v is real, and

write
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L(v) = x(«) - XÍU).

Hence 7,(0) =1/(0) =0 and, by (6.8),

L"iv) = U2x"iu) - - —— {1 + 0(««)}.
1 + o

Hence, if | u \ is greater than some X3,

(6.9) 5l{¿"(»)}  <-^—^ < -
1 + 5 1 + 0

by (6.5).
We now choose e so that 0<e<min {l/6, (1—J)/2}, write *=| U\ '-in,

divide (3(arg U) into four parts, viz. those on which

X2 sec arg U g | u | á X3;

X3 < [ u I < I U I (1 — k),    that is,    0 < - k;

(1 - k) I U [ ̂  I u I á I 7 [ (1 + k),    that is,    - k S v S h;

(1 + k) ! U | < | u |,    that is,    o > *

respectively and write

(6.10) 77(arg U, Y) = 771 + 772 + 773 + 774

to correspond. We have at once

(6.11) I 77i| < K\ Y\k.

In 772, 773, and 7T4, \u\ >X3 and so (6.9) is true. By Taylor's theorem for

a real function of a real variable,

%{Liv)} =*1{Z(0)} +VR{L'i0)} + iv2l2)cR\L"iwv)}

= iv2/2)<R{L"iwv)}

for some w such that 0<w<l. By (6.9),

k\u\ (»<o),

3l{.L"(uw)} <--<
I -j- wv

K\ U\

1 + 0
(0 > 0).

Hence, when v^—k,

<R{Liv)} < - Kv21 U I á - X I U \2'

and so

(6.12) I ff„r-x«r) I = X I 7 I**-*"7'*« á X | t/1'^"* I

for some K. Again



1948] ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 423

I si  00
TJK   I      (J + v)ßeLMdv

J k

(6.13) /<    00

I (1 + v)f>\ e-A|ci"2/(i+«')dî)

^ X| U\K( f   er-Jcir/l^dï, +   f    | (1 + ,)*| e-Jrir/l^» j

S X| 71*6-*^! e á X] 71/2+"-*|.

To calculate 773 we require the following well known result.

Lemma 9. 7/0<e<l/2, h>K\y\'-1'2 and |arg y\ <tt/2-K, then

f   e-^i2dv~(—\    , j     \e-y»*i2\dv = o(-y~\

as y—>co.

It follows from (4.5) and the definition of v and L(o) that

£(») = 7}o - (1 + v) log (1 + o)} + Z^i^*'{(l + »)*' - 1 - M-

Hence, when |o| =^s| Tj\ «-1/2, we have

] ¿(o) + 7o2/2 | ^ X | Uvz | + X ] 7V |

á X( | U |3e-1/2 + | U |2'+î-i) g X | 7 I"*,

since e<min {l/6, (1—ô)/2J, and so

/k e-uv'12 j 1 + 0(7"*)} do ~ 21/V/2fc-^7^+1/2

-k

by Lemma 9. (6.2) follows from (6.4), (6.5), (6.7) and (6.10)-(6.14).
We observe that our method would enable us to prove the following

lemma.

Lemma 10. If Iarg (7(7)1 <it/2-K, then

/<
I M<V<«.y> \\du\ < K\ Ull2+ße*M \.

<5(arg U)

If we put / = 1, A i = K, bx = b in this lemma and replace 7 by | Y\ a, where

K<(T<K, then i/(| 7| cr) is real and arg 7 = 0. Writing 7? for the real variable

u and ß = 'Riß), we have :

Lemma 11. If K<cr<K and Y is any large number, then

log   f   R%.U'> exp < R log ( —-— J + XT?6! r/7? ̂  | F | <j + X | F 11~K.
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7. Proof of Theorems 1 and 2. Our next step is to find an upper bound

for the 77 of Lemma 7.

Lemma 12. If cos 6>K~ and if (1.8) is true on C(0), then

log 77(0,   F)   ̂    |   F |    COS 0etan9<9-argn  +   X |   F I1"*.

By (1.8)

/■ oo

KtB<x6

where

Vl = r cos 0 log (e | F | ¡r) + r sin 0(0 - arg F) + 0(r6).

If we put R = r cos 0 and cr = cos 6 et&nev-"gr} in Lemma 11, the conditions of

that lemma are satisfied and Lemma 12 follows at once.

Replacing F by Ye-2** in Lemma 12, we have

(7.1) log 77(-pi, Ye~2**) ¿\y\ Xi(arg 7) + X | Y\l~K,

where

AiG?) = c°s Pi exp { (mi + r¡ — 2irp') tan mi — 2xp' tan 7}.

Similarly

(7.2) log 77(p2, Ye2**) ¡g [ 71 X2(arg 7) + X | 7 I1-*,

where

X2O7) = cos M2 exp {(p2 — y — 2-wp') tan p2 + 2xp' tan 7}.

Lemma 13. (i) Xi(?;)^cos r¡ if — mi=?7 = Wi.

(ii) Xi(»7);£cos i} — K if —Miá^^wi —e.

(¡U)   X2(lj)^COS t] if   — CÚ2^1] eß2-

(iv) X2(??) ̂ cos 77 — X if — W2+íá?7áM2-

Let —oi2¿r]¿p2, so that cos r¡>K, and let f(??)=cos 77— X2(^). We have

f ( —co2) =0 by the definition of «2 and

f(M2) = cos M2(l — exp {27rp'(tan 7 — tan p2)}) > X,

since 7 <M2- But

f "(1) = — cos 77 — tan2 M2X2(rj) < — 7Í

when — co2gîi^M2 and so

f(*?) = 0    (-C02 á i/ = Mi).        r(*j) > # (-"2 + « ^ 17 = Ms).

which are (iii) and (iv). The proof of (i) and (ii) is similar.

Now suppose the conditions of Theorem 1 satisfied, so that
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(7.3) — min (mi, co2) + « g arg X ^ min (m2, wi) — e

by (3.1). Hence, by (7.1), (7.2) and Lemma 13 (ii) and (iv),

77(-pi, Xe~2**) + 77(p2, Xe2**) = 0(ex-*ixl).

Hence, by (5.7),

*■/(*) = 77(7, X) + 0(«x-"") + 0(X*).

Since arg ¿7(X)~arg X, it follows from (7.3) that (6.1) is satisfied by 7(X)

and so, by Lemma 8,

(7.4) fix) = HX) + 0(ex~*l*i) + 0(X*).

Now |argX| <7r/2-Xby (7.3) and (2.5) and so ^{P(X)}~£H(X) >X|X|.
Hence the error terms in (7.4) can be absorbed in that of 7(X) and

(7.5) fix) = HX),

which is Theorem 1.

We now suppose the conditions of Theorem 2 satisfied so that, in par-

ticular, p'<l/2. Since e is any sufficiently small positive number, we may

replace e by 2e in our hypotheses, so that co(£) is regular and (1.8) is true in

the (— /lo — 2e, mo + 2«) sector. We take e small enough to ensure that

(7.6) max (mo, Po) + 2e < r/2,        e < (mo + Po)/2,

the latter being possible by (2.7). We shall prove Theorem 2 when

(7.7) 0 < arg x — tan y log | x\ — (p0 — p0)/(2p') g it,

the proof when

— 7T < arg x — tan y log | x | — (mo — Po)/(2p') á 0

being similar. It follows from (7.7) that

— % < arg (— x) — tan 7 log | x | — (p0 — p0)/(2p') ^ 0

and so that X" =X, X' = Xe-2"" and

(7.8) (mo - po)/2 < arg X = arg X'^ mo.

We consider separately the case in which

(7.9) (mo - po)/2 < arg X" ^ Mo - e

and that in which

(7.10) mo- e < argX" g W.

First let (7.9) be true, so that

— mo + e < arg X á mo — «
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by (7.6). By Lemma 2(H), if we put pi=po and p2=po, we have «j.=mo and

co2=mo- Hence the conditions of Theorem 1 are satisfied and/(x)=7(X)

= 7(X"). But, by Lemma 4 and (7.9),

<RXX" - X') = X | X" | sin (mo - arg X") > X | X" [.

Hence IiX') is negligible compared with the error term in IiX") and

(7.11) fix) = HX') + 7(X"),

the result of Theorem 2.

Next let (7.10) be true. Since

arg X' = arg X" — 2-wp' = arg X" — p0 — fio

by (2.7), we have

— po — « < arg X' g — po.

By (4.11)

Mo - 2e < arg 7(X") < p0 + e,

- mo - 2« < arg 7(X') < -p0 + e.

If we take pi =M~o + 2e and M2 =Mo + 2e in Lemma 8, (6.1) is satisfied by c7(X")

and by ¿7(X') and so

77(7, X") = k7(X"), 77(7, X') = k7(X').

We now takeMi=po and M2=Mo; (7.11) will follow at once from (5.8) provided

that

X"K,        Hi-fio, T'e-"**),        77(mo, X"e2**)

are all O {exp (X" — X|X"|)} and so negligible compared with the error

term in IiX"). Since cos arg X">K, X"K is certainly of the required

order. Next, putting Y=Xe"~2** in (7.1), we have

log77(-Mi, X'V4"')

g | X" I \iiarg X") exp { -2rp'(tan pi + tan 7)} + X | X" \l~K

= (1 - X)   \X" I cos arg X"

by Lemmas 13(i) and by (2.5). Finally

log 77(m2, X'V2-') ¿ I X" j X2(arg X") + X | X I1-* g <B¿X) - K \ X \

by (7.2) and Lemma 13 (iv), since

— C02 + e = — mo + e ^ arg X" ^ mo = P2.

8. Proof of Theorem 3. We prove first the following lemma.

Lemma 14. If
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Coin) = 0{nße'l'Mie/Kn)'n}

for all integral w = 1 and if

(8.1) arg 7(X) = 7 + 0(X-i'2),

then

fix) - 0(X1'*Vfx>).

Let V be real and positive and let

x' = (kF)"c-^'(V) = («7)* exp (- X) a^jF6'-1)-

For large V, \x'\ is a continuous function of V which tends to infinity with

V. Hence we can always choose V so that \x'\ =|x|. Let t be real and

positive and let

Ht) = | *"c*(<>(c/k/)" V | = | ¿V<<> |,

where

vit) m K't log ieV/t) + ^{*(0 - tf(V)}.

Hence

/(/) = k' log (7/0 + 5l{^'(0 - f(V)},        /(F) = 0,

' /'(/)-+ %\nt)} = - — + Oit»-2) <--
t It

for t>K and we have

/I   00 y»  00

$it)dt è $(7) + I    A«V«>ci¿.
K J K

If we put u = Kt, U' = kV and define 7' in terms of U' by means of (4.5)

we see that Y'* = x', | Y'*\ =\x'\ = |x|,

| arg 7' | = | 7 | < ir/2 - X, vit) = <Z\{X(m, 7') }

by (5.1) and so

|    ^(«»/(»¿(g -^ +  f       I M^x(u'y/) | | ¿w | < X | F/1/2+^e*<t''> |

by Lemma 10 and (4.11). Hence

| fix) | < X | x |* +  J2  *(»)

g $(F) -)- if I 7'i/2+ig*(r/0 | < X I Xll2+ßeiiu') I,

sinceï'(7)=3l{<p(7')} and*(7) = | F^|c^~| F*«*«">|. By (4.13), we have
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only to show that

<R{<l>iU') - <biU)} =0(1),

where U= 7(X), to complete the proof of Lemma 14.

Since |x| = |x'|, there is a real number £ such that x = x'eii and X= F'eip{.

Since arg X and arg Y' are bounded, £ = 0(1). Hence

X-r  _   F'-r   «   X-*il   -   fT"**)   =   OiX-rT$

and so, by (4.3),

(8.2) arg 7 - y = arg (—) = arg (—) + O(X^) ~ p%

Let A(£)=£R.{cp(7)}, so that, by (4.10),

( d ) (dX  dtpiU) \

= - | p7 | sin (arg U - y) - 0( | 7' | Q

by (8.2). Hence, by Taylor's theorem, for some w such that 0<w<l,

3l{</>(7) - 4>iU')} = i&'iwQ = 0( | 7' | ?) = 0(1)

by (8.1) and (8.2).

To complete the proof of Theorem 3 we first observe that (3.4) and (8.1)

are equivalent by (4.3) and (2.4). We write

(1) ß #(») «» (2) (1)
Co   in) = n e     {e/un)   ,        c0  («) = Coin) — c0  (w),

/    (*) = Zco  in)x , f   ix) = fix) — f   (x)
n=l

and apply Theorem 1 to/(1)(x) and Lemma 14 to/(2'(x), the latter with ß — K

replacing ß. Theorem 3 follows at once.

9. Rule to calculate 7i(X). We now give a rule to calculate the indices

and coefficients in 7x(X) in Theorem 4. In the following the symbol v (which

eventually disappears) is 0(1) or, more exactly, satisfies X<|o| <X. We

suppose that Rißi) ^R.iß2) ^ ■ ■ ■ ̂ cRißM)>%.ißM+i). The rule is:

(i) Expand L(7_1/2o)+o2/2 in powers of v, reject all terms of order

0(TJßM+l~ßl) and denote the resulting polynomial in v by q.

(ii) Let l\ be the least integer such that h>R.ißi—ßM+i) max (2, c), expand

q2 qh-1

1 + Î + TT + '•• +
2! P»-l)l

in powers of v and reject all terms of order OiUßM+1~ßl).
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(iii) Expand

M

Y, BmK-ß<«UHl + 7-1/2o)^
771=1

in ascending powers of v and reject all terms of order 0(Ußli+1).

(iv) Multiply together the polynomials in v obtained in (ii) and (iii), re-

jecting in the resulting product all terms which are 0(7"M+1) and all terms

containing odd powers of v.

(v) Replace every v21 in this result by 2T(Z+l/2)/r(l/2) and multiply

the whole by p21'2r(l/2) 71'2.

(vi) Replace every Ud in the result by its expansion in terms of 7 from

(4.4), put 7=X and reject all terms of order OiXlt2+ßM+1).

(vii) Expand

exp \   Z     Z (i - ry-2Tp^X^\
U=w+i   (») ;

in descending powers of X, rejecting all terms which are OiX1,2+ßM+l).

(viii) Multiply the results of (vi) and (vii) together, rejecting all terms

of order 0(X^+i+»2) and call the result YJfL,. B'mXß'm. Then

(M' Ï
7i(X) = epw < X) bLX& + 0(Xft"+rW2) [ .

\ ro=l /

Unless the difference Rißi—ßia+i) is fairly small, the above process is as

laborious as it appears.

10. The second problem. We now turn our attention to the problem of

deducing the asymptotic expansion for large n of cx(w), defined by (1.2),

from that of coin). We write

ri — m,K~\

W») -n-(i+ Jlrfl,
\ s-1    (s) /

i/m — »k\       ¿™       _ /m — mK — r\ )
ij/min) = m-2K-m"<[ ) + 22 m* Z( ) Tn~r\

\\ m — 1 /       s=i        (S) \       m — 1    / )

for mè2 and finally

[i/«']
iK«, x) = Z »1_BV™(»)^'""1.

In each case, if Sm = 0 or [1/k']=0, the corresponding sum is empty. The

main result we shall prove is:
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Theorem 5. If Coit) is regular and satisfies (1.8) in some ( — mi, M2) sector,

then

(10.1) cx(») ~ Co(»)cx*(n-X) ~ nPe+M+*+inMie/Kn)'n.

Theorem 5 is almost trivial when k'>1 but much deeper when k'<1. Our

hypotheses are excessive for k'^1 and we have the following theorem:

Theorem 6. If k'SïI and if (1.8) is true for all integral values of t¡^n then

(10.1) is true, where \pin, X)=0 (k'>1), \pin, X)=/c-"w1-'t (k' = 1).

It is natural to enquire whether the restriction k' ^ 1 arises from some

ineffectiveness in our methods or from the nature of the results. The answer

is given in the following theorem.

Theorem 7. The condition k' 5:1 in Theorem 6 is necessary.

We remark that, if (1.8) is replaced by (1.12) in Theorem 5, we can

replace (10.1) by an expansion for c\(w) with an error term corresponding to

that in (1.12). The details are complicated and we omit them.

We use Cauchy's theorem to prove Theorem 5. If T is a contour enclosing

the points x = 0 and x = X, we have

fix)dx

t     (x - X)"+1

11. The numbers x0 and A(X0). We write 7= 7(X) putting 7=X in §4.

In Lemma 5 let us take

(11.1) âiz) = X(k»)-*(1 + z)1"" exp { 2Z »#&*-}$ + z)6''-1},

so that

(11.2) I âiz) I < Kin-"' < Xx = ! z\

on the circumference of zAwhen n>K. We define Z as in Lemma 5 and write

7o = k»(1 +Z),    Xo = 70 exp (— ^AjbjUô   ),    x0 = X0.

When U= U0, we have X = X0 and x=x0. Also

1—ic ^—, by— X —K

70 — KH = unZ = nnêiZ) = X7o    exp (k¿^ A ,¿>,-7o    ) = X70X0  ,
K

nnXo
(11.3) 70 =-,

X' - X
0

and

, Xk» X X
(11.4) Xo-X =

1   r fix + x)cix     1   c

Uo- icn       Z       ûiZ)
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When the conditions of Theorem 1 are satisfied,

(11.5)

By (4.10),

loS {, ^ \ ~<(>{UiX)} - n log (x - X)
l(x - \)n)

= <piU) - n log (X' - X)

= A(X)  (say).

d d KnX"-1        U       khX"-1
(11.6) A(X)=-—c6(7)-

dX dX X« - X      X      X* - X

and this vanishes for X = X0 by (11.3). Hence x = x0 is a saddle-point of the

integral (10.2).

We now obtain an asymptotic evaluation of A(Xo) for large n. By (11.4),

- n log (XÔ - X) = »{log $iZ) - log X}

and so, by (4.2) and (11.1),

A(Xo) = 7o + 2 Ai(l - bdUo + »{log êiZ) - log X}

= k»{ 1 — log (km) } + KnZ + »(1 — k) log (1 + Z)

+ ¿z a^in - è,)(i + zy> + hiil+Z)*!-1}.

We take this last expression as piZ) in Lemma 5 and so have

^(0)   =   KU  —  KU log  (kw)   + ^(»),

nCl + kz) __
#'(«) -- + zZ a,*i(l - WU + z)6'-2-

1 + z

Differentiating (11.1) logarithmically with respect to z, we find that

(11.7) ¿'(z) =nl I"—)■

Now, for w ^ 1,

¿»-I 1 1    d"*"1 /    d       \
- izd'ê™-1) = — -( z—ûm)

1 m   ¿z^X   ás     /

/ m -  1\   ri"1"1

\    m    / dzm~l

dz

0" + (-   -¿'
m  dzm *     ***     ' J"™—1

and so, by (11.7),

r¿ra_1 ,       >i       r^"1^1 i     n r d™-1   ~\
-■ U'(z)j?"}        = «   -(î?"1 - zô'û™-1)       - —   -#™
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Hence, by Lemma 5,

A(X0) = /ere — KH log (k») + \f/in) + 2Zi vi™' n)>
m=l

where

n    r dm~x      "I
m(w, n) = -—■—   •-ûm

mim]) Ldz™-1      X~o
We have

m   l—ntK'

K^n
á   -

w2Xim-1

by (11.2) and so

2Z      /*(*», n) = 0(re-*).
m~ll/K']+l

Again, for bounded m and 2, since

WK+ (SOT + 1)(1 ~b) > 1 + X,

we have

t?m = Xm(/c»)-"!"(l + z)1^1-«) exp {?w X a}&iW6i_1(l + z)6'-1}

= xm(Kw)-"*'<(i + z)"*'1-'5 + £f»'I r»-r(i + ¿)»-»*-*t + or»-1-*)
v «-i      (») ;

by (2.3) and so

n     r     ûm
pirn, n) =- I      -dz = n1-mK'K"i/min) + 0(re-*).

2itim2JzA  zm

Hence

(11.8) A(Xo) = m- Kn log (k«) + ^(«) + X^(«, X) + 0(re~*)

(11.9) = Kn — Kn log (kw) + 0(res).

Similar calculations enable us to show that

(11.10) 7o = k» + 0(mb),       Xo = m + OinB),

whence

(11.11) arg Xo = 7 + Oiy-1).

12. Proof of Theorem 5. By definition the pu p2 of Theorem 5 satisfy

(2.5). We may also suppose that, if p' < 1/2, then mi <mo and M2 <Mo- We write

pirn, n) I =
2irim'

r    if*

JzA  z"
dz



1948] ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 433

(12.1)        M3 = min (mi, co2, x/2 — 27) — e,      pu = min (m2, cox, it/2 + 27) — e,

where e is a positive number chosen small enough to ensure that

—  M3   <  7   <  P4.

This is always possible since

— min (px, co2) < 7 < min (m2, cox)

by (2.5) and Lemma 3 and

- (x/2 - 27) < 7 < x/2 + 2T,

the latter condition being equivalent to —ir/2<y<ir/2.

We now take T in (10.2) to be the circle on which   |x| =|xo|, write

x = Xaeii, X=Xoe*( on T and 7?o = arg X0 and choose £ so that

P4 —  VO „ P4 —  lío
—-2x < £ ^-

p

We divide V into two parts Ti, T2 on which

P4 — VO „ /PS + ^oX /P3+I?0\ P4 — VO/P3 + i?o\ / p3 + r¡o\ Pi —

P

respectively, and write

/(x)dx
Cx

J_ r-     _/(*
27TÎ J T¡      (X  — X)"+!

and similarly for c2 so that c^w) =Cx+c2.

Lemma 15. log |d| <3l{A(Xo)} -X«.

Our choice of arg x and arg X above differs from that of §2 when x lies

on part of IV In Lemma 7, however, there is no restriction on arg 7 (except

boundedness) and so we may put 7 = X in that lemma. Since

(12.2) — px < — p3 < 7 < pi < p2,

we may replace mi> /*2 in Lemma 7 by m3, M4- Hence, by (5.6),

(12.3) fix) = 0{77(-M3, X)} + 0{77(P4, Xe2">)} + 0(X*).

On T. |X| =\X0\e»'^-y and arg X = 770+p'£. By (11.10), <R.(X„) >X |X0|
and so on T

xK = o(xf)=o^(Xo,-xlXo1).

By Lemma 12,
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i—Jr.
log Hi~ps, X) < I X I cos p3 exp {tan m3(m3 + arg X)} + 0(X     )

= |Xo|fli(0+0(Xo1-*),

where

flx(f) = cos M3 exp { (m3 + î?o + p'Ö tan p3 + p'£ tan 7}.

Since tan M3 + tan 7>0 by (12.2), fix© increases with £ and so, on Tu

S2x(£) < Oi{ - (p3 + Vo)/p'}  = cos Mae-Ca+'Otanv

=   e-10tan7 J cos 7gYtan7  _    j (tan y  _   tan fl)   CQS 069tan7¿0) I

< c-'»tani'(cos ye^tany — X5),

where X6 depends only on 7 and Ms- But, by (11.11), t70~7 and so

Œi(£) < cos 770 — X,

log 77(-M3, X) < îl(Xo) - X I Xo I.

Similar calculations enable us to find the same upper bound for log

77(m4, Xe2"') on IY Hence, on Tu

log I fix) I < 5l(Xo) - X I Xo I = 5l{c6(7o)} - X [ X01

by (4.12). Since |x| = [ ac01 '—' 1 (km)"! on Vi,

l/xo-X\"| (      /l - Xxö\) /    re   \

and so

/(*)
log < R_{ A(X„)} - XI Xo I + Oí»1-*) < <R{ A(X0)} - X«

!(x- \y

on Tx. Lemma 15 follows at once from the definition of Cx.

Lemma 16. c2~MffeA(Xo>.

Let x lie on r2, so that — ÍP3+V0) Ssp'£SsP4 — Vo, whence

(12.4) -M3áargX^M4,

since arg X = ï?o+p'£. Hence on r2 our present choice of arg X is the same as

that of §2, the conditions of Theorem 1 are satisfied and

fix) ~ 21l2ir1l2K-1-ßX1l2+ße^u\

fix)
(12.5) -^—-21/V2/c-1-^X1/2+^a(x),

(x - X)n

and
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(    fix)     )
(12.6) log \     JK ;    \~k{X).

l(x - X)"J

We put

A(x) - a(Xo) = e(Ö = 6i(Ö + ISbCO.

where 6i(£). 62(8 are real. By (11.6),

d / Krex \

Q'iO = ipX —A(X) = iP (U--)
dX \ x — X/

and

¿7 Xrex
(12.7) 6"(0 = - P2X — --— = - P2X + 0(«*)

cíX       (x — X)2

by (4.4) with ¿=1, since Xre<|X| <X«. Hence

Qi'iO = *l{Q"(Ö}  = - I P2Xo I •••«* cos (arg X - 27) + 0(re*)

(12.8) < - Kn,

since -x/2 + €^-M3-27áargX-27gM4-27^7r/2-eby (12.1) and (12.4).

When £ = 0, we have x = x0, X = X0, U= U0 and so 6(0) =0, 6'(0)=0, the

last by (11.3). If we apply Taylor's theorem to the two functions 61©. 62(E)

of the real variable £, we have therefore

(12.9) 6i(?) = l26i"(^)/2,       62(Ö = eW(Wíí)/2,

where 0<w1( w2<l. Hence

(12.10) 6i(0 < - Kn?

by (12.8).
We choose ex so that 0<ex<min {1/6, (1—B)/2}, write h = ntl~1'2 and

divide T2 into two parts r3, T4 such that |£| >h on T3 and |?| ¡SÂ on IV We

write c2 = Cs+C4 to correspond. On r3, by (12.10),

<H{A(X)}  = ^{A(X0)} +Qx(Ö <^{A(Xo)} - Xre2<i

and so, by (12.5),

(12.11) I c31 < XI nU2+ßenxa)-Kn2n I < # I w3-íreA(Xo) |.

On r4, by (12.7),

Q"i0 = -p2X + 0 inB) = - p2X0 + 0(Xo£) + 0(reB)

= - pre + 0(re£) + 0(res)

and so by (12.9),
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6(0 = - pne/2 + 0(re£3) + OinBí2)

= - pre?2/2 + Oin^-1'2) + Oin21^-1)

= - pne/2 + 0(»-*).

Again, on T4, x=x0ei{ ~Xo, X~X0~k« and so, by (12.5),

1       C fix)dx wl/2+/SeAtXo)    rh
c4 = - ——-=- e««)   1 + 0(re-*) )dt

2TtiJvi     (X-X)"+1 (2XK)1'2      J_* ' '

Ml/2+ßgA(Xo)    /» A

=     n   m/2 e~"'i£2/2 5l + °^~^}¿?
(2XK)1'2       J_ft

.—< ffieWto)

by Lemma 9, with y=pn. Lemma 16 follows from this and (12.11).

Theorem 5 is an immediate consequence of Lemmas 15 and 16 and (11.8).

13. Proof of Theorem 6.

Lemma 17. 7/ k'^1 and if

(13.1) coit) = 0{í*c*<í>(e//c¿)'"}

for all integral t^n, then cx(re) = O{w'e*w(c/kw)'"}.

In what follows / is a non-negative integer and the X are always inde-

pendent of /. By (1.1) and (1.2)

•^/n + l\
(13.2) •*(») = E(      ,     )coin + l)\l.

j=o \     I     /

Let

gU)
/n + l\\ /      e     V

-( I (» + 0'«*<B+,)x'i--)
V    I    / W + Z)/

Nowil/in+l + l)-\l/in+l)=0{in+l)b-1}, e*(»+'+»~e#(»+» and so

i «a +1) i

g(0

X(re + Z+ I)1""'/            1    \-«'(»+»        X7
<—-(1-1-I <-

1 V        n + lj1+ I \        re + I) I + 1

since k'^1. Hence, by (13.1) and (13.2), we have the result of the lemma

I cx(re) | g X¿ KO g Xg(0) Z -^ < Xg(0).
¡=o ¡=o    l !

To prove Theorem 6 we use the 4°(re), Co2)(w), /(1>(x),/(2)(x) of §8 and write

(13.3) /P)(x + X) = ¿ CxP)(re)xn f> = 1, 2).
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By Theorem 5,

„,    ,v CD.   . X*(b,X)   (1)
(13.4) cx   (re) ~ e c0   (re)

and by the hypothesis of Theorem 6,

Co   (re) = O ( re      Co   (re) \.

But, since k's£1. X^(re, X) =0(1). Hence, applying Lemma 17 to c02)(») with

a = ß — K%, we have

cx   (re) = O {re      Co   (re)},

which, combined with (13.4), gives us Theorem 6.

If k'>1, the use of Theorem 5 is unnecessary. We have \pin, X) =0 and

gil + 1)

gH)

Kin + I + I)"*
^-j

Z+l

so that (13.2) is an asymptotic series and Cx(«)~c0(re). Thus, for k'>1, it is

possible to prove Theorem 6 by quite elementary methods. I have found the

same to be true when k= 1 but not, so far as I can discover, when k' = 1 and

K*l.

14. Proof of Theorem 7. We take 5>0 and define c£°(f) ij> = 3, 4, 5) by

(8). , 5   wti   (4) . . S   (i) , . 0,    .    .«I
c0   it) = t e    c0   it) = t Co   it) = I ie/Kt)   ,

when <Rft) >0; also c0rt(0) =0. We define/(p,(x) and Cx\n) to correspond. Since

44>(»)-(-l)"4°(»). we have

/<4>(x) = PK-x),       /<«>(* + X) = /<«(- x - X)

and so c^i(re) = (-l)"Cx5)(re). If we apply Theorem 5 to c03>(«) with ß, X

unchanged and to c06)(«) with j8 — ô, —X replacing j3, X, we obtain

(3) . ß   X<Kn,X),    ,      N<™
Cx  (re) ~ n e (c/kw)   ,

(4) n   (6) (?-i   ini—XiKn,—X) «n
Cx   (re) = (—1) c_x (re) ~ re    e (e//cw)

and so
. . ,     .. (3).   . (4) ß «nf   X^(n.X) -Í  -X^(n,-X)-rn< )
(14.1) cx   (re) + cx   (re) ~ re (e//cre)    |e +re   c },

where

(14.2) ^(re, X) = «-"re1"« {1 + 0(re-')}.

But

for large positive ¿. Hence, if Theorem 6 is true for the particular k in question
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and if Co(i)=c03)(/)+c04)(/),we have Cx3)(re)+c[4>(re) =cxin)~nW^ie/Kn)'\

But this is only consistent with (14.1) provided that

w-Sg-XiM«,-x> = o(w-*eW"»)

for every X and suitable K. This implies that

<R\ - Win, - X) - X*(», X)} < X log re,

that is, by (14.2),

5l{ - 2XK-'«1-'} < X log re,

which is false for some X unless k' ^ 1. Hence the condition k' ^ 1 in Theorem

6 is necessary.
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