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1. Introduction. The system of orthogonal functions introduced by Rade-

macher [6](2) has been the subject of a great deal of study. This system is not

a complete one. Its completion was effected by Walsh [7], who studied some

of its Fourier properties, such as convergence, summability, and so on.

Others, notably Kaczmarz [3], Steinhaus [4], Paley [S], have studied various

aspects of the Walsh system. Walsh has pointed out the great similarity be-

tween this system and the trigonometric system.

It is convenient, in defining the functions of the Walsh system, to follow

Paley's modification. The Rademacher functions are defined by

*»(*) = 1  (0 g x < 1/2),    *»{«) = - 1  (1/2 á * < 1),

<¡>o(% + 1) = *o(«), *»(*) = 0o(2"x) (w = 1, 2, • • ■ ).

The Walsh functions are then given by

(1-2) to(x) = 1,       Tpn(x) = <t>ni(x)<t>ni(x) ■ ■ ■ 4>nr(x)

for » = 2"1 + 2n2+ • • • +2"r, where the integers »¿ are uniquely determined

by «i+i<«¿. Walsh proves that {^„(x)} form a complete orthonormal set.

Every periodic function f(x) which is integrable in the sense of Lebesgue on

(0, 1) will have associated with it a (Walsh-) Fourier series

(1.3) /(*) ~ Co + ciipi(x) + crf/iix) + • • • ,

where the coefficients are given by

Presented to the Society, August 23, 1946; received by the editors February 13, 1948.
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(1.4) cn=  f   4,n{x)f{x)dx (n = 0, 1, 2, • • • ).
J o

We shall set

n-l

(1.5) sn(x) = sn(x;f) = ^cidkix).
¡fc=0

For every real number x and for every non-negative integer n we define

an = an(x) and ßn=ßn(x) by

(1.6) an = m-2-n -g x < (m + 1)2"" = ßn.

Following Paley we may write

2"-l ^ 1 2"-l

(1.7) **.(*) = !>***(*) =  I    /(<) X>*(0**(*)*.
k=0 J 0 i-0

It is easily verified that the kernel is identically

2»-l n-l

(1.8) Df(x, <)'* E **(')**(*)   =   11(1+ 4>r{t)<t>r{x)).
4=0 r-0

The expression (1.8) vanishes except on the interval angt<ßn (mod 1)(3).

On this interval it has the value 2". Hence (1.7) becomes

(1.9) s2»(x) = 2" I     f(t)dt
F(/Jn) - F(an)

ßn  —   O-n

where F(x) is an integral of/(x). From (1.9) follows a result of Kaczmarz [3J,

namely, that S2n(x)—*f(x) almost everywhere. In particular, we have Walsh's

result that S2n(x)—>f(x) at every point of continuity of f(x). Other theorems,

such as the uniform convergence of S2"(x) in an interval of continuity of f(x),

follow readily from (1.9). We shall omit the statement of other modifications.

Coming now to the question of convergence of the full sequence of partial

sums, Walsh proves several theorems in which bounded variation is assumed

of the given function f(x). The two main results are :

(A) If f(x) is of bounded variation, and if xo is a point of continuity or a

dyadic rational, then sn(xo) converges.

(B) If f(x) is of bounded variation, and if Xq is neither a dyadic rational

nor a point of continuity, then sn(xo) diverges.

(It is assumed, of course, that/(x) has been redefined properly at removable

discontinuities.) Modifications of (A) and (B) are obtained by Walsh by

means of the localization theorem for Walsh-Fourier series. The failure of the

analogue of Dirichlet's Theorem, as evidenced by (B), is one of the striking

(3) In the future we shall omit the obvious qualification of periodicity when there is no

risk of confusion.
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differences between the {^nj and the trigonometric functions.

With regard to summability, Walsh treats only the (C, 1) case, for which

he establishes continuity of f(x) at a point Xo as a sufficient condition for the

Walsh-Fourier series of f(x) to be summable tof(xo) at x0. He points out that

summability may fail for functions of bounded variation at points of jump.

Using a theorem of Haar's, and the fact that the Lebesgue constants

L„=fo IDn(x, t) |dt are unbounded, Walsh proves that for any given xo, there

exists a continuous function whose Fourier(4) series diverges at Xo-

Walsh's final theorem concerns itself with the uniqueness of Walsh (not

necessarily Fourier) expansions:

If S(x)=a0+aii¡/i{x)+a2ip2{x)-1r ■ ■ • converges to zero uniformly except in

the neighborhood of a finite number of points, then an = 0 for all n.

The preceding has been a summary of most of the known results relevant

to this paper, to the best of our knowledge. It is our purpose here to extend

these results in various directions. We now give a brief résumé of the con-

tents of the sections which follow.

In §2 we define the dyadic group G and discuss its connection with the

Walsh system. A correspondence between G and the reals is set up, under

which the Walsh functions may be considered the character group of G. The

properties of this correspondence are studied, and it is prove that the Le-

besgue integral is invariant under the transform of the group operation by the

correspondence. More precisely, if + denotes the group operation, p the map-

ping of the reals into G, and X the inverse mapping, then for every integrable

function f(x) we have

f  f[\(ß(x) + p(a))]dx = f  f{x)dx.
Jo Jo

One application of this theorem is given in §2 (Theorem II), and many

others in the later sections.

In §3 we develop the expansion of the functions x— [x] and Jk(x)

=Jo4/k(u)du. We show that the latter have a restricted orthogonality (Theorem

III).
The next section deals with the analogues of certain theorems in TFS(4),

concerning the order of the Fourier coefficients. An important difference ap-

pears at this point. We prove (Theorem VIII) that for every nonconstant

absolutely continuous function, Ck^oÇl/k).

A fairly complete discussion of the Lebesgue constants is given in §5. It is

proved that Lk = 0{\og k) and that (1/w) XX i £*«(4 log 2)-1 log » + 0(1).
An explicit formula for Lk is given, as well as recursion formulas and a rather

interesting generating function.

(4) Unless otherwise stated, by "Fourier series," "Fourier coefficients," and so on, we shall

mean "Walsh-Fourier." We shall abbreviate "Walsh-Fourier series" as WFS and "trigonometric

Fourier series" as TFS.
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In §6 and §7 we develop some of the theory of convergence and sum-

mability; we also give another proof that the WFS of a continuous function

f{x) is (C, 1) summable to/(x) uniformly (Theorem XVII).

In §8 we consider a theorem due to Kac [l] concerning the set of func-

tions

M„(0 = 2»< - [2"/] - 1/2,

and compare this theorem with one we obtain concerning the functions

X»(0 = 2«t- [2H+ 1/2J.

Since ßn(t) =jUo(2"/) and X»(/) =^0(2n¿ + l/2), one might expect the sums

N N

Sn = £ p»(t),     Sn = X) M*)
n=0 n=0

to behave somewhat alike, but this is not the case. Kac's theorem states that

the measure of the set of t such that a < (1/-/V1/2)5at <ß tends to the Gaussian

integral

1        rß
- I    e-^'^dx,        <j = 1/2,
(r(2*)«V,

whereas we prove that S% is uniformly bounded.

The subjects of uniqueness and localization for general Walsh series are

taken up in §9. The methods are similar to those of Riemann in trigonometric

series, with the important difference that all of our results can be obtained

without the use of the second formal integral. Among the main results are the

following:

Theorem XXIX. //

oo

S(x) = Yl akipk{x)
k-0

converges to zero except perhaps on a denumerable set, then for all k¡zO, ak = 0.

Theorem XXVIII. If S(x) converges everywhere, and if the limit f(x) is

integrable, then S(x) is the WFS of f(x).

The unwelcome "everywhere" condition can be somewhat weakened, but

we have not been able to prove that an arbitrary denumerable set can be

neglected.

We have also arrived at these results via the second integral, but here too

the methods used do not suffice to prove much more than Theorem XXVIII.

For this reason we shall present only the development by means of the first

integral.
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We wish to express our deep appreciation to Professor A. Zygmund for

his kind encouragement and many helpful suggestions during the course of

this work.

2. The dyadic group. G may be defined as the infinite direct product(5)

of the group with elements 0 and 1, in which the group operation is addition

modulo 2. Thus the dyadic group G is the set of all 0, 1 sequences, t= {/„},

Ü— {un}, and so on, in which the group operation, which we shall denote by

+ , is addition modulo 2 for each element. Corresponding to each element

{tn} oí G there is a real number

t\ ¡2

t = — + — + ■ ■ ■

2       22

lying in the closed interval [0, l]. This correspondence is not one-to-one,

since the dyadic rationals have two representations in the dyadic scale.

Even if we agree to use only the finite representation for the dyadic rationals,

the ambiguity cannot be dispensed with entirely; for example,

{0, 1, 0, 1, 0, 1, ■ • ■ } + {l, 0, 1, 0, 1, 0, • • • } = {l, 1, 1, 1, • • • },

and the undesired representations intrude anyway. Nevertheless, the connec-

tion between the elements of G and the real numbers modulo 1 has heuristic

importance; it may be made exact enough for many purposes.

It will be recalled that a representation of a group G is a homomorphic

mapping of G onto a group of matrices M : the group operation is carried over

into multiplication in M. The character of a representation is the trace of the

matrix into which a variable element of G is carried. Thus a character isa

complex-valued function defined on G. Since the dyadic group G which we

consider here is commutative, and each element is of order two, the char-

acters reduce to functions on G taking only the values 1, —1. The simplest

characters that come to mind immediately may be defined by singling out a

particular index n and defining x*{tu h, • • • } as +1 if 4 = 0, —1 if tn = \.

Clearly Xn(t + u) =Xn(t)xn(û), so x* is a character. Since the product of a

finite number of characters is also a character, we have the set Xm 'Xn2 ' ■ • X«,

to consider. We shall now show that every character x may be represented in

this way. Let x(¿) be any character. Then

X(0) = 1    and    x(t + û) = x(t)-x(û).

Write t= [tu h, h, • • : } as {0, h, h, ■ ■ ■ } + {h, 0, 0, ■ ■ ■ } =h + h-_ Then
x('")=x(fi)"X(Ai)- Continuing in this way, we have x(0 =x(Ái) -XÍfa) ■ • •

x(hm) -xiëm) where gm = {0, 0, • • • , 0, tm+u tm+2, • • • }. The sequence gm con-

verges to the identity in the topology of G, and x is continuous. Hence, from

(6) See L. Pontrjagin, Topological groups, Princeton University Press, 1939, for the theory

discussed in this section.
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some point on, x(fm) must be identically 1. Thus we have achieved a factoriza-

tion

x(i) = x(hi) • ■ • xihm).

Now x(k~n), considered as a function of l, say x(n)(t)> is also a character, and is

easily identified with either the identity or Xn(î)- Hence, every character

may be written, by suppressing those which are identically 1, as

x(t) -x»,(2)-Xm(J) • • -xnß).

Thus we have obtained all the characters of G. These characters form a group

X, in which the group operation is ordinary multiplication. It is well known

that G is also the character group of X.

Suppose that we define a real-valued function rn{t) on the reals as follows:

Write:

oo f

— >    I an integer,    tn = 0, 1.
,  9n

n=l   «

If there is any ambiguity, choose the finite dyadic expansion of /. Now / cor-

responds to / = {h, Í2, • • ■ } Ç.G, and we write rn{t) = x»(f). It is easily seen

that rn(t) is identical with the Rademacher function <j>n-i(t) defined in §1. Fi-

nally, the Walsh system may be associated, in like manner, with the full set

of characters of G.

Just as the additive group of real numbers modulo 27T is fundamental in

the theory of trigonometric series and classical Fourier series, so the group G

is the underlying basis in the study of Walsh series and Walsh-Fourier series.

We believe the analogy to be a very far-reaching one and worthy of further

consideration. For the immediate purpose, however, we shall limit ourselves

to a discussion of the relationships which exist between the group operation

in G and the ordinary processes of analysis.

Let x be an element of G, x = {xi, x%, • • • }, xn = 0, 1. We define the

function

00

(2.1) \(x) = J2 2-"xn.

The function X, which maps G onto the closed interval [0, l], does not have

a single-valued inverse on the dyadic rationals; we shall agree to take the

finite expansion in that case. Thus for all real x, if we write the inverse as /x,

(2.2) X(M(x)) = x - [x],

[x] denoting the greatest integer in x. It is not necessarily true that

¿t(X(*)) =x for all xGG. It is true, however, provided that X(*) is not a dyadic

rational (D.R.).
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The function X(x) is non-negative and vanishes only for the identity Ö.

Since y+z = 0 is true if and only if y = z, we have

(2.3) \{y + 2) = 0    if and only if   y = z.

Since |y„ —s„| =yn+zn (mod 2) for yn, zn = 0 or 1 independently,

(2.4) y + -z= {\yn-zn\ }.

Hence

(2.5) X(y + z) g X(y + w) + \(w + z).

Trivially X(y+z) =X(z + y). This, together with (2.3) and (2.5), shows that

X may be used to define a metric on G. Now if y I =yn and z» = z„ for n<N,

I My' + z') - My + i) I = 2-* + • • • g 2-*+l,

so the metric thus established is continuous on G. Conversely, if y and z

are close in the metric, say X(y+z) <2_JV, then they cannot differ in the «th

place for n^N, so they are close in G. Hence the topology induced on G by

the metric is equivalent to the original topology.

An important property of the function X is the following:

(2.6) I X(y) - X(z) I g \(y + z).

This follows from the fact that the left-hand member is

I E(y»-«»)2— I
and the right-hand member, from (2.4), is

X I   yn  -  Zn I  2-".

We have proved above that <p„-i(x) =Xn(v(x)), w^ 1. We shall abbreviate

X(m(30+m(z)) as y+z; there should be no confusion between the operation -j-

in G and in the reals. Using this notation, it is possible to put (2.6) in a some-

what more convenient form. Let x and h be any two real numbers, and

write ¡x(x) =y, n{x)-\-n{h) =z. (2.6) then becomes

I (x + h) - X(y) |áX(j + z)= XGi(A)).

Taking (2.2) into account, we have

(2.7) \(x+ h) - (x- [*]) \g h- [h].

In particular, if 0^x<l, Ogh<l,

(2.8) I (x+ h) - x\ g h.

Now suppose that f(x) is a continuous periodic function, with modulus of

continuity u(ô;f), that is,
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(2.9) | f(x,) - f{x,) | g ü>(5;/)   for     \ xt - *| &.i.

Then if 0gA^5<l,

(2.10) |/(* + A) -/(*) | ="(5;/).

We shall next show that for each fixed y and for all z outside a certain de-

numerable set (depending on y), the equation

(2.11) <l>n-i(y + z) = <fr,_i(y)0„_nz)

is valid. The right-hand side of (2.11) is equal to

Xn(ß(y))-xn(ß(z)) = xn(ß{y) + /»(«));

the left-hand side is

XnMy + 2)) = x»0*(x(*))),      x = n(y) + p(z).

Now li(\(x))=x provided that X(z) is not a dyadic rational. Hence, if y+z

is not a dyadic rational, (2.11) holds. For fixed y, the exceptional set of z's

consists of those whose dyadic expansions agree with that of y from some

point on, or differ from some point on, and this set is clearly denumerable.

From the definition of \f/n, we have also (with the same restriction)

(2.12) Wy + «)=iWtó).

We turn now to considerations of measure. Let y be a fixed real number,

and let z belong to a measurable set A lying in the unit interval. By TV(A)

we shall mean the set y+z, z(£A. We propose to prove that Ty is a measure-

preserving transformation, that is,  |7,¡/(^4)| = |.¡4|. Consider the intervals

I(k,n): k-2~n g z < (k+l)2~»,       n ^ 0, k - 0, 1, • • • , 2" - 1.

Clearly, except possibly for a denumerable set, Ty carries I(k, n) into some

I(k*, n), where k* may be identical with k. Thus our statement is true for

all dyadic intervals I(k, n). It follows that it is true for all intervals, for we

can cover any interval / with a sum S of non-overlapping dyadic intervals

such that |S| <|/|+«; then \TV(J)\ ^|r„(2)| =| S| <|/|+«, so that

| Ty(J) | ^ | /| ; hence | Ty(J) | = | /|. The truth of our statement now follows

for any measurable set A.

As a consequence, the function/(y+z) (y fixed) is equimeasurable with

/(z). We have therefore proved the following theorem:

Theorem I. If f(z) is integrable, then for every fixed y,

f  f(y + z)dz = f  f(z)dz.
Jo Jo

An example of the usefulness of this result is the following theorem, which
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we shall need later:

Theorem II. If f(x) has the Fourier coefficients {cn}, and if h is any fixed

number, then the Fourier coefficients of f(x+h) are {cnipn(h)}.

By (2.Í2), ipn(x) =^n(h)^n(x+h) a.e., so

f    ¿n(x)f(x + h)dx = *„(*)   f    in(x + h)f(x + h)dx
Jo Jo

= Mh) f f(x)Mx)d*
J o

= cn\f/n(h).

3. Expansions of certain functions. This section will deal with the prop-

erties of the integrals

(3.1) /*(*) = f   $k(t)dt, k = 0, 1, 2, • • • .
J o

We have Jo(x) =x. We may write, using the finite expansion in case of doubt,

CO

(3.2) x- [x] = £2—*».
n=l

It is easy to see that

1 — <¡>n(x)
(3.3) x„+i =-> n = 0, 1, 2, • • • .

Hence

1        1   "
* - [*]= — -— £ 2-"*»(*)

(3.4) 2        * "=°
11"

= — - — Z 2-"iM*).
¿ 4 n=o

Since the last series converges uniformly, it is the Fourier series of the function

x— [x].

For k^l, write k = 2"+k', where 0g&'<2". Let I(p, n) denote the in-

terval p■ 2~ngx<(p + \)2~n. The function ipk(x) is constant on each interval

I(p, w + 1), and \¡/k-(x) on each I(p, n). Since \¡/k(x)=4/2n(x)^k'(x) and yp2«(x)

changes sign between I(2p, w + 1) and I(2p + \, w + 1), so does ^/¿(x). It follows

that Jk(p-2~n) =0; furthermore, on each 7(p, «), /¿(a;) is a reproduction of

Ji with reduced scale and a possible change of sign. It is easily verified that

(3.5) /*(*) = 2-^k'(x)Ji(2nx) = iM*)-M*)-
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Now Mx) = l/2+\pi(x) ■ (x-[x]-l/2). Using (3.4), we have

Ji(x) =~ + Hx) (- — Ê 2-rMx))
2 \     4 r=0 /

1        1   "
- — - — E 2-'<Pf+i(x).

4        4 r=i

From (3.5), with k = 2», k' = 0,

Jr(x) = 2-c+2)|l - ¿2-^f+i(2»*)|

= 2-(»+2) |l - ¿ 2-^2»+'+2»(»)} •

In general, therefore,

Jk(x) = 2-^+vLk>(x) - Jj 2-ye»+r+»(*)\

(3-6)

= 2-(«+2)i^,fc,(x) - ¿ 2-*^,^+*(*)l .

We shall now obtain another useful formula for Jk(x). Let us define an,

ßn by (1.6), and let 7„ = 7„(x) be that one of an, ßn which is nearer to x; if x

is the midpoint of (a„, ßn), set yn=ß„. With this definition we find that

Jr(x) = ± (x - y„),

and the sign is determined as + if x lies in the left half of (a„, ßn), — if x lies

in the right half. Hence

(3.7) /*.(*) = lM*)(* - 7-),

(3.8) /*(*) = ^k(x)(x — 7„).

It may be of interest to note that the Jk(x) exhibit a restricted orthogonal-

ity, as shown by Theorem III. We shall not give the proof of this theorem

here, since it is somewhat involved, but shall merely remark that it depends

on the Fourier expansion of Jk(x) given by (3.6). In order to avoid a discussion

of cases, we shall adopt the following definitions:

Definitions. If k is a non-negative integer, we define the set of integers

(k', k", «i, w2) by

(i)   [2"]£k<[2"+1],

(ii) *' = Jfe-[2»i],
(iii)   [2»2]^yfe'<[2"2+1],

(iv) k" = k'-[2^]=k-[2^]-[2^}.
Let the set (s', s", m\, wz2) correspond to 5, and let 8(a, b) =0 if a^b, 8(a, b)=l
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if o = è. With these conventions we may now state our theorem.

Theorem III. If k and s are any non-negative integers, then

f   Jk(x)Js(x)dx = — ( 1 + — ô(k, s)) (2ô(k', s') - l)F(k, s),
J o 16 \        3 /

where

F(k, s) = 2-^+"»ô(k", s")5(k", s)

+ 2r^+"^S(k', s')ô(k', s")(l - h(k', s))

+ 2-<-^+m^5(k, s")(l - ô(k, s')).

4. Fourier coefficients. Walsh has proved that the Fourier coefficients of

an integrable function converge to zero. In this section we shall discuss the

rapidity of convergence for several classes of functions. For all theorems in

this section we shall assume that f(x) is periodic, integrable, and has the

Fourier expansion

f(x) ~ Co + Ci^i(x) + C2^2(x) +  • • •   .

Theorem IV. Let

»(«;/)-     l.u.b.      \f(x+h)-f(x)\,
|A|ga,OSz<l

wi(S;/) = l.u.b.   f    |/(* + h) - f(x) | dx.
I*láí   Jo

Then for k>0,

(i)   \ck\úu(í/k;f)/2,

(ii)  \ct\£oi(l/k;f).

Suppose that 2ngk<2n+1. Then, by Theorem II,

/(* + 2~<«+1>) ~ £ CkM2-(n+l))tk(x).
k=0

Hence the ¿th Fourier coefficient of f(x)-f(x+2-<-n+l)) is ck(\ -\f/k(2-(-n+1))).

Now

**(2-<"+W) = iA2»(2-(»+1))^fc-(2-("+1)),

where k'<2n. For m<n, ^2m(2-("+1)) =^i(2m-"-1) = 1, so i/v(2-(n+I)) = 1. But

iM2-("+1)) =^i(l/2) = -1. Hence &(2-<«+») = -1. Thus

2ck =  f   M*) {fix) - fix + 2-^+")}dx.
J o

Using (2.10), we find
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I «»I-y   f   tkix){fix)-fix + 2-^+V))dx
2 | J o

ga,(2-<»+i>;/)/2^co(l/¿;/)/2.

To prove (ii), we observe that a;+2_<n+1)) takes the values x + 2~(n+1),

x — 2~(n+1> on two mutually disjoint sets E+ and £_, each of measure 1/2.

Hence

if'
2 Jo

f(x) - fix + 2-("+1') | dx

-—I     | /(*) - fix + 2-C+») | á* + — I     | /(*) - /(* - 2-<»+1>) I dx
2  J E+ 2  J E_

^  f    I /(*) - /(* + 2-("+1>) | dx g wi(2-("+1' ; /)
J 0

= «x(l/¿;/).

As an immediate corollary, we obtain the following theorem:

Theorem V. If fix) satisfies a Lipschitz condition of order a, 0<a^l,

then ck = 0(k—).

Our next theorem, dealing with functions of bounded variation, has an

exact analogue in the classical theory of Fourier series.

Theorem VI. If fix) is of bounded variation, and V is its total variation

over (0, 1), then IcJ á V/kfor k>0.

Write

f(x) = P(x) - N(x) + f(0),

where P(ac) and Nix) are the positive and negative variations oí fix); each is

non-negative and nondecreasing. Applying the second mean-value theorem,

f  *kix)Pix)dx = P(l - 0) f   Ms)dx - - P(l - 0)Jkit);
Jo J í

similarly,

f   fh(x)N{x)dx = - Nil- 0)Jki£).
J o

Now by (3.8),

| /»(*) | = | *»(«)(* - 7«) I ^ 2-<"+d < 1/*;

it follows that
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.        P(l - 0) + N(l - 0) V
I ck   á-= — •

h k

We now come to an important difference between trigonometric Fourier

series and Walsh-Fourier series. Let fix) have mean-value zero over (0, 2ir).

Then the periodic function

)=    ff(í)dt
J 0

Fix

has (trigonometric) Fourier coefficients Bk satisfying

Bk = oil/k).

If Fix) is a pth integral, then Bk = oik~p). We shall now show that the order

of the coefficients of a WFS cannot be improved by smoothness conditions.

Theorem VII. Let

fix) ~ Citiix) + c2\h(*) + • • • ,

Fix) =  f  fit)dt ~ bo + b^iix) + b2Í2Íx) + ■•■ .
J 0

Then for fixed k'^0 and n—* °°,

(i) ¡W = - 2-^+^Ck' + o(2-").

Write k = 2"+k', and take 2n>k'. Then, integrating by parts,

&*•+*'- f   Mx)Fix)dx= [jkix)Fix)]l~ f   Jkix)fix)dx.
Jo Jo

The first term on the right vanishes; using the Fourier expansion obtained in

(3.6), we have

hr+¥ = - 2-<"+2> f  4>k>ix)fix)dx + 2-c+« ¿ 2-' f   ^+'+kix)fix)dx
J 0 r=l •/  0

00

= _ 2-("+2>c4. + 2-(»+2>X) 2-rc2«+'+k.
r-1

The series is dominated by

max  \ Cp\,
í>2»

which tends to zero as n—*oo. This proves (i).

Theorem VIII. The only absolutely continuous functions whose Fourier

coefficients satisfy bk = oil/k) are the constants.
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If there is one k' for which c^-^O, then

- 2"i2»+jfc- = cv/4 + oil) H oil).

But if all Cv vanish, /(x)=0.

The theorem just proved is heuristically reasonable: if the coefficients

converge to zero too rapidly, then the jumps of the functions i>kix) cannot be

smoothed out in time. We might suspect, then, the existence of restrictions

on the order of Fourier coefficients for arbitrary continuous functions. For

example, if £î°=2 |&*| <|&i|i the discontinuity at the point x = 1/2 must

remain. The question seems worthy of further study, although we shall not

pursue it here.

5. The Lebesgue constants. Let {/*(*)}, k^O, be an arbitrary ortho-

normal system on an interval (a, b). By analogy with TFS, we may define the

"Dirichlet kernel"

(5.1) Dk{x, u) = foix)foiu) H-+ fk^ix)fk^iu).

The Lebesgue functions of the system are then given by

/*
| Dkix, u) [ du.

If, as in TFS, the functions Lkix) are independent of x, we speak of the

Lebesgue constants Lk. It is clear that the expressions (5.1) and (5.2) must

play an important part in the theory of the system {fk}. For example, the

partial sums of the Fourier development of a given function g(je) are

**(*; g) = *»(*) = faix)  1     giu)foiu)du + ■ • •
J a

(5.3) +fk-iix) I    giu)fk-iiu)du
J a

= j    giu)Dkix, u)du.
J a

In this section we shall prove that the Lkix) for the system {\pk} are inde-

pendent of x; we shall evaluate the Lk explicitly and obtain recursion formu-

las for them; we shall determine their average order as well as their maxi-

mum order; finally, we shall derive a generating function for the Lk. It might

be well to recall at this time the fact that in the trigonometric system we have

Lk = — log h + 0(1).
x2

By (2.12), we have for fixed x and almost all u,
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iM »#»(«) = lA»(* + u).

Hence, setting Z>t(0, u)=Dkiu),

4-1

Dkix, u) = ^iMaOiM«) = Dkix + u), ix fixed, a.a.w).

t(x) = J     | Dkix + u)\du = \     | Z?*(«)
«/ 0 J 0

¿M.

Thus the ¿^(a;) are in fact independent of x. Now let & = 2" + fc', 0£=&'<2",

« = 0. If we agree to set Doiu) equal to zero, we have

k'-l

Dkiu)   = D2"iu)   +   2 f 2"+r(«)

fc'-l

=  £>2»(m)   + \[>2»ÍU)   2 #*(*)

= D2"(m) + ^2"iu)Dk'iÚ).

On the interval (0, 2-<n+1)), Z?2»(m)=2b, ^¡»(m)=1, and Dk\u)=k'; on the

interval (2-<"+1\ 2""), £>2»(w)=2", ^2»(m) = -1, and ZV(*)-A'; on (2"», 1),

D2»(w)=0. Hence

| Z?*(#) | = 2" + *' (0 g w < 2-<"+1>)

= 2n - k' (2-(»+D ^ « < 2-")

= ZV(«) (2"" g « < 1).

We find, therefore, that

/, 2-(»+I> p 2-n r.    1+ j +|        | !>»(«) I ¿«

= 2"<"+1>((2" + *') + (2" - *')) + f     | £*-(») | a«
(5.4) J 2-"

/, 2~~n | Dk'iu) | d«
o

= 1+Lk, - k'/2\

If ¿ = 2'I1 + 2n2 + • • • +2"% n!>n2> ■ ■ ■>«„, and fcW =«jfeO«-*> — 2«*, succes-

sive applications of (5.4) yield

(5.5) Zfc = X) (1 - 2-«*A<»>) = K - Z 2""p E2""»-    X)    2»'-"».
p=l p=l r=p+l l=i y<jr=v

The effect of replacing k by 2& is to leave v unaltered and to increase each
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Mr by 1, thus leaving nr — np unchanged. Hence

(5.6) L2k = Lk.

If, however, we consider 2& + 1, we have »„+i = 0, so

v

L2k+i = v + 1 -    £    2(""-+1)-("*+1) - ^ 2n*-*-(n»+1'>

(5.7) lSp<r-'

= Lk+1 - (2-"1 + 2-"* + • • • + 2-"-)/2

= Lk+l- gik)/2.

We observe that gi2k) =gik)/2, g(2/fe + l) =l+g(2/fe).  It is not difficult to

prove, now, that

(5.8) L2k+i = il + Lk + Lk+1)/2.

Let us define, for real x, the function

Tix) = ££»;       if x< 1,        Tix) =0.
k-l

We now need an estimate for Lk from (5.5):

Lk è v.

Since   m„^0,   w„_i = l, • • • ,«1 = ^-1,   we   have   ¿^1+2+4+ • • • +2"-1

= 2"-l, so

log (* + 1)
<

log 2

(5.9) Z* = 0(logA).

Now if x = 2m + l, m a positive integer, we find

Tix) = U + {L2 + L, + ■ ■ ■ + L2m\ + {L3 + Lh + ■ ■ ■ + L2m+i}

- Li + t(—\ + — {iLi + L2 + 1) + iL, + L3 + 1) + ■ ■ ■

+ iLm + Lm+1 + 1)}

/x\       1      /x\       1   . .      m
-L,+ TÍK-) + -TÍK-)+-{L2 + U+...+L^}+^

(5.10) Tix) - 2t(—) + — + Oi\ogx).
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It is easy to see that (5.10) is valid for all x>l. If we set Aix) = Tix)/x and

apply (5.10) repeatedly, we obtain

^)=^) + { + o(i^),

a(^=a(^) + ±+41^\
(5.11) \2/ \±J       4 V   x/2   J

/   x\ / x\       1 /log x/2r~1\

■ \f*) ~ - \2*) + 7 + - V */2*^  )'

Summing (5.11), we have

(5.12)
/ x\       r /loga; log x/2r-1\

Aix) =A(— ) + — + 0(-^- + ••• +—5—-).
\2V      4 V   * x/2-i   /

Choose r so that 2r-1<xi£2r. Then (5.12) becomes

r log x
(5.13) A(s)= - + 0(1)=—^— + 0(1).

4 4 log 2

At this point we should like to present a short proof of a theorem com-

municated to us by Professor Rademacher. This theorem was proved by him

in an unpublished paper written in 1921, in which he effected the completion

of the Rademacher functions. The theorem deals not with the average value

of the Lebesgue constants but with their maximal value. We present our proof

rather than Professor Rademacher's because of the simplification resulting

from the use of the recurrence formulas for L(&). (Throughout this proof

we shall write Lik) for Lk.)

Theorem. Lim sup^M {Z,(£)-(4/9+(l/3)log2 3k)} =0.

Proof. Define the sequence of integers

(5.14) to = 1, h = 3, • • • , tn+1 = 2tn+ i-l)\

Using the recurrence formulas

Li2k) = Lik),
(5.15) ^    J J

Li2k + 1) = (1 + Lik) + Lik + l))/2,

it is easy to prove by induction (considering separately the cases n even and

n odd) that

Litn+1) = (1 + LiQ + L(¿„_0)/2,

from which it follows readily that
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L(t») ^ Lik) for 2» g k g 2»+!

and that

Therefore

n      10       1 /      1\»
LiQ =— +-(-) .

3        9       9 \      2/

(5.16) lLm{i(,.)- (^ + j)}=0.

Now from (5.14),

4 1
,„ = 72«-7(-l)",

and therefore

(5.17) n = \og2 i3tn) - 2 + oil).

Combining (5.16) and (5.17), and defining

(5.18) eik) = Lik) - (— + — log,3*Y

we see that

(5.19) limsupe(¿) ^ 0.

From (5.15) and (5.18),

(5.20) e(2k) = eik) - 1/3.

Also

ei2k +!)= — (! + eik) + eik + 1))-log2
1 1 Ulk + l)2)
j il + eik) + eik + 1))

1 1

2 6 { kik+ 1)
/(2A + 1)2\

\kik+ 1)/

< - (eik) + eik + 1)) + ■
2 6

Considering the two cases separately,

1 1
e(4A + 1) < — («(2*) + ei2k + 1)) + —

2 6
(5.21)                                       i

= — ieik) + ei2k + 1)),
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1 1
e(4¿ + 3) < — (e(2A + 1) + e(2A + 2)) + —

2 6
(5.22) i

= — iei2k + 1) + eik + 1)).

By direct computation we find that for 2 ^¿^8,

(5.23) eik) < 0.

Assuming that (5.23) is true for 2»-2gfcg2n, (5.20), (5.21), and (5.22) assure

us that it is true for 2n ^ k ^ 2n+2 also. Hence e(¿) <0 for all k > 1 and

(5.24) lim sup eik) g 0.
i-. 00

Taking (5.19) and (5.24) together, and recalling (5.18), we see that the

theorem is proved.

We shall now turn our attention to the generating function

CO

(5.25) Fis) = Y,Lhzk (|*| < 1).
k=l

Equations (5.6), (5.8), and (5.25) yield the functional equation

(1+z)2 1        z
(5.26) Fis) =--F(z2) + —

2z 2   1 - z2

Writing Fo = Fiz), F„ = F(z2"), we have, for n ^ 0,

(1 + z2")2 1 z2"
(5.27) Fn = ---^F„+1 + -

2z2" 2   1 - z2"+I

Now set

{(l + zxi + zv-.a + z2-1)}2 i    z
rn-j H i = — - •

2 V"-1 2    1 - z2

We shall define Hn recursively so that the following equation, which is true

for w = l, shall hold for »èl:

(5.28) Fo = PnFn + Hn.

If we substitute for F„ in (5.28) its value in (5.27), we obtain

(1 + z2")2 1 z2"

"•-S?" *•**" + 7 73^ P- + R-

-   Pn+lF„+1 + ff« + y _     2n+1   P„.
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Comparing (5.28) and (5.29), we see that the desired recursion is

(5.30) Hn+1 = Hn + -       Z — Pn, »èl.
Z    X        z

Summing (5.30) for « = 1, 2, • • • , N, we have

1 r     z               z2      (1 + z)2
HN+i = —   -+-— + • • •

2 Ll - z2      1 - z4       2z

1«"        {(!+«)■•• (l+z2*-1)}2!

+
I _ 22"+i 2Arz2iV-1

2JV-1 z       ri - z       1   1 - z2 1     1 - z2"-|

"T'(i -z)2Ll + z     ~2   1 +z2       '"       2»    1 + z2"J *

Now F(z)=0(z) for [z| small, and Fn(z) =0(z2"); the numerator of Pn is

bounded and the denominator exceeds 2"|z|2" in absolute value. Therefore

lim PnFn = 0, and

1         z        •    1    1 - z2"
(5.31) F(z)= -    £

2   (l-z)2nTo 2»   1+z*"

We collect the results of this section:

Theorem IX. The Lebesgue constants Lk of the Walsh system satisfy

(i) Lk - v -    2    2%-«»,
láp-Crá»

where

k = 2"1 + 2"2 + • • ■ + 2nv fa > »2 >•••>*, à 0).

(Ü) ¿2*  = -£*; -£<2fc+l  =   (1  + ■£& + Lk+l)/2.

(hi) ¿* = 0(log A).

1    " log n
(iv) - 2 Lk - -^— + 0(1).

n ».i 4 log 2

(v) lim sup -Jit — (-1-log23&)> =

00 1 z        °°    1    1 — z2"
(vi) FW-Sl^»----£-__- (|f|<l).

j,_i 2   (1 — z)2„=o 2"   1 + z2

6. Convergence. We first prove a lemma concerning the size of D¡,iu).

Lemma 1. For all u such that 0<w<l, | £)*(«)[ <2/w.

Suppose that 2~ngu<2-"+1, and write A in the form k=p-2n+q, 0ggg2B.
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We assert that for all u,

(6.1) Dkiu) = Driu)DPi2»u) + fp(2*u)Dt(«).

Foryf/riuWsiu) =i¡/T+,iu) provided that r and í have dyadic expansions without

any exponents common to both; hence

k—l p—I    2"-l 9-1

Dkiu)   =   X   iM«)   =   Z)     Z)^r.2"+i(«)  +Z)^P'2"+i(M)
r=0 r=0      <=0 ¡=0

p-1    2"-l 5-1

=   S     Y,^r-2'iu)i>tiu)  +  Y,^p.2"iu)^tiu)
r=0     i=0 <-0

P—1

= Driu) £ *ri2nu) + tPi2»u)Dqiu)
r-0

= Z»2»(«)£>p(2"m) + tPi2nu)Dqiu).

Since ZV(w) contains l+^2"-1(M) = 1+>/'i(2,'_1m) as a factor, and l/2¿¡2n_1«

< 1, £>2n(«) = 0 ; hence

| Z?*(«) | = | Dtiu) | ^ g á 2" < 2/w.

An immediate consequence of Lemma 1 is the following theorem.

Theorem X. Let {ak\ be of bounded variation, that is,

CO

Furthermore, let a*—>0. Then Z¡T=o ß*^*(«) converges uniformly in hgu<l,

8>0.
To prove this theorem we need only apply Abel's summation formula

and observe that l+^i(m)+^2(m)+ • • • has partial sums uniformly bounded

in 5^m<1.

We are now in a position to give an easy proof of the localization theorem

for Fourier series. (Cf. Walsh [7].)

Theorem XL Let fix) and A(x) coincide in some neighborhood of the point

xo. Then the Fourier series of these functions are equi-convergent at the point xo.

Let g(x) =fix) —his). The partial sums of the WFS for gix) at the point

xo are, by (5.3), (2.12), and Theorem I,

Skixo) =  I      giu)DkixB, u)du =  I    giu)Dkix0 + u)du

(6.2) J° ^ J°

gixo + u)Dkiu)du.-f
«/ 0
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We are assuming thatg(«)=0 for \x0 — u\ <5, 5>0. Since [ (ac0+w) —íco| á«

by (2.8), gix0+u)=0 for \u\ <ô. Hence

/.'
(6.3) Skixo) =  I    gixo + u)Dkiu)du.

Choose n so that 2~ngb. By (6.1), Dkiu) =\f/p.2niu)+TJ/P.2n+iiu)+ • • •

+ypp-2n+q-xiu) in Sgu<l, so that (6.3) reduces to a sum of a bounded num-

ber of Fourier coefficients for the function gixo+u) ; these coefficients tend to

zero as £—>«>, hence as A—>°°. Thus Skixo)—*0 and the theorem is established.

Remark. If x0 is a dyadic rational, the point xo+u lies to the right of Xo

for u sufficiently small. Thus Theorem XI is still valid if we restrict ourselves

to a right-hand neighborhood of a dyadic rational. This reflects clearly the

topology of the group G, in which the two representatives of a dyadic rational

are distinct. Unless there is an essential point involved, we shall not call at-

tention to the special character of the dyadic rationals in the future theorems.

Our next two theorems also have their counterparts in the theory of TFS.

Theorem XII. Let ifiu) —c)/iu—x0) be absolutely integrable in \u — x0\ <S

for some ô>0; then the WFS offiu) converges to c at the point xo-

We may write

Skixo;f) — c =  I    ifiu) — c)Dkix0 + u)du
J 0

= f (/(«) - c)Dkix0 + u)du + f
J |u-i0|<S J |ii-i0l>8

By Lemma 1 and (2.6),

2 2
| Dkixo + «)|<-

Xo + u       I u — Xo I

therefore

/(«) - c

|u-*ol<*       u —  Xo
skixo;f) - c\ S 2 f

J  \u-

du

+    I ifiu) - c)Dkixo + u)du
I J  lu-znl>SI«— *ol>S

Given e>0, we can choose S small enough so that the first integral does not

exceed e/2; with ô thus chosen and fixed, the second integral can be made less

than e/2 for A>A0(5, e) =A0(e). This completes the proof of Theorem XII.

Theorem XIII (Dini-Lipschitz]). If fix) is continuous, and if its modulus

of continuity satisfies w(5;/) =<?(log S-1)-1 as 5—>0, then its WFS converges to
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fix) uniformly.

Since 52n(x)—*fix) uniformly (see §1), it is sufficient to consider, for any

given A = 2n+A' (Ù£k'<2n), the difference

(6.4) S2»+k>ix) — s2»(x) = I    \p2nix)^2niu)Dk'ix + u)fiu)du.
J o

We recall that for p<2», ^,(2-<»+1>)-l, so that ¿Mz + 2-<"+1>) =Dk'iz); also

'/'2n(w+2~(n+1)) = —ypzniu). Hence, using the invariance of integration, we may

write

(6.5) **•+*.(*)- sj»(«) = - f  iM*)M«)ß*'(* + «)/(« + 2-c+1))dM.

Let us add (6.4) and (6.5):

2(i*.+*.(*) - **•(*)) =  f   ^2»(* + «)#*'(* + «){/(«) - /(« + 2-<»+1>)}áw;
J 0

2 | ij»+y(*) - «*»(*) I  =   max   I /(*) - /(« + 2-<n+1)) |  I      | Z)^(a; + u)\du
0Sk<1 J 0

Sm2-(^> \f)Lv

á «(2-;/) log (2»)
= «(I),

by virtue of (2.10) and Theorem IX (iii).

As immediate corollaries, we have

Theorem XIV. I//(x)ELip a, 0<a^l, its WFS converges to fix) uni-

formly.

Theorem XV. If fix) is continuous, skix;f)=o (log A) uniformly in x.

Our next theorem gives a sufficient condition for the absolute convergence

of a WFS. The analogue for TFS was proved by S. Bernstein (6).

Theorem XVI. If /■(x)GLipa, a>l/2, then the WFS of fix) converges
absolutely.

By Theorem II, if

fix) ~ Z) Ckipkix),
k—0

then

(6) Sur la convergence absolue des series trigonometriques, C. R. Acad. Sei. Paris, vol. 158

(1914) pp. 1661-1664. Cf. also Zygmund, Trigonometrical series, pp. 135-136.
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00

fix + h) ~ X) ck^kix)ypkih).

By Parseval's equality,

f   [fix + h) - fix)fdx = ¿ clil - MV?.
J 0 k=0

Set A = 2-(»+1>. Then &(2-<»+») =-1 for 2»^A<2"+1. Hence

Ectá [fix + 2-<"+i>) - fix)]*ds.
k=2" J 0

Again using (2.10), we have

2"+,~1    2

E  Ckè k2-("+1>;/)]2á^2—,
fc=2*

where A is a constant. By Schwarz's inequality,

2»+l— i , 2"+1—1    ,\l/2/   2"+1—1      \l/2

(6.6) £ |c*|S(    2   iJ    (    Z   I2)     l^1'^""-1'2'.
4=2" \    Jfc=2" / \    i-2" /

Since a>l/2, the right-hand side of (6.6) is the wth term of a convergent

series, so Theorem XVI is established.

It is possible to generalize Theorem XVI, but we shall not do so here.

7. Summability. The kernel for (C, 1) summation (Fejér's kernel) is de-

fined by

1    *
(7.1) Kkix, u) = — Y,Drix, u),

A r=i

which may be written, setting Kkiu) =KkiO, u), as

1    *
(7.2) Kkix, u) = Kkix+ u) =—Y,Drix + u) ix + u ^ D.R.).

A   r-l

The (C, 1) mean of order A for the WFS of a function/(x) is then

(7.3) Ckix; f) = dkix) = J    Kkix + u)fiu)du.
J o

Similarly we define the Abel kernel by

00

(7.4) Pix, u; r) = £**(*)**(»)r* (0 g r < 1).
ife=0

Setting P(m; r)=P(0, u; r) and making the usual factorization, we obtain
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Pix, u; r) = P(x + u; r)

(7.5) -
= Il (1 + iM* + u)r*n) ix + u^ D.R.).

n=0

The Abel mean of fix) is then

(7.6) fix;r)=f   Pix+ u;r)fiu)du.
J o

Walsh has given a proof of the theorem that crkix; f) tends to fix) uni-

formly if fix) is continuous. We shall offer a different proof, in the course of

which some of the properties of the (C, 1) kernels will be brought to light.

These properties we now state as a sequence of lemmas.

Lemma 2. For w^O, 0^¿'g2re,

(2" + k')K2"+k'iu) = 2nK2»iu) + k'D2*iu) + $2<u)k'Kk,iu).

By definition, and by (6.1),

2» k>

(2"  +   *')**"+*'(«)  =    £ Driu)  +£    £>2»+»
r=l 3=1

k'

= 2»K?>iu) + £ \D*iu) + #*•(«)/?,(«)}
5-1

v
- 2»Ä>(w) + k'Driu) + *,.(«) £l>s(«)

9=1

= 2 »/£>(») + £'ZV(«) + tr{*)k'Kv{«).

Lemma 3. ÄXm) = 0 for w^O.

Take A'= 2" in the preceding lemma:

2n+1K2^iu) = (1 + Ï2»iu))2nK2>iu) + 2"£)2»(w).

Since £>2»(m) 2:0,  l+^2n^0, _K"i(w) = l, induction  shows that Lemma 3 is

true for all n.

Lemma   4.   Let   & = 2"1 + 2"2 + • • • +2n»,   «i>w2> • • ->m,^0;   Jeí   fe'

= A-2"», fe<« «*<«-«-2»<, i = 2, 3, • • ■ , v. Then

V V

kKkiu) = X) 2«.-^_fcCi>(w)i:2»((M) + 2 A<¿>ZV,-(M).
i=l ¿=1

Lemma 4 follows immediately by iteration of Lemma 2.

Lemma 5. If u is not a dyadic rational, lim¿^M Kkiu) =0.

We may assume that 2~n<u<2-n+\ Write k=p-2n+q, 0gq<2". For all
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m, by (6.1), we have

0*. ■*•+«,(«) = D2»iu)Dp¡i2»u) + tP¡i2»u)Dqiiu).

Using the fact that 2-n<u<2-n+1, D2«(m) =0; so

(7.7) DPl.2»+qiiu) = *W(2"*)DW(«).

Summing (7.7),

kKkiu) = £   E ^Pl(2-i»)D„(«) + ¿ 4>Â2nu)Dqiiu)
J>l—0    31=1 «1_1

= 2nK2»iu)DPi2"u) + tPi2nu)qKqiu).

Now |JSrr(«)| <2/w for all r; |Z>„(2*«)| <2/(2»m-1); q<2"<2/u. Hence

(7.8) | ***(«) |< \       +4'«(« — 2~")      «2

from which the lemma follows. We observe that we cannot obtain an

estimate of the form Kkiu) =0(A~1w-2) such as holds in the trigonometric case.

Remark. The failure of the estimate for Fejér's kernel just mentioned

leads to an interesting question. In the theory of TFS, one has the following

theorems (cf. Zygmund [8, pp. 61-62]):

(7.9) ///(x)GLip a,0<agl, then

Skix; f) - fix) = Oik- log k).

(7.10) ///(x)GLip a, 0<a<l, then

*kix;f) -fix) =0(A—).

(7.11) There exists a function fix) G Lip 1, such that

<rkix;f)-fix)*oil/k);

in fact

**(0;/)-/(0) -m
For the Walsh functions, it is easy to establish (7.9), and (7.11) is true for the

function

Jiix) =  I    \¡/iiu)du.
J 0

Whether (7.10) holds for WFS is still an open question. One method of proof

in the trigonometric case depends strongly on the estimate for Fejér's kernel

mentioned above.
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Lemma 6. If fix) is continuous, <r2n(x;/)^/"(a;) uniformly.

The argument is of standard type:

*Ax; f) - fix) = f   Kr{s + u) {/(«) - /(*)} du
J 0

= f   Kriu)[fix + u) -fix)}du
J o

= f   Kriu) {fix + u)- fix) }du+ Ç   ,
Jo J s

I f«fa f) - fix) | á f    \fix + u)- fix) I Ke(u)du + f
Jo J s

gwi&;f) + M f   K2»iu)du,

where M—2 max |/(«) |. Fix 8 such that co(5;/) <e/2. K2niu)—>0 almost every-

where and is majorized by 2/8, so the integral can be made less than e/2 by

choosing n sufficiently large.

Theorem XVII. If fix) is continuous, akix;f)—>/(x) uniformly.

Let g(w) =fix+u) —fix). Then

<tkix;f) - fix) = <r»(0; g) =  I    Kkiu)giu)du.
J o

By Lemma 4,

I TkiO; g) | á Í(-^\j   K2niu) I g(«) | <fe

+ Z ( —- ) J    02".- («*) I «(«) I du.

By definition, ¿(i)<2ni; and 2ni<2ni~1. Denote by en the greater of the two

integrals,

/Kriu) | giu) | ¿m, D2»(w) | g(w) | ¿M.
0 J 0

By Lemma 6 and the fact that the second integral is

| giu) | d« ^ co(2-";/),
o

we see that e„—>0 as «—► w. Therefore
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-U*(0;f)| è ¿ (2«.-/A)eni.
2 «=i

The right-hand side is a weighted average of a null-sequence; it is easy

to see that the weights are distributed in such a manner as to make the

average converge to zero with increasing A. This proves the theorem.

When we come to functions of bounded variation, the results are of a

highly negative nature, just as in the case of convergence. Walsh has proved

that convergence cannot take place at a point of discontinuity which is not a

dyadic rational (§1). Since the Fourier coefficients are Oil/k), Littlewood's

theorem shows that the series cannot be Cesàro summable to any order; the

same remark also applies to Abel summability.

We end this section by stating without proof a few results concerning the

Abel kernel P(w; r) and its partial sums.

*-i

Pkiu; r) = E hiu)r\
»=o

Theorem XVIII.

(i)                      P(«; r) ^ 0, O^Kl.

(ii)                 P2»(w; r) ^ 0, 0 á r < 1-, # ¡È 0.

(iii)                 Pkiu; r)è0, 0grgr,= (51'2 - l)/2, k à 0.

(iv)                   Pkiu; r) >: 0, 0g«<l,0Sra a2"(a = 1/2), k ^ 0.

(v)                     P(m; r) < 2/u, 0<«<l,0if<l.

We remark that the constant (51/2 —1)/2 in (iii) is best possible. The constant

a = 1/2 in (iv) is not known to be best possible; the problem of determining

the exact region of positivity for all Pkiu; r) is open.

8. On certain sums. Let g<(x) be the periodic function of x defined by

(I    for   0 ^ x < t,

{0    for     is j;< 1

and let X¿(¿) be the 2nth partial sum of the WFS of gtix) evaluated at the

point x = t. In other words, if

(8.2) gtix) ~ coit) + ciiítfntx) + C2Ít)Mx) + ■■■ ,

then

(8.3) K it) = it Ckit)Mt).
k=0

Appealing to (1.9), we have
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gtix)dx = 2« I       dx= 2"(/ - «,(*)).
«7.(0 «'«»(O

Since 0 g/-«„(<) <2-",

(8.5) 0gX„'(/)<l.

Now we have

(8.6) Ckit) = f   gtix)tkix)dx =  f   ^kix)dx = J,
Jo Jo

If A = 2m+r, Og,r<2m, (3.5) yields

M*)Jkit) = ifVW-MO-

Hence, from (8.3),

».

(8.7)

X»' (0 = t + E E 4>Ht)JHt)
7n=0    r=-0

71-1

= í+ I]2t-(í);f(í).

Now   2mJ2-it)=Jii2mt)    and   fc^it) =\pii2mt).    Furthermore   ft(*)-A(*) •*

-[x+1/2], so that

m=0

(8.8)

X» (0 = í+ E"Ai(2mí)/i(2",í)
m=-0

-,+!(2-'-[2",+t]>

If we define

Mo(0 = t - [t] - 1/2,

Unit)   =  /U0(2"/),

X»@) = mo(2"í + 1/2),

equation (8.8) becomes, by virtue of (8.4),

71-1

(8.9) E X«(<) = Xn' (0 - < - 2"(< - «0 - f,
771=0

and using (8.5) and the fact that 0^i<l,

(8.10) EMO <1.

We have therefore proved the following theorem:
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Theorem XIX. For all t, and for all »¿1,

401

VÍ     / 1 \I
Emo( 2-Í + —)   < 1.
771=0 \ 2/1

Now it is easy to see that

ßoix + 1/2) = „„(*) + 1/2

= ßoix) - 1/2

ßoix + 1/2) = noix - 1/2)

Hence ßoix + 1/2) =mo(#)+^i(#)/2, and

(for 0 g x < 1/2)

(for 1/2SK 1)

(for all x).

(8.11)

E mo (2 »m- — ) - E mo(2 »0 + — E ^1(2 mo
771—0        \ 2   / m—0 2   m_0

71-1 J     71-1

= E m»(0 + — E iMfl.
77i=0 ^     77*=0

If we define the random variables Xm by

Prob {Xm < x) =      E    {>M0 < x\
l, 0SÍ<1

it is easy to see that Xu X2, • • • are mutually independent and identically

distributed, with mean value 0 and standard deviation 1. By the central limit

theorem the variable

Zn  =
Xo + X1 + + Xn-

,1/2

has a distribution which tends to the normal. In other words

1II—-f e~x l2dx.(8.12) lim|jEJ«< —2>«-(0 <
»-*« I   «     1 »1/,!m=0

It follows readily from (8.11) and Theorem XIX that

(8.13) lim I E L < — E M-W <ß\   = —\- f " e^'Hx,
»-.»I   '     I W1/2m=0 J (2îr)l/2Ja

and finally, by an elementary transformation, we arrive at a theorem of Kac

[1] =

lim n°<^ri')<ß\'^J.'-"'dy
In another paper [2] Kac points out that the set of functions fi2nt) may
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in some cases (for example, /(/)=/— [t] — 1/2) exhibit a certain degree of

statistical dependence. In the case of complete independence one would expect

(8.14)

where

(8.15)

lim

<,*-f nt)it-(f Maty .
Kac's theorem shows that (8.14) is valid for/(Z) = / — [t] —1/2 but a2 is not

given by (8.15). To show that this discrepancy is not easily remedied,

Theorem XIX indicates that even a simple translate oí fit), for which the

corresponding random variable is identically distributed with that of /(/),

need not behave like/(¿) with respect to sums of the type considered here.

We may still think of (8.15) as being valid for/(í) =ju0(< + l/2) =í— [¿ + 1/2]

if we interpret the right side as the singular normal distribution with a = 0.

It might be of interest to determine the behavior of the sums

Emo(2 "•* + £)

for values of £ other than 0 and 1/2.

9. Uniqueness and localization theorems. Let us consider a series

(9.1) Six) = «o + ffi#i(«) + aí^2Íx) +

not necessarily a Walsh-Fourier series. We shall be concerned with finding

conditions under which 5(x) is actually a WFS. The analogous problem in the

theory of trigonometric series has long been a part of classical mathematics.

(Cf. Zgymund [8, chap. 11].) Riemann employed the device of twice inte-

grating a given trigonometrical series (formally) and studying the properties

of the resulting function, relating it to the original series by means of a

generalized second derivative. In attacking the problem for Walsh series, we

find a rather surprising state of affairs. It turns out that the first integral is

the natural weapon to use; we shall show (Theorem XX) that the first

integral converges wherever Six) does. That this is not necessarily true of

trigonometric series is seen from the example E(sm nx)/\og n.

Theorem XX. Let 5(x)= Eï°=o a^kix) converge at the point x, and let

(9.2) L(x) = a0x + E a¡Jkix).

Then the series (9.2) also converges at the point x.

Consider the partial sums of order 2N, N^O:
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2"-l

L2¡v(x) = a-ox + E akJkix)
¿-i

JV-l    2"-l

=  a0X + E     E ú^+T-^+rí*)
7i=0     r—0

2V-1    2"-l

= a0x + E   E a2"+,Yv(*)/2n(x)
n=0     r=0

JV-1 2"-l

= a0x + E +t*{*yj**(*) E a2»+r^2"+r(a;)

= 3ox + E ^2"(«)/2»(a;)(i2,*+1(*) — srix)),
71=0

where 52»(x) = / j.»1 akipkix). Since 5(x) converges the terms of the last series

are o(2~n). (We recall, from §3, that [ /î»(*)| =/2»(x) <2_n.) Now the partial

sum of order 2N+q, 0^q<2w, may be written

ï-i
L^f+qix) = L2¡v(x) + E UlF+rJ2"+>•(*)■

r=0

The convergence of 5(x) implies that ak—>0, so the last sum is oiq-2~N) =o(l)

and the theorem is proved.

It will be observed that the convergence of (9.2) can be established under

much weaker assumptions. For example, if ak—»0 and E2_n| S2B(#) | converges

the theorem is still true.

If Six) is the WFS of fix), then s2»(x)^f(x) almost everywhere, so Z,(x)

converges almost everywhere. But much more than this can be said.

Theorem XXI. Let

00

Six) = E aktkix) ~/(*).
fc-0

Then

(9.3) Lix) =  f  /(«)dw.
J 0

Let g(w) =gi(«) be the characteristic function of the interval (0, x), mod 1,

and let

g(«; r) = f   ¿>(f + u; r)git)dt
J 0

be its Abel mean. We have
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| giu; r) | g max | git) \ f    \ Pit + u; r)\ du = 1.
J o

Also giu; r)—>giu) almost everywhere. Hence

I    fiu)giu;r)du-+ i    fiu)giu)du =  |    fiu)du.
Jo Jo Jo

But

(9.4) giu; r) = ¿ ^(«)/*(*)r*.
fc=0

By the uniform convergence of (9.4),

/l   1 COfiu)giu; r)du = E aiJkix)rk.
o k-0

Hence the series for Lix) is Abel summable to jlfiu)du. But the terms of that

series are o(l/A), from which follows ordinary convergence, and (9.3) is

established.

Our next theorem shows that Lix), when it exists almost everywhere, be-

haves very much like an integral (see Theorem VII).

Theorem  XXII.  If Six)  converges almost everywhere,  Lix)—a0[x\  is

integrable and has Fourier coefficients

1   °°
(9.5) to = — E 2-rö2',

4 r=o

(9.6) Ck = C2»+k> = - 2-<"+2> ja*- - E 2-ra2^+k\ in è 0, 0 g *' < 2").

The function Lix) — a0 [x] exists almost everywhere, by Theorem XX, and

is periodic. From §3, we have

x- [x] = £ mo" *•(*).
(»O    ,

I

77.^-0

(77.)

Jkix) = Em* *»(*) (A > 0),
771=0

where

(m)

Mo     = 1/2 if m = 0,
(m)                         — (71+2) n

(9.7)                     mo    = - 2 Um-2,

Mo    = Ü otherwise,



1949] ON THE WALSH FUNCTIONS 405

m1M) = 2~(n+2> if k = 2" + », 0 g m < 2",

(9.8) m*"0 = - 2_(P+2) if m = 2P + *, 0 < & < 2P,

M*    =0 otherwise.

It follows that

Pjv(x) = a0(x - [*]) + E »*/»(*)
*=.i

if       »    . -

= E ö*Em* ̂«(*)
i = 0 771=0

co N
(771)

Ijfc/
771=0 fc=0

^Lttmix)^ akßk

where

E c»>  &■»(*).
771=0

(¡V) .£, (m)

Cm       =   Z^ GfcMfc     •
fc~0

From (9.7) and (9.8), we have

(9.9)       ¿_ | ßk   | = — + ¿_, 2 =1,
*=o 2        n=o

I M*    I = 2 +   E 2
(y.iu;    *_o Ti-p+i

= 2~(i,+1> < l/m, if w = 2P + .V, 0 g A' < 2*.

If max |di| =A, we deduce that c^'—>cm uniformly, and that \c^\ ^A/m

for m>0; also |cm| ^A/m for w>0. By the Riesz-Fischer theorem, there

exists a function F(x)£Z2 with Fourier coefficients {cm}. The series

E («¡2° - cm)2 = f   (Fw(*) - Fix))2dx
771=0 •/   0

converges uniformly in N, and the terms tend to zero. Hence Fxix) con-

verges to Fix) in the mean of L2. But FNix) converges to Lix) — a0[x] almost

everywhere, so Lix)— a0[x] = Fix)~{cm} almost everywhere.

The theorem just proved enables us to deduce properties of the coefficients

ak from those of the function Lix).

Theorem XXIII. If ak—K) and Lix) =E"=o cikJkix) is absolutely continu-

ous, then E"-o akypkix) is the Fourier series of L'ix).
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In establishing (9.5) and (9.6) it was necessary merely to ensure the

existence of L(x) and the boundedness of the ak, and these are supplied by our

hypotheses. Hence if Lix) — ao[x\~ [cm\, for each fixed A^O,

(9.11) ak = - 2»+2c2«+k + oil).

If L'ix)~bo+bi\piix) + • • • , Theorem VII assures us that bk also satisfies

(9.11), so ak = bk.

For our next theorem we recall the definitions of an =a„(x) and j3„ = /3„(x) :

(9.12) On-p-2—S x< ip+ 1)2-» = ft..

Theorem XXIV. If ak—»0, then for every x and for every w^O, Z,(«„) and

Lißn) exist and

(9.13) Lißn) - Lian) = (fti - an)s2»ix) = 2—52»(x),

(9.14) Liß„) —Li<xn) =o(l) uniformly in x.

For A = 2", Jkian)=Jkißn)=0. Hence

2"-l

Lißn)   - Lian)   =   E dkiJkißn)   - /»(«•))
*=0

2"-l /• A,

= E «* f     ikiu)du
k=0        J a„

/>ßn    2"-lE akipkiu)du
an       k—0

fßn
—  I      S2"iu)du.

J   «n

But 5üb(m) is constant for an^u<ß„, and the point # lies in this interval.

(9.14) follows from (9.13) and the fact that 52n(x)=o(2") uniformly, since

ak—>0.

Let us now define a„ — «„' (x) :

a»'  = «n if «n < x,

an   = ocn — 2 n it «n = x.

Theorem XXV. If ak—»0 arad .L(x) exists at the point xo, then Lian )—>L(xo),

Lißn)^Lixo).

If xo is a dyadic rational the results follow from (9.14) ; otherwise, we have

-£>2"(tfo) — L2nian) = ¿2»(xo) — Lian)

s2"iu)du = (xo — «„)s¡!»(xo).

«n
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But Z,2n(xo)—>L(x0) and ix0— a„)s2n(x0)—»0, and the first result follows; (9.14)

establishes the second.

The following lemma is well known(7).

Lemma 7. Let fix), a^x^b, be an integrable function, Fix) the indefinite

integral of fix), and e > 0 an arbitrary number. Then there exist two functions

4>ix) and tyix) such that

(i) 4>ix) and i/^x) are continuous,

(ii)   \<t>ix)-Fix)\ <e, \+ix)-Fix)\ <e,

(iii) At every point where fix)¿¿ + x, all the dérivâtes of xpix) exceed fix);

at every point where fix) ■£ — w, all the dérivâtes of <pix) are less than fix).

Our next lemma (or even a weaker form of it) enables us to deduce the

main theorem for a Walsh series which converges everywhere to an integrable

function.

Lemma 8. Let G(x), a<x<b, satisfy

(i) G(a„')->G(x);

(ii) For all x in (a, b),

lim inf 2»(G(ftO - G(«„)) = B(s) < + * ;
n—>co

(iii) For all x in (a, b), except perhaps for a denumerable set E,

lim inf 2»(G(ft.) - G(«„)) = 0.
n—»co

Then G(x) is monotone non-increasing in (a, b).

We shall first make some definitions. By In we shall mean an interval of

the form A-2"^x<(A + l)2_n, and by a small Greek letter with a subscript,

such as £„, we shall mean a number of the form k-2~n. Let

8(7,) = 2-(G(T+T-2-") -G(A-2—)).

We shall say that Im is properly nested in J„, written Im<In, m>n, if Im(ZIn

and if the right-hand end point of Im is to the left of the right-hand end point

of In. By a properly nested sequence of intervals we shall mean a nested se-

quence in which infinitely many of the intervals are properly nested in the

preceding ones. Every properly nested sequence {/#+*}, A=0, 1, 2, • • -, de-

fines a unique number x such that a^+kix), fty+fc(x) are the end points of

Ilf+k-

Now suppose that G(w) <Giz) for some pair of points w, z, with w<z.

By (i), we can find £„<77„ such that G(£„) <G(r;n). Hence we can find an

7B=(ttn, ßn) such that S(/„)=c„>0. We shall now prove that given any v,

0 <f < 1, we can find 7n+i, In+2, • • ■ , In+p, satisfying

(7) Saks, Théorie de l'intégrale, pp. 132-133.
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(9.17) InD /„+! D   ■  ■   ■   D In+p-l  >   In+p,

(9.18) 5(7n+r) = (1 - v)cn, r = 0,1,2, •■■ ,p.

Draw a line X(x) = G(o¡n) + (l — v)cnix—an), and consider the sequence of

points £„=«„, £„+I.= (£„+I._i+ftO/2, r = l, 2, • • • . By (i), G(£„+r)—^(ft,), so

there is a first element, say t-n+P, such that G(£„+a,)>X(£„+p); clearly p = l.

The intervals

7« =   (|n, ftiX

7n+l =  (£n+l, ft) 7

7n+p-l  —   (in+p— li fti),

ln+p  ==  (,sn+p—17 sn+pj

then satisfy (9.17) and (9.18).

Now if 5(£n+p, ft,) = (1— v)cn, we can apply the method just used and

obtain a sequence I„+P = i£n+P, ßn), 7„+p+1, • • • , I„+s, satisfying

(9.19) Cd-oCi>C
(9.20) 5(7n+r) à (1 - v)2cn, r = p,p+l,---,q.

Since 7ñ+„C7„+p_i, we have obtained two sequences 7„+r, r = l, 2, • • • , p,

and 7B+n r = l, 2, • • • , g, with the properties

(9.21) In D  In+1 D   ■   ■   ■   D  In+p-l   >   In+P,

(9.22) In 0 I'n+i D.: • O 7ñ+s-i > 7„+5,

(9.23) 5(7„+r) è (1 - î>)2c„, r-0,l,--tr>#i

(9.24) 5(7B+r) ^ (1 - v)2cn, r = 0, 1, •■•,?,

(9.25) 7n+p-7„+o = 0.

If (9.21)-(9.25) are satisfied for some p and g for an interval 7„ with 5(7„)

= c„>0 and for some v, 0<d<1, we shall say that 7„ is of type 7>(c„, v).

Now suppose that 5(¿„+J„ ft,) < (1 — v)c„; in this case it can be shown that

ô(7n+p)>(l+î;)cn. Applying our method once again, this time to In+P with

8iln+p) =cn+p and parameter v, we find that either 7„+p is of type Dicn+P, v)

(from which follows that 7„ is of type 7>(c„, v)) or 7n+p contains a nested

sequence

7n+p _) In+P+1 3   -  '  '   _J In+pi—1  •""   7„+pl

such that

5(7n+r) = (1 - »)«,*, fc (1 - »)(1 + »)c       f> - h P + 1. ' • '• , Px - 1).

Siln+P1)   >   (1  + »)«»+,  à   (1  + v)2Cn.



1949] ON THE WALSH FUNCTIONS 409

Continuing in this way, we obtain the sequence

In Z)   "   -  "   D In+P-1  >   In+p Z)   -  -   '   Z)  7„+pl_l

?"   fn+pi -J   '   '   '   —)   '   '   '   —) ln+pk— 1  >"   J-n+Pk —J   '  '   '    ;

with

5(7») = c„,

5(7„+r) £ (1 - 9)c, 0 < r < ¿>,

5(7„+p) à (1 + !>K,

5(7„+r) = (1 - s)(l + o)c„ P<r<pi,

5(7n+P1) è (1 + ^)2Cn,

5(7„+r) g (1 - o)(l + o)*«., p*_i < r < #«,

5(7„+P4)è (l + !;)i+1c„.

If this sequence does not break off, it defines a number x such that

2*(G(fty(*)) - G(«*(x))) = 5(7*), /T¿*

But IimAT^oo 5(7iv) = + °°, contradicting (ii). Hence the sequence does end,

and we find that 7„+p¡¡ is of type 7>(c„+Pt, z;) for some k; therefore 7n is of type

Dicn, v).

We have just proved that every interval 7„ with 5(7„)=c„>0 is of type

Dicn, v) for every v such that 0<zj<1. Now order the elements of the set E,

say xa>, x(2),   • • • , x(W, • ■ • . Let »i, Vt, • • • be chosen so that 0<z>*<1 and

n d - vkY = \ ■
«¡»i ¿

Since 7„ is of type 7?(c„, Vi), we can find two disjoint sub-intervals 7n+p and

7n+5 such that cn+p = 5(7„+p) fe(l — vi)2cn and c„+i = 5(7n+J)^(l— Vi)2cn. Now

choose that interval which does not contain xm and continue the process with

z/2, avoiding the point xC2), and so on. In this way we obtain a properly nested

sequence of intervals which define a point x that cannot belong to the set E.

But for this point x,

lim inf 2*(G(ftv) - G(«*)) è cn]J (1 - vk)2 = — cn > 0,
N—«> k—1 2

which contradicts (iii). Our lemma is therefore established.

Theorem XXVI. Let Six) converge in a <x <b except perhaps on a denumer-

able set E, where, however, |s2n(x)| ^£(x)<°°; if the limit-function fix) is

integrable, then



410 N. J. FINE [May

Lix) =C+ f  fiu)du
J a

for some constant C and all x in (a, b).

Define/(x) to be 0 on E, and apply Lemma 7 for an arbitrary e>0. Let

G(x)=0(x)—7>(x), Hix)=Lix)— ypix). It is easy to see that part (iii) of

Lemma 7 implies

(9.26) lim inf 2«0(0») - *(«»)) = fix) = lim sup 2"(^(ft) - *(«„))
n—» « n—* «

for all x in (a, b). By (9.13), for x$E,

(9.27) lim 2»(7(fti) - 7(«„)) = lim s2»(x) = fix).
n—» «s n-» CO

For all x in (a, &), by Theorem XXIV,

(9.28) lim sup | 2"(7(ft) - £(a„)) | ^ £(x) < ».
n—*»

From (9.26), (9.27), and (9.28), we find that G(x) and 77(x) satisfy con-

ditions (ii) and (iii) of Lemma 8.

Condition (i) follows from the continuity of <f> and \p and from the exist-

ence of Lix) (Theorem XX, remark) together with Theorem XXV. Applying

Lemma 8, therefore, we find that G(x) and 77(x) are nonincreasing. Letting

e—K), their limits, + (L(x) — T'(x)) are also non-increasing, hence constant.

Since Fix) is an integral oí fix), Theorem XXVI is established.

It is possible to modify Lemma 8 as follows:

Lemma 9. Let G(x) be defined in a<x<b and satisfy:

(i) Except perhaps on a denumerable set E,

lim sup 2"(G(ft,) - G(«„)) g 0.
n—»co

(ii) For all x in (a, b), G(a„',)—>G(:x;), G(ft,)—>G(x). Then G(x) is monotone

nonincreasing in (a, b).

The proof is not too different from that of Lemma 8 and will be omitted.

Since condition (ii) of Lemma 9 is satisfied for Lix) wherever it exists, the

proof of Theorem XXVI carries over almost word for word to the following

slightly stronger result.

Theorem XXVII. Let Six) converge in a<x<b except perhaps on a de-

numerable set E, where however Lix) exists; if the limit-function fix) is inte-

grable, then

Lix) =C+ f  fiu)du
J a
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for some constant C and all x in (a, b).

If we take the interval (a, b) in Theorem XXVII to be (0, 1), and apply

Theorem XXIII, we obtain our next theorems.

Theorem XXVIII. Let Six) converge to an integrable function fix) except

perhaps on a denumerable set E, where however Lix) exists. Then fix)~Six).

Corollary. If Six)  converges to zero everywhere, then ak = 0, k = Q.

In order to weaken the "everywhere" condition in the corollary to

Theorem XXVIII, let us assume that Six) converges to zero except perhaps

on a denumerable set E. We shall examine the structure of the subset DC.E

consisting of points x for which the partial sums s^ix) are unbounded. Here

again we find the concept of the group G (§2) an extremely useful one.

Let ßix) be the function which maps the reals into G, and let g(x) be an

arbitrary real-valued function of period 1. We define the corresponding func-

tion on G by

(9.29) |(x) = g(x) if ßix) = x for some x,

(9.30) g(x) = lim supgiy) if ßix) 9e x for any x.
J-»i

In (9.30) the lim sup is taken over those y which correspond to dyadic

irrationals.

We recall that G is a complete metric space. The neighborhoods in G may

be taken as the sets of points

t\, Í2,  •   •  •   , tn, Un+l, U„+2,   '■ * *   ]

in which h, ■ ■ ■ , tn are fixed and wn+i, w„+2, • • • vary independently. These

neighborhoods JS[(£i, ¿2, ■ • • , tn), n = l, 2, ■ ■ • , form a complete system for

G. The characteristic function of any neighborhood is continuous, since Js[ is

both open and closed. Any finite linear combination of such characteristic

functions is also continuous. It is not too difficult to see that such linear com-

binations are precisely the images by (9.29) and (9.30) of all finite sums

^akypkix). Hence the partial sums of an arbitrary Walsh series are continuous

in the topology of G.

Now let D be the set of x in G for which the sequence of continuous func-

tions s2n(x) is unbounded. Then D is a Gs, that is, a denumerable product of

open sets(8). By a theorem of W. H. Young(9), in a complete space, every G¡

which contains a self-dense non-null subset has the power of the continuum. It is

clear that the set of x in G for which nix) =x has no solution is denumerable,

and that if this set is removed from D we have left precisely the image of D

(8) See F. Hausdorff, Mengenlehre, pp. 270-271.

(9) Ibid. pp. 136-137.

!
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under ß. It will therefore be sufficient for our purpose to show that this image

contains no isolated points. If x0=ßixo) is such a point, there must be a

neighborhood Js[ containing xo but no other images of points of D. K[ is there-

fore the image under m of a dyadic interval k • 2~" ^x <ik + l)2~p which con-

tains x0 but no other points of D.

Two cases now arise. If Xo = A-2-p, we have the conditions of Theorem

XXVI satisfied in k-2-p<x<ik + l)2~p, so that L(x) is constant in that

interval. Since x0 is a dyadic rational, L(xo) exists; since L((3„(x0))—>7,(xo),

we find that 7,(x) is constant in k ■ 2~p^x < (¿ + 1)2-*. If A • 2~p <x0 < (A+ 1)2-"

and Xo is a dyadic rational, a similar argument shows that the same result is

valid. If, however, x0 is not a dyadic rational, we find that L(x) is constant in

two intervals abutting on x0. Since L(ft,(x0)) — L(a„(x0)) —+0, the two con-

stants must be equal. In both cases, then, for n>no,

(9.31) j2»(xo) = 2"(7(ft(x0)) - 7(«„(xo))) = 0.

This contradicts the assumption that Xo belongs to D. Thus the image of D

is self-dense and Young's theorem assures us that D has the power of the

continuum unless D is vacuous. Since ßiD) and D differ by a denumerable

set at most, and D is denumerable, D is the null-set. Another application of

Theorem XXVI shows that 7,(x) is constant, hence all the coefficients ak of

Six) vanish.

Theorem XXIX. If Six) converges to zero except perhaps on a denumer-

able set E, then ak = 0for all A.

We remark that the same method of proof is not effective in the case of

an arbitrary integrable limit-function/(x), although we feel quite sure that

the theorem is true. It is possible to construct a series Six) whose partial

sums of order 2n are bounded at every point but one. To do this, consider

the Fourier series of the function/(x) defined as follows:

fix) = 2n/n2   for   2— S x < 2-"+1, n = 1, 2, • • • .

Clearly/(x) is integrable, and

fix)dx = E - •
o »=i w2

It is easy to see that

SípÍx) = fix)    for   2-" á x < 2-"+l, p = n.

On the other hand,

S2P(0) = 2*r5     fix)dx=2" E   1>—^— -co.
Jo t-jH-l   A2        i» + l)2
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If, however, we try to study the set C where L(x) fails to exist, we can prove

that m(G) is self-dense. The difficulty here is that the set of points where a

sequence of continuous functions fails to converge need not be a G¡; it is

known to be an Fc¡, but this is not sufficient to draw the desired conclusion.

We come now to questions of localization. If a*—>0, then 7(x) is com-

pletely determined by the partial sums of order 2n. Conversely, if 7,(x) is

given in a<x<b, the formula

(9.32) Lißnix)) - 7(«„(x)) = 2-»i2"(*)

shows that s2n(x) is determined for ra^rao(x), a<x<b. Even more is true,

however.

Theorem XXX. If a*,—>0 and if 7>(x) is constant in a<x<b, then Six)

converges to zero uniformly in any sub-interval (a, ß), a<a^x<ß<b.

It is sufficient to take (a, ß) of the form 7„: p ■ 2-p = x < (p + l)2~p. By (9.32)

the partial sums of order 2n+p, n = Q, are all zero in 7P. We shall prove that

those of order r-2p, r^O, also vanish. We have

r-l    2i>-l

Sr-2'ix)   =   ̂ 2     ̂ 2 aq-2p+n4'q-2p+mix)
0=0       771=0

(9.33)x ' 7—1 2?-l

= EW2**) E ««•*>+«*»(*).

Since \[/m(x) is constant on Iv for m <2P, we are led to consider the series

s*iy) = E BMy),
q=0

(9.34)
V J 2î>-l

B<¡  =   E (lq-2p+m4'mip-2~p).
7»=0

For páy<p + l, we may write y = 2px, x£7p. Hence in that interval of y,

(9.35) Sriy) = sr*pis) = 0,        x = 2~*>y <E 7P, n = 0,

where, of course, s%iy) is the Nth partial sum of series (9.34). If L*(y) is the

formal integral of S*iy), it follows from (9.35) that L*iy) =0 in p=^y<p + l.

Since Bo = stiy)=0, L*iy) vanishes identically. But Bq—>0, since ak—>0. Ap-

plying Theorem XXIII, we find that Bq = 0, q^O. By (9.35), for xG7p,

2P-1

0  =  r]/q.2"ix)Bq  =   E aq.2p+m^q.2p+mix)
7»=0

= i(a+1)2p(x) — sq.2pix) iq ^ 0).

Hence sq.2pix)=0 for q^0, x£7P. If N = q-2" + M, 0^M<2P,
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Sjv(x) = sq.&ix) + oiM) = o(l)

uniformly for x£7p.

Corollary A. If Six) = E"=o ak\f/kix), 5*(x) = E*°-o afykix), aft-a£—>0,

and if L(x) = L*(x) + G¿w <z<x<ô, íAera 5(x) are¿ 5*(x) are uniformly equicon-

vergent in any subinterval (a, ft), a<a^x</3<ô.

Corollary B. If ak—»0, î/ 7,(x) = C+flfiu)du in a<x<b, and if fix) is
defined as fix) in a<x<b (mod 1), zero otherwise, then Six) and the WFS of

/*(x) are uniformly equiconvergent in any sub-interval (a, ft), a<a^x<ß<b.

It is quite likely that Theorem XXX could be proved by means of a theory

of formal multiplication analogous to that of Rajchman in trigonometric

series(10). The task would be greatly facilitated by the fact that the char-

acteristic function of an interval 7P is a finite linear combination of Walsh

functions.
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