$$
\begin{array}{ll}
a \cdot m \circ b=a m+b, & a(b+c)=a b+a c, \\
(a+b)+c=a+(b+c), & (a+b) m=a m+b m, \\
a+b=b+a, & a 1=1 a=a, \\
a+0=0+a=a, & a a^{-1}=a^{-1} a=1, a \neq 0, \\
a+(-a)=(-a)+a=0, & a^{-1}(a b)=b .
\end{array}
$$

If Theorem L holds for A, B, M, N on three lines not in a pencil, then it is a universal theorem in π. In addition to (6.17.1) we also have (6.17.2) $(a b)^{-1}=b^{-1} a^{-1}$, (ba) $a^{-1}=b$ and any natural ring of π is an alternative field. The collineation group of π is transitive on the triangles of π.

Ohio State University,
Columbus, Ohio

ERRATA, VOLUME 64

Don Mittleman, The unions of trajectorial series of lineal elements generated by the plane motion of a rigid body.
p. 503, line 2 of Theorem 1. For " (x, y) " read " $u(x, y)$."

