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1. The Gontcharoff polynomials

(n-D

Go(s) = 1;  Gn(z; zlt z2, ■ ■ ■ , zn) =  f   dz' f    dz" f        dz"»      (n ^ 1)
J h J z1 J zn

have applications to a certain class of interpolation problem (Whittaker

[7])(0- In this paper I obtain some formulae connected with these poly-

nomials and use them to improve and extend a theorem due to Levinson [3,

4], and to shorten the proof of and extend a theorem due to Schoenberg [6].

Levinson's Theorem. If f(z) is an integral function satisfying

log M(r)
lim sup—^-— < .7199,

r-.» r

and iff(z) and each of its derivatives have at least one zero in or on the unit circle,

thenf(z)=0.

The constant .7199 is not the "best possible" but cannot be replaced [5]

by a number as great as .7378.

The "best possible" value of this constant is known as the Whittaker

constant IF. Among new results in this paper, I prove that IF cannot be less

than .7259.

Schoenberg's Theorem. Iff(z) is an integral function satisfying

log M(r)       ir
lim sup-< — ;

r-,» r 4

and if f(z) and each of its derivatives have at least one zero in the segment — 1 ̂  x

— 1 of the real axis, thenf(z)=0.

The constant x/4 is the "best possible" as shown by the example

cos (7tz/4) 4-sin (7tz/4).

I have to thank Mr. M. H. Quenouille and his staff of computers, Sta-

tistics Department, Aberdeen University, for performing the calculations

arising in §3.

Presented to the Society, October 30, 1948; received by the editors August 17, 1948.

(') Numbers in brackets refer to the references cited at the end of the paper.
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2. Following the notation used by Levinson [3], let

H0(z) = 1; H„(zx, z2, • • • , zn) = Gn(0; Zt, z2, • ■ • , z„) (n â 1),

Mn = max  | Gn(z0; *t, z2, ■ ■ • , z„) |                         (all | zr | g 1),

Ln = max | Hn(zi, z2, ■ • ■ , z») |                             (all | zr | = 1).

We first require two inequalities (2.1) and (2.4) due to Levinson and (for

the sake of completeness) give his proof. Since by definition

G„(zo; zi, • • • , zn) = Hn(zi, z2, • ■ • , z„) — Hn(zo, z2, • ■ • , zn),

therefore, by Taylor's Theorem

G„(Zo! Zl, Z2,   •   •   ■   , Zn)   =   ¿-J   - Hn-r(Zr+l, Zr+2,   •   •  •   , Z„)
r=i     r\

—   2-1   - tln-r\Zr+l, Zr+i,   '  '  •   ,  Zn).

r_i    r\

Hence

I A     | 2l — 2o |
G„(zo; Zt, • • • , z„) | Ú 2-1 -Ln-T

r-l r\

and, if we write 2a = arg Zi —arg zo,

f   "    2 | sin rot \ )
(2.1) Mn-è   max   { £ —--£n_rV .

0SaS7r/2    I r-1 r! j

By Euler's formula for homogeneous functions,

«Gn =   2-1   Zr ->
r-0 dzr

and since

flGn
(2.2) -= G„_i(zo; Zi, • • • , zn),

dzo

dGn
(2.3) -  =   — Gr_l(z0; Zl,   •   •   •   ,  Zr-x)   X Gn-rW, Zr+X,  •   ■   ■   , Zn) (fni   1),

dzr

we have the inequality

n

(2 . 4) nMn   ̂    Mn-l +  22 Mr-xMn-r.
r-l

It is obvious, as Levinson points out, that Zi = l, L2 = 3/2, Mx = 2, and

hence from (2.1) he obtains ikf2^(3/2)31'2<2.5981, Af3<3.6379. By special
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choice of the zr he shows that these values are "accurate" and that

in fact Mi = (3/2)31'2 and M¡>3.6378. It can also be proved [4] that

L3 = 2-1[2(5)1/2+3]1/2-r-6-1[6(5)1/2-2]1/2<1.9299, and again, by use of (2.1)

he obtains [4] AÍ4<4.8414. He then uses (2.4) to find upper bounds for Ms,

Mi, Mi, Mi, M9, and (by induction) Mn- In fact Mnúrn+1 (n>l) where

r< 1.389. He remarks that this method would presumably yield a better

value of r if accurate values of some further members of the sequence Mn

were worked out before resorting to the use of formula (2.4). However the

problem of determining Z,4 or M¿ exactly is not simple and for higher Ln, Mn,

this does not seem a very promising line of approach.

3. It is, however, possible to obtain upper bounds for Lt, and so on, by

using another interation formula involving both sequences L„ and Mn. For

Euler's formula gives

A       dHn
nun  =   2-,   Zr -

r=l dZr

and since

dHn/dZr =   — Z7r_i(Zi; Z2,  • • •   , ZT-x)  X Gn-r(Zr', Zr+X, ' ' '  , Zn),

we have the inequality

n

(3 . 1) nLn  á   22 Lr-iMn-r.

In  particular,  when  w = 4,  4L^LoMz+LxM2+L2Mx+L%Mo,  yielding F4

<2.7915, and (2.1) gives Afs^maxoSaáT/2 <¡>s(oi) where

<j>6(a) = 5.5830 | sin a \ + 1.9299 | sin 2a \ + (1/2) | sin 3a |

+ (1/12) | sin 4a | + (1/60) | sin 5a |.

The maximum on this curve lies between 70°27' and 70°28' and shows that

Mi< 6.8223.
Proceeding in this way by alternate use of (2.1) and (3.1), we find upper

bounds for L8, Le, Li, Ls, Ls, Lxo; Mt, Mi, Ms, M<¡, and Mxo (see appendix).

The curves whose maxima have to be determined may be taken as

<f>6(a) = 7.6112 | sin a \ + 2.7915 | sin 2a\ + 0.6433 | sin 3a\

+ (1/8) | sin 4a | + (1/60) | sin 5a | + (1/360) | sin 6a |

(maximum between 69°31' and 69°32'),

<Pi(a) = 10.5078 | sin a \ + 3.8056 | sin 2a | + 0.9305 | sin 3a |

+ 0.1609 | sin 4a | + (1/40) | sin 5a | + (1/360) | sin 6a | + 2/7!

(maximum between 69°54' and 69°55),
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<t>s(a) = 14.4630 | sin a | + 5.25391 sin 2a | 4- 1.26861 sin 3a |

+ 0.2327 | sin 4a | + 0.0322 | sin $a\ + (1/240) | sin 6a]

+ 2/7!+ 2/8! (maximum between 69°49' and 69°51'),

«¿»(a) = 19.9269241 sin a | + 7.2320 | sin 2a | + 1.7513 | sin 3a \

+ 0.317141 sin 4a | + 0.04653] sin 5a | + 0.00537 | sin 6a |

+ 3/7! 4- 2/8! + 2/9! (maximum between 69°49' and 69°51'),

<f,io(a) = 27.44241 sin a | + 9.9635 | sin 2a | 4- 2.4105 | sin 6a |

+ 0.437825 | sin 4a | + 0.0634267 | sin 5a | + 0.0077542 | sin 6a |

+ 3.8598/7! + 3/8! + 2/9! + 2/10!

(maximum between 69°49' and 69°51').

It can be verified by direct computation that

(3.2) M„ < 2(1.3775)*« (¿=1,2,3),

(3.3) Mk < (1.3775)*+1 (¿ = 4,5,6,7,8,9,10),

(3.4) Lk< (1.3775)" (¿=1,2,3,4),

(3.5) £* < 0.7692(1.3775)* (¿ = 5,6,7,8,9,10).

From (3.1) we have

nLn < Mn-t + Mn-2 + 1.5Mn-3 + 1.9299Mn-t + 2.7915ilf„_6
n-6

(3.6) + 22Lr-xMn-r + 4.8414Zri_6 + 3.6379£n_4 + 2.5981Lre^
r=6

+  2Ln-2 + Ln-X.

If we assume (3.3) and (3.5) are satisfied also for ll^¿^w — 1, then (3.6)

gives, if we write 7 = 1.3775, ¡j. =0.7692,

nLn <yn + y""1 + 1.5t"-2 + 1.9299t"-3 + 2.79157"-4

+ n[(n - 10)7« + 4.8414t"-6 + 3.6379t"-4 + 2.5981t"-3

+ 2t"-2 + T""1] < nßyn - 0.0005t"-5.

Hence Ln<pyn-

This proves (3.5) is true for all ¿^11, by induction.

From (2.1) for w = ll,

I   •    2 | sin ra. | ) "2
Mn   ^       max      <   2-,   -Ln-r>    +   2-,   —Ln-r

oSai,/!   I r-l rl ) r_7   r!

"     2
< mt"-7   max   4>(a) +22 — 77_r

Oíoái/2 r-7   f\
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where

'    2 | sin ra I
*(«) = E ———-y7-.

r-l r\

which has its maximum between 69°49' and 69°51', giving

max   $(a) < 16.8520.
Oâaâi/2

Hence

V2       2    1
r-i ,-

L7!       8!   t

2    1
Mn < 16.8520MT"-7 + Tn_7  - 1-+

7       9!  y2

2 r       i        i i
< 16.8520MT"-7 + 7"-7—   1 H-1-h • • •

7!L        8t      (8t)2 J

2t"-7
= 16.8520MT""7 -\-'-

7!(1 - I/87)

< T"-7[12.9626 + 0.0006]

< Tn+1-

This proves (3.3) for all ¡fee; 11, by induction.
Since G„ is analytic in the zr it follows that its maximum modulus is as-

sumed when each zr is on the circumference of the unit circle. Thus we have

the following theorem.

Theorem I. If zTis a sequence of points in the unit circle, then

Mn = max I G„(z0; zh z2, ■ ■ ■ , *„) | < (1.3775)"+1      (n è 4).

4. Now consider the Gontcharoff polynomials for the case discussed by

Schoenberg, namely G„(x; xi, x2, • • • , x„) where

- 1 á «r á + 1 (1 á r á »).

Consider any one of the 2n_r polynomials

Gn(x; xt, x2, ■ ■ ■ , xr, +1, ± 1, • • • , +1) (1 Ú r g: n),

dGn
-= — Gr_i(x; xt, Xi, ■ ■ ■ , xr_i) X Gn-r(x„ ±1, ± 1, • • • ).
dxr

As xr varies between —1 and +1, keeping Xi, Xi, ■ • ■ , xr-x fixed, dGn/dxr

is of constant sign, that is, G„(x; Xi, • ■ ■ , xr, ±1, ±1, • • • , ±1) increases

or decreases steadily. Hence |G„(x;xi, • • • , xr, ±1, ±1, • • • , ±1)| attains

its maximum when xr is an end point.

If we take r = 1, 2, • • ■ , n, it follows that | G„(x; xi, • • • , x„)| ( — 1 i=xr
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¿1) attains its maximum for any given value ofx ( — 1 gx g 1) when xr= +1

(l=rgw).

So, in order to find an upper bound for | G„(x; xi, x2, • • • ; xn)\ ( — 1 úxr

g 1), it is sufficient to consider the 2" polynomials |G„(x; ±1, +1, • • -, ±1)|

(-lgxgl).

Clearly if Ogxgl and xr=±l,

(4.1) |G„(a;; +1, Xi, ■ ■ ■ , xn)\ = |G„(-x; — 1, — x2, • • • , — xn) \

g |G„(0; -1, —x2, ■ ■ • , —Xn) |

(4.2) <, | Gn{x', —1, —Xt, '•'.,—Xn) I.

I shall prove that if Ogxgl and xr= ±1 (1 grgw) for all n,

i i /4X"-1        ir
(4.3) |G„(x; xi, Xi, ■ ■ ■ , xn) \ g 2Í— J     sin — (x + 1).

By (4.2), it is sufficient to prove (4.3) for the case Xi= —1, that is, it is

sufficient to prove

i /4X"-1       x
(4.4) \Gn(x',-l, +1, xt, ••• , *»)| á2Í— J      sin —(x+1)

and

/4X"-1       x
(4.5) \Gn(x; -1, -1, xt, ■ ■ ■ , as.) | g 2Í— J     sin — (x + 1).

Proof of (4.4).

|Gn+i(x;—1, +1, x3, • • • , x„+i) | =  I     |G„(x'; +1, x3, • • • , x„+i) | dx'

= Ii + h,

where

\Gn(x'; +1, x3, • • • , xB+i)| dx',

Ii =   I     | G„(x'; +1, x3, • • • , x„+i) | dx'.
J 0

If we use (4.1),

f° i i
-fi =  I      \Gn(—x'; — 1, — Xt, ■ ■ ■ , — xn+i) | dx'.

If we substitute x = —x',
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It ** I     | Gn(x; — 1, — x3, • • • , — xn+x) | dx.
J 0

Now if we assume that (4.3) is true if n is replaced by any number m^n,

/4X"-1  r1        * /4\"
/iá2Í-j       I     sin — (x + l)á* = 21'2( — ] ,

I2 =   i    dx' I     | G„_i(x"; x3, ■ • • , xn+1) | dx"
Jo J  x'

/4\"-2  /•* r1        ir
= 2Í—J       I    ¿x' I    sin—(x"+ l)dx"

/4\"       ir /4\"
-2(7)sinT(,+ l)-2.».(7).

Therefore 7i+72g2(4/7r)" sin (ir/4)(x + l).

But (4.4) is true when n = 0, 1.

Hence (4.4) is true for all n by induction.

Proof of (4.5).

G„+i(x; — 1, — 1, x3, • ■ • , xn) =   I      |G„(x'; — 1, x3, • • • , x„) | dx'

= U + U

where

f ° i iF> =   I      | G„(x'; — 1, x3, • • • , x„) | dx',

It ■» I     | G„(x'; — 1, x3, • • • , x„) | dx'.
•/ o

If we use (4.1),

-7s =  I     |G„(-x'; +1, — x3, • • • , — xn) I dx'.

If we substitute x= — x',

^3 =   I      | Gn(x; +1, — x3, • • • , — x„) | dx
J 0

=   I       I     |G„_i(x'; — x3, ■ • • , — xn) | dx'.
Jo     J  x

Hence, if we assume (4.3) is true if n is replaced by any number m^n,
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/4\""2  r1        r1 t
73g2Í—J       I    dx j     sin — (*' + l)dx'

l — j (2 - 21'2).

x
sin — (x' + l)dx'

4

= (iy(-2cos^(x+l) + 2I/2).

Now 1-cos (7r/4)(x + l)gsin (tt/4)(x + 1), Ogxgl. Hence h+h

g2(4/x)"sin (tt/4)(x + 1).

But (4.5) is true when n = 0, 1. Hence (4.5) is true for all n by induction.

Since (4.4) and (4.5) are true, we have proved (4.3). It follows by sub-

stituting — x for x, that for — lgxgOand — lgxrgl (lgrgw),

i I        / 4 Y"1      T
(4.6) Gn(x; Xx, Xi, ■ ■ ■ , xn) \ g 2 I — )     cos — (x + 1),

\T/ 4

and we have the following theorem.

Theorem II. If zr is a sequence of points on the real axis, satisfying

— 1 g zr g 1, then

(4.7) \Gn(zo;zx,z2, ••• ,zn)\ Ú 2(4/*-)»«.

5. I shall now discuss extensions of Theorems I and II in which some of

the points of the sequence zT lie outside the unit circle, and the segment

— 1 gx g 1 respectively.

Let zr=xr+yr, where both xr and yr may be complex, then since

G„(zo; Zi, ■ • • , zn) is a polynomial in each zr(0grg«), we may apply Taylor's

series and write

(5.1)       Gn(z0; zi, • • • , Zn) = exp ( ¿J Jr-)G„(x0; xt, • • • , xn)(Íyr-P¡Gn(

Now, writing G„(xo; Xi, x2, ■ ■ ■ , xn) =G„, using (2.2) and (2.3), we note that

dGn/dxT (Ogrgw) is either one multiple integral or the product of

two such integrals, in each case the total multiplicity being n — 1. Similarly

dhGn/dxrdx„ • ■ ■ dx,, where r, s, ■ ■ ■ , t may all take any values between 0

and n inclusive, is either zero (for example, d2Gn/dxodxx) or the product of not

more than ¿ + 1 multiple integrals, the total multiplicity being n — k.

Now suppose that positive constants A, y can be found such that

(5.2) |G„| <^t"+1

provided that the sequence {xr} belongs to a given set of points S which in-



1949] SUCCESSIVE DERIVATIVES OF INTEGRAL FUNCTIONS 249

eludes z = 0. Such a set exists by Theorem I.

Setting n=0, we see that^4T>l. Hence

¿>*G„
< Ak+1yn+1.

dxrdxa ■ • ■ dxt

Suppose also that the values of yr are restricted in such a way that

n

(5.3) 22\jr\=nh
r=l

for certain values of n. Then (5.1) gives, for these values of n,

i                                     ,      A   (| yo| + nh)k
Gn(z0; zi, Zi,---,Zn)\<J2 ^^^--4*+V+1

(5.4) ,b=o ¿!

= Ayn+1 exp [A( I y01 + nh)\.

If the sequence  \zr\ is such that all its limit points belong to S, then

(5.3) is satisfied for arbitrarily small h and sufficiently large n, and (5.4) gives

(5.5) |G„(z0;zi, ••• ,zn)| <^^i«oI(t + 0"+1, * £ »o(e),

and hence for all z in any given finite domain, and all n,

~(5.6) | Gn(z; zt, Zi, ■ ■ ■ , zn) \ < A'(y + «)•«.

6. Suppose now that/(z) = 22n=o anZn is an integral function satisfying

log M(r) 1
lim sup-= a < — >

r-.« r y

it follows that for any r>a, and sufficiently large n

(6.1) n\\an\   <t".

Then, iif(zx) =0,/<"-1'(zn) =0, clearly

m = rdz'rdz"--- f f^\z)dz,
J zx J z2 J »„

or, following Levinson [3, §1 ], if we replace/"(z) by its power series, we obtain

/O0  =  Z (» +   *)! -—-   I      *<   I        ̂ 2" • • • 2*dz
ft-0 ¿ !       J Zl J  Zj •/   2„

CO

= Z) (w + ¿)!an+*Gn+i(z; zi, z2, • • • , zn, 0, 0, • • • , 0).

Now since the sequence {zn} is such that all its limit points belong to S, then

for large n and for all z in any finite domain we have by (5.6) and (6.1)
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» A'(y + e)"+1r"
(6.2) | /(z) | < 22 T»+kA'(y + 0"+*+1 = —-

*=o 1 — r(y + e)

provided r<l/(7+e). But letting n—*<» in (6.2) we have/(z)=0.

In the particular case in which S is the unit circle, Theorem I shows that

(5.2) is satisfied with y = 1.3775 <1/.7259 for all values of n, so we now have

the following theorem.

Theorem III. Iff(z) is an integral function satisfying

log M(r)
lim sup —-—-< .7259,

r-»oo r

and if f(zx) =0,/(n_1)(z„) =0 (wS:2), the sequence {zT} having all its limit points

in the unit circle, then f(z) =0.

In the particular case in which S is the segment Ogxgl, Theorem II

shows that (5.2) is satisfied for all n with y=4/ir and we have the following

extension of Schoenberg's theorem.

Theorem IV. If f(z) is an integral function satisfying

log M(r)       t
lim sup ——- < — )

r->« r 4

and iff(zx) =0,/tn_1)(zn) =0 (n^2), the sequence [zr] having all its limit points

on the segment — 1 gx g 1 of the real axis, then f(z) =0.

This result has been stated by Kamenetsky [2, Theorem VIII] but I have

been unable to find a published proof. It seems unlikely from the context that

his method has anything in common with the one which I have used here.

7. A further theorem follows as a consequence of inequalities (5.2) and

(5.6) for the case in which the limit points of the sequence of zeros lie inside

the locus of points distant h from the segment — lgxgl of the real axis.

We shall call the domain enclosed by this curve H. In this case, if we restrict

the sequence {xr} to the segment —lgxgl (all r) and zr=xr+yr (all r^l)

where |yr| g& (r^l), (5.2) is satisfied with A = x2/8, t=4/x, by Theorem II,

and (5.3) is satisfied for all n since |yr| g/j(rèl). Hence (5.4) is satisfied

for all n with these values of the constants, that is,

X2/4W+1 (x2      . . \ _

|G„(z0;zi, zt, - • • , z„)| g -t\    )      exp Y7, (\ y°\ + nhH < A7n+1>

with f = (4/x) exp (ir2h/8). By a second application of formulae (5.2) and

(5.6), we see that, provided all the limit points of the sequence {zr} lie within

H, (5.6) holds with y=(4/ir) exp (ir2h/8), and we have the following

theorem.
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Theorem V. If f(z) is an integral function satisfying

log M(r)       t /     ir2h\
lim sup-< — exp (-■ ),

r^« r 4 \       8/

and if f(zx) =0, f(n~1)(zn) =0 (w^2), where the sequence {zr} has all its limit

points in H, then f(z) =0.

It is to be noted that the constant (x/4) exp (— ir2h/8) is "better" (that

is, greater) than that obtained from the circle circumscribed to H, namely,

.7259/1 +h (which is obtained from Theorem III by the transformation

f = (l+h)z) only for small values of h. It is "better" when h g0.23 but not

when A =0.24.

Appendix

Upper bounds for

n                Mn-i                    Ln Ln/(1.3775)n   (1.3775)"
1 1          1 0.7260 1.3775
2 2          1.5 0.7905 1.8975
3 2.5981      1.9299 0.7384 2.6138
4 3.6379      2.7915 0.7753 3.6005
5 4.8414      3.8056 0.7673 4.9597
6 6.8223      5.2539 0.7690 6.8320

7 9.3973      7.2315 0.7685 9.4111
8 12.9512      9.9635 0.7686   12.9638
9 17.8413     13.7212 0.7684   17.8577

10 24.5754     18.8998 0.7683   24.5989
11 33.8472 33.8850
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