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Chapter I. Introduction

1. The present work is concerned with the conformai mapping of one

domain of a certain class into another such domain under given auxiliary

conditions. Necessary and sufficient conditions for the possibility of such a

mapping will be given in terms of modules of the domains in question. These

constitute an extension of the concept of extremal length. The method of

extremal length is due to Ahlfors and Beurling [2]. It may be regarded as a

development, on the one hand, of the important method initiated inde-

pendently by Grötzsch [4] and Ahlfors [l] and, on the other, of the work of

Beurling [3]. It is further related to some considerations of Teichmüller [5].

(Numbers in brackets refer to the bibliography.)

This introduction will be devoted to an exposition of known properties of

extremal length. The remaining three chapters will contain the solution of

mapping problems for the pentagon, the hexagon, and the triply-connected

domain.

I wish to take this opportunity of expressing my thanks to Professor

Ahlfors for the great help and encouragement which he has given me.

2. The general concept of extremal length is introduced as follows: let

0 be a domain (for convenience we may take it to be bounded) in the z-plane

containing a family V of curves y. Let p be a non-negative function defined in

S2, of integrable square and such that /.^¿zl exists for all y in V (possibly

having the value + =°) with /yp|dz| ggl. Let g.l.b. ffs¡p2dxdy = l/\ where

z = x+iy, p runs through the functions just defined, and X may be + °°. Then

X is called the extremal length of the family V.

This quantity X is a conformai invariant. Indeed, let Q be mapped con-

formally on a domain ß' in the z'-plane by a function z'=f(z), while z = <p(z').

Let the family T go into a family I" of curves y'. Then given a function p{z)

admissible for Í2 and V, we obtain a function p'{z') =p(cp(z'))\<p'(z') \. For this

f   p'(z')\dz'\ =  f p(z)\dz\
MS   y ' «/   y

and (z' = x'+î'y')

ff   {p>{z'))Hx'dy> = ff {p{z)Y-dxdy.
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In a similar manner to each function p'(z') we obtain a function p{z). Thus the

extremal length is the same in each case.

3. We now proceed to determine certain particular extremal lengths in

the case of a quadrangle. By a quadrangle we mean a simply-connected

domain with four accessible boundary points or prime ends selected as

vertices. Let us suppose the vertices of the quadrangle are numbered 1, 2, 3, 4

in counterclockwise order about the contour.

We shall consider the family Y of curves joining the sides 12 and 34. These

are to be Jordan arcs and are allowed to tend to a prime end at either ex-

tremity. Let us call such a curve in the future a /-curve. We wish to discuss

the corresponding extremal length.

It is well known that we can map a quadrangle Q on a rectangle R in such

a way that its vertices 1, 2, 3, 4 go into the vertices Ai, A% A3, Ai of the rec-

tangle. For example, we can first map the quadrangle on a half-plane and then

map the latter on a rectangle by using an elliptic function.

Applying a magnification if necessary, we may assume that the side A2A3

has length 1 and denote the length of the side A^2 by /. Then an extremal

metric p is provided by p=l. Indeed, let us choose a set of Cartesian co-

ordinates with the x-axis along AXA2 and the y-axis along A\A\. Clearly for a

curve 7 joining A1A2 and A$Ai,

I 1 • I ¿z I è 1.
1

The corresponding value is

I   l-dxdy = I.

Now let p be any other admissible metric and let yx be the intercept made by

the rectangle on the ordinate at x. Then

/pdy ^
"Ix

Integrating over the abscissae from 0 to / we obtain

pdy ^ If  dx f
Ja J y.yx

or

//,
pdxdy ^ /.

Now
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0 ̂    f f (P - l)2dxdy =   j   I   pHxdy - 2 f J   pdxdy + f f ¿xdy
J   J R J   J R J   J R J   J B

Ú   f \   p2dxdy - I.

Thus p = l does give an extremal metric as stated and any other extremal

metric would be almost everywhere equal to 1. We observe that, in this case,

the greatest lower bound is actually a minimum. The extremal length of the

above class of curves we may call the extremal distance of the sides 12 and 34.

As we have seen, it is i/l where / refers to the corresponding rectangle. That a

conformally invariant meaning can be attached to I shows, as has long been

known, that the ratio of the sides of a rectangle on which a given quadrangle

can be mapped is uniquely determined.

4. Now let us suppose we have a second quadrangle Q' with vertices

1', 2', 3', 4' taken in counterclockwise order on the contour as before. Let it

be mapped on a rectangle in the z'-plane having sides /' and 1 in place of / and

1. We ask under what conditions the second quadrangle can be mapped con-

formally into the first in such a way that the side 1'2' lies along the side 12

and the side 3'4' lies along the side 34.

If such a mapping is possible we see that T¿1'. Let the corresponding

mapping function be z=<p{z'). Indeed in the z-plane p = l would be an ad-

missible function for the second quadrangle and the corresponding integral

f f   p2dxdy g /.

If we had equality, /=/', it is clear that the rectangles would be congruent.

On the other hand, if l^l', a mapping as indicated above is obtained

simply by laying the second rectangle into the first.

Thus a necessary and sufficient condition for the possibility of such a

mapping is that T^l'. Equality is possible only in the case of conformai

equivalence.

5. We have given a relatively complete account of these known results

on the quadrangle because they give a broad outline of the methods to be

used in the more complicated questions to follow. In the latter not only is

there greater technical complication but new phenomena make their appear-

ance, for example, in the question of equality.

Chapter II. The pentagon

1. In this chapter we consider a mapping problem for a pentagon.

Analogously to the quadrangle, a pentagon II is a simply-connected domain

with five accessible boundary points or prime ends selected as vertices. These

mark off on the boundary the five sides of the pentagon. Let the vertices be

1, 2, 3, 4, 5, taken in counterclockwise order around the boundary. We may



330 J. A. JENKINS [November

regard the pentagon as mapped on the upper half-plane so that the vertices

lie along the real axis, say at points zx, z2, z3, z4, z6 (in order of magnitude).

A4 A3

4Á
•A

ft = 0

A,
As   A*T~

-Ä--H

A¡      2* = s5      A,      Ai   z¡>z*>ti   A-z
ai <a2

A>-_.        A,        A,

-AH

A¡ z*=zt      A2

a¡ = 02

A*   A3
-AH

At

A,

A = 0

At   2,>2*>s3   A2      A,      3* = ,       At

fll>fl*

Fig. 1

We shall begin by solving the following extremal problem which we denote

by P{ax, a2).

Problem P(au a2): Let & denote the class of /-curves 71 lying in the

pentagon and running from the side 12 to the side 45. Let Ci denote the

similar class for the sides 12 and 34.

Let p denote a non-negative function defined over the pentagon, of inte-

grable square and such that the integrals fyip | dz | and /T2p | dz | exist (possibly

having the value + =0 ) with

Lp \ dz   ^ ai, 1 p I dz \ è a2

where ai, 02 are certain two non-negative numbers. It is required to determine

a p such that

//.
p2dxdy (z = x + iy)

is a minimum. The corresponding minimum will be denoted by M(oi, aî) and

called the module of the pentagon.

The solution of this problem will be given by mapping the pentagon on a

suitable canonical domain. This is effective since the problem is immediately

seen to be conformally invariant by the same method as in chap. I, §2.

We observe further that the essential quantity is the ratio ai : a2. If we have
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the extremal function p for a pair au a2 the corresponding function for the

pair mai, ma2 will be mp.

2. The canonical domain. The canonical domain for the pentagon has one

of five possible forms. For ax <a2 there are two possibilities. The domain may

be a rectangle with corners A\, A%, A3, Ai corresponding to 1, 2, 3, 4 and with

a point Ab on the side AiAi corresponding to 5. A2A3 has length a2 and AiA6

length at least ai. Alternatively we may have a hexagon with vertices

Ai, A2, A3, Ai, Ai corresponding to 1, 2, 3, 4, 5 at angles of 7r/2 and a sixth

vertex A* between Ai and At, on the boundary at an angle of 3>ir/2. In this case

A\Ai and A<¡Az have respectively lengths ai and a2. For ax =a2 the domain is a

rectangle with corners A\, A2, A3, A6 corresponding to 1, 2, 3, 5 and with a

point Ai on the side A3A5 corresponding to 4. Both AiAs and A2A3 have length

ai =a2. For ai>a2 there are hexagonal and rectangular domains as for ai <a2.

These possibilities are illustrated in Fig. 1. In any case we denote the per-

pendicular distances of Ai from AiA& and A2A3 by ßi and ß2 respectively.

Before proving that to any pair Oi, a2 we can obtain a canonical domain, we

shall show how the latter provides the solution of the problem P(ait a2).

The extremal metric is given in any case by p =1. Indeed, let us select a

set of Cartesian coordinates with the x-axis along A1A2 and the y-axis along

AiA6. Clearly

f   l-\dz\ ^ ah f   1 ■ I dz I è a2.
■'71 "72

The corresponding value is

//.
1 • dxdy = aißi -\- a«ß2.

This is true even for the degenerate cases for if AiA6>ai we have /Si = 0 and if

AiA3>a2 we have ß2 = 0. To show the minimizing property, let p be any other

admissible function and let yx denote the intercept made by the domain on

the ordinate at x. By assumption

/t/    y.

pdy ¡g «i, 0 < x < ßi,

pdy ^ a2, ßi < x < ßi + ßi.
yx

Integrating over these ranges of abscissae we obtain

pdy ^ aißi,f 1 dx f
J tt J y.0

• 01+02XP11-P2 r»
dx j    pdy ^ a2pV

rJi J y*
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Thus

pdxdy ^ aißi + a2ß2.

Now

0 á  Ç Ç (p - tydxdy =  Ç f pHxdy - 2 f f pdxdy + Ç f dxdy
J J n J J n J J n J J n

g   I   I   p2dxdy — (ajjSi + a2/32).

Thus p = 1 provides an extremal metric and any other extremal metric

would be almost everywhere equal to 1.

We observe that a given pentagon could not be mapped on two distinct

canonical domains associated with the same pair a\, a2. Indeed, if this were to

happen, we would let the domains lie in the z- and z'-planes, say. They would

be related by a conformai transformation z=</>(z'). Then in the z'-plane

p(z') = |0'(z')| would give an extremal metric, and so be almost everywhere

equal to 1. Being continuous, it would be identically 1 and we should find

<p(z') = euz' + c, 6 real.

Thus the two canonical domains would be congruent.

3. Now we proceed to show that to every ratio ai/a2 there exists a canon-

ical domain. Let us regard the mapping of the upper half z-plane given by the

function

r-cfï-*-^-)
J 2l \(z — zi)(z — z2)(z — Z3){Z — Zi)(z — z5)/

1/2

dz

where z* is a real value in the interval Z3^z* ^z6, C is a constant, and we fix

the positive determination of the radical between Zi and z2. By a familiar

argument we then see that the upper half-plane is mapped on the types of

canonical  domains  enumerated   in   §2,   respectively,   according  as   z*=z¡,

Z5>Z*>Z4, Z* = Z4, Zi>Z*>Z3,  Z*=Z3.

As z* varies from z6 to z3 the image domain starts out as a rectangle,

passes through a series of hexagonal domains and finally becomes a rectangle

again. Let the values of the ratio A\A§/A2A3 for the extreme rectangles be k

and / (k<l). If ai/a25=& the corresponding canonical domain is the rectangle

given by z*=z¡. If ai/a^l the corresponding canonical domain is the rec-

tangle given by z* =z3. As z* varies from z6 to Z3 the ratio A\A$IA2A3 varies

continuously and so takes all values between k and /.It cannot take any value

outside this range because the corresponding image domain would not be

similar to the rectangle which is the canonical domain there. Moreover the

ratio takes every value between k and I once only. Indeed, if we obtained the
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same ratio for two values of z*, say z* and z*, by the uniqueness of the mini-

mizing function the corresponding maps would be one a magnification of the

other. We should thus be led to a conformai mapping of the upper half-plane

onto itself, leaving invariant the points zx, z2, z3, z4, z6 and carrying z* into z*.

This is clearly impossible. Thus to every value of ai/a2 with k^ai/a2^l we

get a canonical domain of one of the prescribed types. This proves the exist-

ence of a solution of the problem P{a,i, a2) in all cases.

4. Now let II' be a second pentagon with vertices 1', 2', 3', 4', 5', the order

around the boundary being the same as before. We shall employ for all

entities defined above the corresponding notations with primes. We want to

investigate when it is possible to map this second pentagon conformally into

the first in such a way that the vertex 4' falls on the vertex 4 and the sides

1'2', 3'4', 4'5' lie along the sides 12, 34, 45.
We state the following result :

Theorem 1. A necessary and sufficient condition for the possibility of the

above mapping is that

M(ah a2) ^ M'(ah a2)

for all pairs a\, a2.

The necessity of this condition is seen at once. Indeed, suppose we have

the mapping performed as above. Then any curve of C{ is identical with a

curve of C\ and any curve of C{ is identical with a curve of C2. Hence any

admissible function p for IT gives an admissible function p' for II' by assigning

the same value at the points of II'. Moreover

I  |   p*dxdy 2ï   I   I    p'2dxdy.

Since there are possibly further admissible functions for II' we have

min   |   I   pHxdy 5: min   I   I    p'2dxdy.
p    J J n p>    J J n'

That is,

M(au a2) 2ï M'(ah a2).

We now proceed to the proof of the sufficiency of the condition. To every

ratio of the interval k^ai/a2^l (k>0, /< + °°) we select a definite pair au a2,

say the pair for which ax has a given constant value. To this pair will cor-

respond a canonical domain for II and so a pair of numbers ft, ß2. Now
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ft =   JRC
JnM z — zi)(z — z2)(z — Z3)(s — Zi){z — z6)

)l/2

Ídz\.

Since z* varies continously with ai/a2, these are continuous functions of ax/a2.

Similarly we get a pair of functions ß{, ft' depending continuously on ai/a2.

A4 = At'    A,'AS Ai = At' A,' A,

4j      W      ; I     A5A¿__

Á42 ií.rj-;
At      Aï      A,""*-"1'Ai' At'

£fi'=0 0Ï, ft'3*0

A*.A*'   Aj-Aj       ÂfuAï    A,-Aï~1  Aï A.

The condition

can be expressed as

or

Al'AÏ Aï A> A*A~?       Aï      Ai

A', &V0 ft'=0
ai>a¡

Fig. 2

M(alt a2) ^ M'(ai, a2)

«A + «2ft ^ ajjSi' + a2ft

ai(ft -ft) + a2(ft-ft) è 0.

This can be interpreted as saying that, taken in a Cartesian coordinate sys-

tem, with axes Ox, Oy, say, the vectors (ai, a2) and (ft—ft', ft—ft' ), provided

the latter is not the null vector, form an angle not greater than a right

angle. Since the first vector must lie in the quadrant (x + , y+) the second

cannot lie in the interior of the quadrant (x —, y — ). As the ratio ai/a2 varies,

the end point of the vector (ft —ft , ft —ft' ) describes a continuous curve. Let

us regard under this the image of the segment k^ai/a2^l. For this seg-

ment the sides ^4s^4i and ^4^43 of the canonical domain actually have the

lengths ai and a2. The first end point of the image must fall in the closed

quadrant (x —, y + ), the second end point in the closed quadrant (x + , y — ),

since for the first ft = 0 and for the second ft = 0.

If the image curve passes through the origin we have for that value of

ai/a2, ft =ft' and ft =ft . If these ft, ft are greater than zero the two canonical

domains will be identical. If ft = 0 then also ft' =0 and the side A¿A{ is at

least ai in length. A similar remark holds if ft = 0. Hence in any case we can
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lay the canonical domain for II' into the canonical domain for II. To this cor-

responds the required mapping of II' into II.

If the image curve does not pass through the origin we can project it

continuously from that point onto a circle with center there. This new image

will have points in each of the closed quadrants (x —, y + ) and (x-f-, y — ). As

the continuous image of a connected set it must be connected and it can con-

tain no points in the interior of the quadrant (x —, y — ). Thus we conclude

that it must contain the whole arc of the circle in the quadrant (x + , y+).

Hence we must have vectors (ft —ft, ft—ft') lying in the interior of this

quadrant and thus pairs with ft>ft', ft>ft'. Then we can lay the canonical

domain for 11' into the canonical domain for II. This is illustrated in Fig. 2.

To this corresponds the required mapping of II' into II. This completes the

proof of Theorem 1.

5. We observe further that if we have always the strict inequality

M(ah a2) > M'(ai, a2)

we can have only the second possibility above. Thus the interior of IT' is

mapped onto a proper subdomain of the interior of II. Conversely this last

situation implies that the strict inequality always holds. Indeed, suppose it

were possible to map the interior of II' onto a proper subdomain of the in-

terior of II under the given conditions on the boundary, while for some pair

ai, a2

M(ai, a2) = M'(au a2).

Let the corresponding canonical domains for II and II' lie in the z- and

z'-planes respectively. Let the mapping of the canonical domain for II' into

that for n be given by z=<p(z'). Then |$'(z')| would be an admissible function

for P'(a\,a2) in the z'-plane. Now

f f   | 0'(z') | Way =   f f i-dxdy é   Ç f l-dxdy = M(at, a2) = M'(ah a2).
J J w J J n' J J u

This means | <p'(z') | would be an extremal metric, hence identically equal to 1

(since continuous). Therefore the mapping in question would be a congruent

transformation. Equality above would be possible only if the interiors of the

canonical domains coincided under this transformation. Thus a mapping of

the interior of II' onto a proper subdomain of the interior of II would be

impossible.

We see that for canonical domains of hexagonal type the above situa-

tion implies conformai equivalence of the pentagons. However for rectangular

domains we can have equality without conformai equivalence.

We can now state the following complement to Theorem 1.

Theorem la. II and II' are conformally equivalent if and only if
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M(ah a2) = M'(ah a2)

for all pairs alt a2.

II' can be mapped into II in the required manner with its interior going into

a proper subdomain of the interior of II if and only if

M(au a2) > M'(ai, a2)

for all pairs ai, a2.

Chapter III. The hexagon

1. In this chapter we shall treat a mapping problem for a hexagon which,

in a certain sense, is a natural generalization of the problem just treated for

the case of a pentagon. Nevertheless in addition to the greater technical

detail certain new features are presented which require somewhat more careful

treatment.

As we should by now expect, a hexagon H is a simply-connected domain

with six accessible boundary points or prime ends selected as vertices. Let the

vertices be 1, 2, 3, 4, 5, 6, taken in counterclockwise order around the

boundary of the domain. These points mark off on the boundary the six sides

of the hexagon. We may regard the latter as mapped on an upper half-plane

so that the vertices lie at points of the real axis, say Zi, z2, z3, Zi, z5, Ze (in order

of magnitude).

We shall regard for the hexagon the following extremal problem which we

denote by P(a\, a2, a3).

Problem P(a\, a2, a3) : Let G denote the class of /-curves 71 lying in the

hexagon and running from the side 12 to the side 34. Let C2 denote the

similar class for the sides 34 and 56 and C3 the similar class for the sides 56

and 12.

Let p denote a non-negative function defined over the hexagon, of inte-

grable square and such that fy¡p\ dz\, fy¡p\ dz\ , Jy3p\ dz\ exist (possibly having

the value +00). Further we require

/p\ dz I ^ ah p\ dz I è a2, p I dz \ ^ a3

where ai, a2, a3 are certain three non-negative numbers. We desire to determine

a function p such that

/;.
p2dxdy (z = x + iy)

is a minimum. The corresponding minimum will be denoted by M(ai, a2, a3)

and called the module of the hexagon.

We note that the problem is essentially fixed by the double ratio ai:a2:a3.

Indeed if p is a function solving P(au a2, a3), mp will be a function solving
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P(ma\, ma2, wa3). As before, the solution is given by mapping the hexagon on

a suitable canonical domain. Once again this method is applicable because of

the conformai invariance of the problem.

2. We now proceed with a discussion of the various possible types of

canonical domains. We shall then discuss the functions which give rise to

them. Finally we shall show that for any problem P(ai, a2, a3) we can exhibit

a canonical domain leading to the solution.

Any canonical domain belongs to one of five general types. These are il-

lustrated in Fig. 3. The first is the image on a three-sheeted Riemann surface

of a two-sheeted covering of the hexagon, the former having a branch point

of order three corresponding to a branch point of order two of the latter.

There are thus two vertices of this domain corresponding to each one of the

hexagon ; they are symmetrically placed with respect to the branch point and

the angle at each of them is ir/2. The sides of the canonical domain have the

following lengths: A2A3 = A2*A* = ai, AiAb=A\Al = a2, AaA*=A*Al = a3.

Moreover these lengths satisfy the inequalities

A2A3 + A4Ai > AtAi,       AiAb + AeA* > A2A3,       A6A* + A2A3 > AtAi.

The second type of domain has vertices with angles of tt/2 corresponding to
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the vertices of the hexagon and an extra vertex A with an angle of 2t in the

side AiAb. Similar domains would be obtained by having A in the sides

AiA3 or A6Ai. The sides have lengths A%A3 = ai, AiA5(=AiA-\-AA6)'^:a2,

^46^4i=a3. These lengths again satisfy the inequalities

A2A3 + AiAb ^ AfAi,       AiAb + A^Ax ^ A2A3,       A6Ai + A2A3 > AiAs.

The third type of domain has vertices with angles of 7r/2 corresponding to

the vertices of the hexagon and two extra vertices A and A~ with angles of

37r/2 in the side A¿Ae. Similar domains would be obtained by having these

vertices in the sides A3Ai or A\A2. In this case the sides have lengths A2A3 = ai,

AiAi = a2, AßAi = a3 and these lengths satisfy the inequality

-42^3 ^ AiA6 + A«Ai.

The fourth type of domain has vertices Ai, A2, A3, Ai, Ae with angles of 7r/2

corresponding to the vertices 1, 2, 3, 4, 6 of the hexagon, a vertex A with an

angle of 37r/2 between Ai and A$ and a point A& corresponding to 5 between

Ai and A. This may be thought of as being obtained from the preceding case

by letting A coincide with A6. A great variety of similar domains could be

obtained, say by letting A coincide with A% or starting from one of the alterna-

tive cases of the third type. In the case depicted in the diagram the sides

have lengths A%A3 = ai, AiAb^a2, ^46-<4i = a3. These satisfy the inequality

A2A3 ^ AiAs + AfA 1.

The last type of domain is a rectangle with corners Ai, A2, A3, Ai correspond-

ing to the vertices 1, 2, 3, 4 of the hexagon. To 5 and 6 correspond points A5

and Ai on the side AiAt. Similar domains would be obtained by letting 1 and

2 or 3 and 4 take the place of 5 and 6 here. Here the sides have lengths

A2A3 = ai, AiAs^a2, ^45y46èa3. These satisfy the inequality

^12.43 > AiA¡, + AtAt.

In the first case we shall denote the perpendicular distances from the

point of symmetry to AzA3, AiA&, and A^A* by ft, ft, and ft respectively. In

the other cases we denote by these symbols the lengths indicated in Fig. 3.

The justification for this definition will be seen later.

In each case the extremal metric is given by p = l. For example, let us

regard a canonical domain of the first type. From the symmetry about the

branch point we see that on transforming back to the hexagon this will pro-

vide a single-valued function there. By a line through the branch point

parallel to the side A-iAz (so also to the side AiA&, and so on) we can divide

the domain into six rectangles, congruent in pairs. The same method as was

employed in the case of the pentagon now shows that the required minimum

is given by 2(aift+a2ft-|-a3ft.). Since the canonical domain is an image of a

double covering of the hexagon the corresponding module is aift-f-a2ft+a3ft.
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An analogous argument proves that the same expression gives the module

for the other types of canonical domains. Further, any other extremal metric

would be almost everywhere equal to 1. Thus, as for the pentagon, two canon-

ical domains for the same hexagon associated with a given double ratio

ai:a2:a3 would have to be congruent.

3. Our next step is to show that to every double ratio ai:a2:a3 there exists

a canonical domain.

Let us regard in the first instance the mapping of a two-sheeted covering

surface of the upper half-plane with a branch point of second order at

z = z* (7z*>0) bj' the function

/•«/                           (z-z*)(z-z*) V'2
(1)       f = C|    (-)    dz

J z'\(z — Zi)(z — z2)(z — z3)(z — Zi)(z — z6)(z — ze)/

where C is a constant.

The transformation Z2 = z — z* will give a simply-covered domain D in the

Z-plane on which f is regular and single-valued. About z = z* we have the

expansion

.1/2c/_(z - z*)(z - z*)_y

\(z — zi)(z — z2)(z — z3)(z — Zi)(z — s6)(z — z6)/

= A(z — z*)1/2 + higher powers    (A ¿¿ 0).

Thus f has the expansion

r = B(z - z*)3'2 + higher powers (B yà 0)

or

f = BZZ + higher powers.

As Z describes the boundary of D, z describes the real axis twice and a con-

sideration of the behavior of the integrand in the expression for f shows that

f describes a curve such as appears as the boundary of a canonical domain of

the first type. This curve winds about f = 0 three times.

Hence f has a triple zero at Z = 0 and no other zeros in D. Thus any chosen

determination S of f1/3 will be a single-valued regular function of Z in D. As Z

describes the boundary of D, S will describe a simple closed curve in the

E-plane and hence the corresponding interiors will be in (1, 1) conformai cor-

respondence. Finally the Riemann surfaces over the z- and f-planes will be in

(1, 1) correspondence, conformai apart from their branch points.

Secondly let us regard the mapping of the upper half z-plane given by the

function
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Here C is a constant, Zi<z*<z&, and we may take the positive determination

of the radical on the real axis between Zj and z2. A consideration of the argu-

ment of the integrand shows that the real axis is mapped into a closed contour

such as appears as the boundary of a canonical domain of the second type.

This function thus gives a mapping on this type of domain. The point z*

corresponds to the point A. Similar image domains would be obtained by

taking z* between z2 and z3 or between Zs and Z\.

Thirdly let us regard the mapping of the upper half z-plane given by

/■»/ (z - z*)(z - z**)
(3)       r = c      (-

/ z¡ \(z — zi)(z — z2)(z — z3)(z — Zi)(z — z6)(z — z6)

Here C is a constant, z¡f¿z**^z*^ze, and we may take the positive de-

termination of the radical on the real axis between Z\ and z2. An argument

similar to that above shows that this function in general maps the upper half-

plane on a canonical domain of the third type with z** corresponding to A

and z* to A. If z**=z6 we get a canonical domain of the fourth type and if

2**=z6 and z* = z6 a. canonical domain of the fifth type. Naturally we may

have Zb<z*=z**<z6 in which case the side A A reduces to a point, z* and z**

may further both coincide with z6 or z$. Further domains of these types could

be obtained by taking Zi :£z** 5= z* i£z2 and z3^z**^z* ^Zi.

Now to every point of the upper half-plane including the real axis we have

obtained a canonical domain corresponding at least to the ratio ai:a2:a3

= A2A3-AiAi:AeAi. Also to every pair of points both in one of the segments

ZiZ2, z3z4, or z5z6 we obtain a canonical domain corresponding to this same ratio.

Let us regard the (z**, z*) plane. The pairs of points mentioned above are

in (1, 1) correspondence in the natural way with the points of the three tri-

angular regions defined by Zi ̂ z** ^z*^z2; z3^z**^z*^Z4', z5^z** ^z* ;Sz6.

After a suitable linear reduction we shall join each of these to the upper half

z-plane so as to lie below the real axis and have the points of its hypotenuse

attached to the corresponding intervals of the real axis. Let us denote these

triangles by 7\, T2, T3, their lower vertices by a, b, c and the region obtained

by joining them to the upper half-plane by N. Taking in N the ordinary

topology of the complex plane, we see at once from their expressions as

integrals in the various cases that the lengths corresponding to ai, a2, and a3

depend continuously on a point moving in this region.

No two points of N could give the same double ratio ai:a2:a3. Indeed, if

they did, the corresponding canonical domains would have to be similar. Thus

we should be led to a conformai map of the upper half z-plane on itself leav-

ing invariant six boundary points and hence the identity. However the points

of the upper half-plane determining the mapping would be interchanged and

we should be led to a contradiction.

We shall now make a more detailed study of this correspondence. Since

only the ratio ai:a2:a3 is of importance we may take 01, a2, a3 as trilinear

coordinates of a point. Further, all three are non-negative so we shall be con-

)l/2

dz.
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cerned with the interior of the triangle of reference. As we have observed in

the discussion of the canonical domains, to the interior points of H cor-

respond points of the triangle for which ai, a2, and a3 satisfy the triangle law

ai+a2>a3, a2+a3>ai, a3-f-ai>a2. At the boundary points of H in the seg-

ments ZiZ2, z3Zi, and z&z6 one of these becomes an equality. As we describe the

segment ZiZ2 the image point describes a segment Z\Z2 on the line a2 = a3-|-ai.

As we describe the segment z2z3 the image point passes on a certain continu-

ous curve ZiZ3 over to the line a3 = ai+a2. In this way we see that to the

boundary of H corresponds the closed curve ZiZiZzZiZ^Z^ where Z» cor-

responds to Zi, i = 1, ■ ■ ■ , 6. Of the curves Z2Z3, Z4Z5, Z6Zi we can say that

each is met at most once by any line through the opposite vertex of the tri-

angle of reference.  Clearly,  by the uniqueness property of the canonical

ai-0

Fig. 4

domain corresponding to the double ratio ai:a2:a3, the curve cannot cover any

point twice. Suppose that, say, Z4Z5 had two distinct points of intersection

with a line through the point (0, 1,0). The corresponding canonical domains

would be of the second type. They would correspond to double ratios ai:a2:a3

and ai'.a{ :a3, a2>a2 , where the second would refer to the point farther from

the vertex. If we consider the problem P(a\, a{, a3) for the canonical domain

corresponding to the first point the familiar argument shows us that p =1

would be a minimizing function. The above situation is now seen to be im-

possible by the same method as is used to prove the uniqueness property of

canonical domains.

As we describe the segment Zja of the boundary of T\, this is equivalent

in the original z-plane to having z** fixed at zx and letting z* run from Z\ to z2.

The image point in the triangle describes a continuous curve from Zi to a

point A at which the canonical domain becomes completely degenerate, that

is, ft = 0, ft = 0. As we describe the segment az2, this is equivalent in the

original z-plane to having z* fixed at z2 and letting z** run from Z\ to z2. The

image point describes a continuous curve from A to Z2. Similar remarks hold

for the boundary segments of the triangles T2 and T3. As before, it can be
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shown for these curves that they are met at most once by any line through the

opposite vertex.

Let Ñ be the region bounded by the curve Zi^4Z2Z3BZ4Z6CZ6 with

H, Ti, T2, T3 the parts of Ñ corresponding to H, 7\, T2, F3 in N. Let F be a

boundary point of Ñ and let us draw the line segment through it to the

perimeter of the triangle whose continuation passes through the opposite

vertex. For definiteness suppose F lies on AB. Then for the points of this seg-

ment the ratio a2:a3 has the same value as for F while ai:a2 (or ai:a3) is

smaller. As in the discussion of the boundary curves of Ñ given above, the

canonical domain corresponding to F does for all these points. Similar re-

marks naturally hold for the sides BC and CA. In the same manner we see

that all points in the three quadrilaterals in the corners of the triangle ob-

tained by the above construction correspond, respectively, to the three com-

pletely degenerate cases.

Thus a point in the triangle corresponding to a point of the region N must

lie in Ñ, while to different points of N correspond different points of Ñ.

Further, the boundaries of these regions are in (1, 1) continuous (and thus

topological) correspondence. Then from the invariance of domain we deduce

that the points of the two regions are in topological correspondence. This com-

pletes the proof that to any ratio ai¡a2:a3 we obtain a canonical domain of

one of the prescribed types.

4. We shall now proceed to consider a mapping problem for the hexagon.

Let H' be a second hexagon with vertices 1', 2', 3', 4', 5', 6', the order around

the boundary being the same as before. We shall denote all entities in the cor-

responding way as for H with the addition of primes.

We desire to investigate when it is possible to map this second hexagon

conformally into the first in such a way that the sides 1'2', 3'4', 5'6' lie along

the sides 12, 34, 56.

We shall prove the following result:

Theorem 2. A necessary and sufficient condition for the possibility of the

mapping as above is that

M(au a2, a3) ^ M'(a\, a2, a3)

for all triples ai, a2, a3.

The necessity of this condition is seen precisely as for the pentagon. In-

deed, suppose we have the mapping performed as above. Then any curve of

G is identical with a curve of G, any curve of C{ identical with a curve of G,

and any curve of C» identical with a curve of G- Hence any admissible

function p for P(ai, a2, a3) gives an admissible function p' for P'(ai, a2, a3) by

assigning the same value at the same point (taken in the plane for H). Then

f f pHxdy ^  f f   P,2dxdy.
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Since there are possibly other admissible functions for P'(alt a2, a3) we have

further

min   |       p2dxdy ^ min   I   I    p'2dxdy.
p      J  J H p>        J  J H'

That is,

M(au a2, a3) ^ M'(a\, a2, a3).

We now proceed to prove the sufficiency of the given condition. To every

point of the domain Ñ we select a triple ai, a2, a3. These values are to vary

continuously with position in the triangle. Since no point of Ñ has any of its

homogeneous coordinates zero we may take, for example, ai to have a constant

value. Let ft, ft, ft be the quantities previously defined associated with the

canonical domain corresponding to the point (au a2, a3). For the points of Ñ

the results of §2 relating the dimensions of the canonical domain and the

quantities ai, a2, a3 are all equalities. We shall now show that ft, ft, ft vary

continuously with position in the triangle. Indeed for H and its boundary we

have the equations:

ft + ft = AzAi,       ft + ft = A6A6,       ßi + ft = A^A2,

while for f3, say, we have:

ft + ft = A3Ai,       ft + ft = A,A%(= A6A + Ai + AA6) - AÄ,

ft+ ft = AXA2.

These lengths can be expressed in terms of integrals which vary continuously

and, at the points where H and T3 meet, the length *ÄA is zero. Similar re-

marks hold for T\ and T2. Finally, from what we have learned about canonical

domains for points of the triangle outside of Ñ, we see that ft, ft, ft will vary

continuously with respect to position in the triangle. Naturally the same is

true for ft', ft', ft', the corresponding quantities for H'.

Now we can express the condition

M(ai, a2, a3) ^ M'(au a2, a3)

as

aift + a2ft + a3ft ^ aift + a2ft + a3ft

which can in turn be written

ai(ft - ft) + «2(ft - ft) + a3(ft - ft') à 0.

This can be interpreted as saying that, taken in a Cartesian coordinate

system, with axes Oz, Oy, Oz say, the vectors (ai, a2, a3) and (ft—ft, ft—ft',

ft—ft') form an angle not greater than a right angle (assuming the latter

vector is not the null vector). Since the first vector must lie in the octant
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(x-f-, y-f-, z + ), the second cannot lie in the interior of the octant

(x —, y—, z — ). As the triple ai, a2, a3 varies, the end point of the vector

(ft—ft', ft —ft', ft—ft') varies continuously. We shall regard the image

under this of the region Ñ defined as above. (This refers to H, not H'.) As

we have seen, for these points, the sides AiA3, AiA5, and AeAi actually have

the lengths ai, a2, and a3.

The image point A* of A will lie in the closed octant (x —, y + , z — ),

the image point B* of B in the closed octant (x —, y —, z + ), the image point

As=AÏ

Ai = AÏ

Ab = Ab' At = At'

A< = AÏ

%

A,=AÏ
AA

AfA,

A

À'

Ai = AÏ

A, = Aï

A2 = AÏ

A<=AÏ A^AÏ

Ad
Aï]

A, = A,'
A=A'

Ai=AÏ A,--

At = AÏ A,=AÏ

-Aï

C* of C in the closed octant (x + , y — , z — ). The image of the side AB will

lie in the three closed octants (x —, y-f-, z + ), (x —, y-f-, z — ), (x —, y —, z-f-).

Similar remarks hold for the sides BCand AC.

If the image surface passes through the origin we have for that value of

the triple ai, a2, a3; ft=ft, ft=ft', and ft = ft'. If ft, ft, ft are all positive
the canonical domains are identical. If any of the ft vanishes so does the cor-

responding ft' and the suitable side of the canonical domain for H' has length

at least a¿. If the canonical domain for H is of the second type, that for H'

is also of the second type. If the canonical domain for H is of the fourth type,

that for H' is of the second or fourth type. If the canonical domain for H is of

the fifth type, so is that for H'. In any case we can lay the canonical domain

for H' into the canonical domain for II. To this corresponds the required
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mapping of H' into II. This is illustrated in Fig. 5 for the four typical de-

generate cases.

The image surface, if it does not pass through the origin, can be pro-

jected continuously from that point onto a sphere with center there. The

images of the vertices and sides of ABC will fall on the parts of the sphere

in the octants mentioned above. Let PQR be the equilateral right-angled

AÏAÏ*

A?,WHAT* a s*
AÏ*Af Ai*

Aï Aï*

tit A,' Aï A,

A, Aï

Aï* Aï .

UA/    Aï A

A? Aï    Aï  Ah

A'

Ail

Aï A*

Aï A2 Ai Aï Aï Ai

A,   Aï Aï At

As Aï A.
\A

A'

A¡

A.   Aï

A
Aï

Â = A'

A,   Aï

Ai    Aï Aï. A¡

A,   A,'        Aï A3

Aï Ai

Fig. 6

At Aï_Aï Ai

A¡ Aï

A,   Aï

A=A'

A=A'

Ai    Aï Aï Ai

Aj   Aï Aï A,

A
Aï

Aï
A

Ai Aï Aï Ai

triangle cut out on the surface of the sphere by the first octant, P, Q, R being

on the x-, y-, and z-axes respectively. Let U, V, W be the mid-points of the

sides RP, PQ, QR and 5 the centroid of the triangle.

We shall now deform the image of Ñ on the sphere as follows: points of the

triangle PQR will be left fixed, points exterior to PQR will be projected from

5', the antipodal point of 5 on the sphere, along great circles through S' and

S, onto the perimeter of PQR. Since the image does not cover S', this is a

continuous mapping. The image of A will lie on QV or QW, that of B on RW

or RU, that of C on PU or PV. The image of AB will lie along QV, QW, RW,
RU while similar remarks hold for BC and C4.
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The pencil of great circles through 5 induces a correspondence between

points of the perimeter of PQR and their opposite points on this perimeter.

It is clear that the image of A does not lie opposite to Q, the image of B does

not lie opposite to R, and the image of an interior point of AB does not lie

opposite to an interior point of QR. Similar remarks hold for B C and CA. Thus

the mapping of the boundary of Ñ into PQR can be deformed in such a way

that A, B, C go into Q, R, P, AB goes homeomorphically into QR, BC homeo-

morphically into RP, CA homeomorphically into PQ. That is, provided we

take suitable orientations, the perimeter of Ñ is mapped into the perimeter of

PQR with degree 1. Thus the previous mapping was also of degree 1.

Finally we can project the triangle PQR of the sphere from the center 0

onto the. tangent plane at 5. It will have as image a triangle and we shall

obtain a continuous mapping of Ñ into this triangle such that the perimeter

of Ñ is mapped into the perimeter of this last triangle (suitably oriented) with

degree 1. Thus the order of the mapping of the perimeters about S is 1 and

the degree of the mapping of the areas over 5 is 1. Thus 5 is covered by the

image. Similarly every point of the triangle is covered.

This means that there was originally a vector (ft—ft', ft—ft', ft —ft')

lying in the octant (x-f-, y-f-, z+). Thus there exists a triple ax, a2, a3 with

ft >ft , ft >ft', ft>ft'. The corresponding canonical domain for H will be of

the first or third type. If it is of the first type the corresponding canonical

domain for II' will be of the first or second type. If it is of the third type the

corresponding canonical domain for H' will be of the second, third, fourth,

or fifth type. In any case we can lay the canonical domain for H' into the

canonical domain for II. This is illustrated in Fig. 6 for typical cases.

We observe that in the first case the canonical domain for H' lies sym-

metrically about the branch point, hence we get the required mapping of H'

into H by taking just one sheet. In the second case no two points of the

canonical domain for H' lie symmetrically with respect to the branch point,

hence we get the required mapping by projecting into one sheet. Hence in any

case we obtain the required mapping of H' into H.

5. Further we observe that if we have the strict inequality

M(oi, a2, a3) > M'(ah a2, a3)

only the second possibility above can occur. Thus the interior of H' can be

mapped into a proper subdomain of the interior of H. However, if we apply

the same argument as for the pentagon we see that we can have equality

without coincidence of the interiors when the canonical domain for H' is of

the second type. (See Fig. 5.) For the nondegenerate cases, when a mapping

is possible, equality means conformai equivalence.

We may now state the following complement to Theorem 2.

Theorem 2a. H and H' are conformally equivalent if and only if
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M(au a2, a3) = M'(au a2, a3)

for all triples ai, a2, a3.

H' can be mapped in the required manner into H so that its interior goes

into a proper subdomain of the interior of H if

M(ah a2, as) > M'(au a2, a3)

for all triples a\, a2, a3.

Chapter IV. The triply-connected domain

1. We shall now enter into some considerations for a triply-connected

domain, among them a mapping problem. We shall regard a triply-connected

domain D, none of whose boundary continua A^i, Kjl, Kj, reduces to a single

point. Such a domain can be mapped on a domain bounded by three circles.

There will be a circle orthogonal to these three and for convenience we can

take this to be a straight line. This line divides the domain into two sym-

metric hexagons, H and H. With a view to discussing the conformai mapping

of one such domain into another, we shall define a module for a triply-con-

nected domain by means of the following extremal problem, <P(ai, a2, a3).

Problem i*(ai, a2, a3) : Let G denote the class of Jordan curves 71, lying

in the domain D and separating the contour A^i from the contours Kj¡ and A^3.

Let G denote the similar class for Kj. and G the similar class for A^3.

Let p denote a non-negative function defined over D, of integrable square

and such that the integrals ¿fyip\dz\, £yj>\dz\, ^y,p\dz\ exist (possibly

having the value -f- =0 ) with

yp I dz I ̂  2ai, (h    p I dz \ S: 2a2, (p    p \ dz \ ^ 2a3
71 •/    72 •'     73

where ai, a2, a3 are certain three non-negative numbers. It is required to de-

termine a p such that

//.'
p2dxdy (z = x -f- iy)

is a minimum. The corresponding minimum will be denoted by "M(ax, a2, a3)

and called the module of the domain.

2. We shall proceed to prove the following.

Theorem 3. 9tt(ai, a2, a3) exists and is equal to 2M(a\, a2, a3) where this

latter is the module of H (which is naturally also the module of H). We should

remark that the vertices of H must be numbered so that the curves of class G for

H are portions of curves of class Ci for D.

Indeed we note first that, given any function p.admissible for P(ai, a2, a3),
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extending its definition by symmetry to H we obtain a function admissible for

iP(ai, a2, a»). Further

thus

p2dxdy — 2 I        p2dxdy

g.l.b.    I   i    p2dxdy 5¡ 2M(au a2, a3).
p J  J D

Again, given any function p admissible for "P(ai, a2, a3), let p* be the func-

tion obtained by reflection in the line of symmetry. Then

I   I    p2dxdy =   I        p2dxdy.

Moreover

— I   I    p2dxdy -\-if     p2dxdy

'Sf.ffi'-'+SI.irrf'"*
Finally (p+p)/2 is an admissible function in P(ai, a2, a3) so that

(-J dxdy ïï 2M(oi, a2, a3).

Thus

and

This proves that

I   I    p2dxdy ^ 2M(ah a2, aï)

g.l.b.    I   I   p2dxdy Sï 2JW(ai, a2, as).
p J   J D

g.l.b.    I   i    p2dxdy = 2Af(ai, a2, a3).
P J  J D

The minimizing function for the hexagon gives at once the minimizing func-

tion for the triply-connected domain so that the minimum 5W(ai, a2, a3) is

actually attained. This proves the result.

We see that we have incidentally proved that the minimizing function
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takes almost everywhere the same value at points symmetric with respect to

the line of symmetry. This could be seen in numerous other ways also.

3. We now treat a mapping problem for triply-connected domains. We

shall denote by D' a triply-connected domain (none of whose boundary con-

tinua Â^i , KJ., KJ reduces to a single point) and by Jïl'(a\, a2, a3) its module.

Theorem 4. A necessary and sufficient condition that the triply-connected

domain D' can be mapped into the triply-connected domain D in such a way that

the contours have the same topological situation is that

M(ah a2, aï) ^ 5W'(ai, a2, aï)

for all triples ai, a2, a3.

Indeed, let us suppose that such a mapping is possible. Then any curve

of G' goes into a curve of G, any curve of C{ into a curve of G, and any

curve of C( into a curve of G. Hence any admissible function p for "P^a-i, a2, a3)

gives an admissible function p' for f"(ai, a2, a3) by assigning the same value at

the same point. Then

f f pHxdy ̂   f f   pndxdy.

There are possibly other admissible functions for <P'(ai, a2, a3) so that

M(ah a2. aï) ^ M'(au a2, aï).

This demonstrates the necessity of the condition.

To show the sufficiency of the condition we note that it implies

Af(ai, a2, aï) Si M'(au a2, aï)

for the modules of the corresponding hexagons. Thus H' can be mapped into

H as in the mapping problem for the hexagon. Extending this by symmetry

to a mapping of H' into II we obtain the required mapping of D' into D.

From this we deduce at once the following result.

Theorem 5. If the triply-connected domain D' can be mapped into the triply-

connected domain D in such a way that corresponding contours have the same

topological situation, another such mapping can be performed so that the lines

of symmetry coincide.

4. We shall now give a brief discussion of the possibility of equality in

Theorem 4. By Theorem 5 it is enough to regard the mapping of the cor-

responding hexagons. Thus if we always have equality the domains are con-

formally equivalent. If we always have inequality we have the interior of one

mapped into a proper subdomain of the interior of the other. However the

converse is not true as can be seen by regarding the cases for the hexagon

where we can have both equality and inequality. We can obtain a counter-
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example by taking a domain D bounded by three circles and making a slit

along the line of symmetry, either out from one contour or out from two con-

tours facing each other on a segment of the line of symmetry interior to the

domain. It is conceivable that the corresponding D' would admit also an

asymmetric mapping into D. It is rather hard to say how we might character-

ize such a domain.

Actually it is not too difficult to see that those subdomains of D for which

equality can occur in some case admit no other mapping into D.

5. Finally we can readily see that there exist triply-connected domains

neither of which can be mapped into the other for any numbering of the

contours. It is again enough to work with hexagons. Let us take two canonical

domains of the first type. (It is readily seen that they actually are canonical

domains for suitable hexagons.) Let them both have the same ai, a2, a3, all

equal, and the same area. Let one have all its ß's equal, the other have them

all different from this common value. If one could be mapped into the other,

since we have a nondegenerate case, equality of the modules would mean con-

formal equivalence, which is out of the question.
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