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1. Let a be a given point on a Riemann surface 5 of positive genus p and

bi, ■ ■ • , bp+i an arbitrary set of p + l points of 5. By Abel's theorem, there

exists on 5 a set of p points, C\, • • • , cp, dependent on the b, such that, given

any integral of the first kind on S, with a for lower limit, the sum of the p + l

values of the integral with the b as upper limits equals the sum of the p values

with the c as upper limits.

The set of c may be regarded as a type of product of the p + l points b. As

the reduction of any number q>p of integrals to p integrals leads generally to

a unique result, the product operation has an associative quality. For p = l,

the operation makes S a one-parameter Lie group in which bi and b2 have Ci

for product.

We study a question of associative analytic combinations which is exem-

plified by the case of a surface of arbitrary postitive genus (').

We use p symmetric functions /< (xi, • ■ • , xp+i), i=l, • ■ • , p oi p+l

variables, analytic when the variables are all zero.

Let Pi (wi, • • • , up) represent, for » = 1, • • • , p, the elementary sym-

metric function (e. s. f.) of degree i oi uu ■ ■ ■ , uv. We assume that when an

xy vanishes, /< reduces to P, of the x other than x¡.

Now let there be given p relations

(1) Pi(yu ■ ■ • > 3v) = /<(*i, • • • . xp+i), i = i, • • • , p.

When the |x| are all small, (1) determines a set of y of small modulus. This

set of p numbers y will be called the product of Xi, • • • , xp+i. We write

yi, • • •.%"■ [xi, ■ ■ ■, xp+i\.

We shall study the conditions under which this product operation is asso-

ciative. The condition which we put is that

(2) {{xi, • • • , Xp+i}, xp+2} = {xi, {x2, • • • , xp+2}}.

When this condition is satisfied, we describe the system (1) as associative.

We find that, for (1) to be an associative system, it is necessary and sufficient

that (I) be equivalent^) to a system of relations
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(*) The case of p = 1 is essentially the problem of Abel's paper on indefinitely symmetric

functions. See Abel, Oeuvres complètes, Christiania, 1881, vol. 1, p. 61.

(2) In saying that (1) and (3) are equivalent, we mean that, for small |ac|, (3) is satisfied

by the set of y which (1) determines and by no other set.
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(3) ¿ *«(?,) = Z $<(*,), ¿ = 1, • • • , í,
í-i ¿-i

ím which each 4>,-(z) *s analytic for z = 0 a«¿ /tas a« expansion about z = 0 which

starts effectively with a term in z*(3).

Any svstem (3), as just described, is equivalent to an associative system

(1).
In §14, we treat relations (1) in which the/ involve any number q>p of

variables x.

Partial differential equations

2. We let Yi denote, for each i, the first member of (1). Let y< represent

Pi(x2, • • • , xp+i). We shall show that (1) can be solved for the 7 in terms of

Xi and the Y.

By §1,/.' reduces to 7,- when xi = 0. Hence the expansion of /< in powers of

Xi begins with 7¡. The coefficients of the positive powers of Xi, which are sym-

metric in the other x, can be transformed into power series in the 7. On this

basis we write (1)

(4) Y i = 7i + gi(xlt 71, • ■ • , yp).

The jacobian of the second member of (4) with respect to the 7 equals unity

when Xi and the 7 are zero. Thus each 7 is analytic in Xi and the F when these

quantities are of small modulus. Each 7 vanishes when xi and the F are zero.

We have then

dYi
(5) -= cti(xi, Y1, ■ • • , Yp), i «- 1, • • • , p,

dxi

with each a analytic when its arguments are zero.

3. Let Zi, • • • , zp be the product of the y and Xp+2. The z are given by

either member of (2). Let Wi, • ■ ■ , wp= {x2, • • • , xp+2}. Letting 7/

= Pi(wi, • • • , Wp) and Z¡=P,(zi, ■ • • , zv), we have, using the second

member of (2) and considering (4),

(6) Zi = y\ + gi(xu y[, • • ■ , y'p).

The 7' are analytic in x2, • • • , xp+2. Thus the Z are analytic in Xi, • • • , xp+i

when those quantities are zero. We have from (6)

dZi
(7) -= ca(xi, Zi, ■ ■ ■ , Zp)

dxi

where the a are as in (5).

(3) By an iterative process applied to (1), the problem can be attached to the theory of

abelian Lie groups of several parameters. A treatment based on this principle would be at most

slightly briefer than that given here, which presupposes no knowledge of the Lie theory.
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4. Using the first member of (2), we have

(8) Zi =Yi + gi(xp+2, Yi,--- , Yp).

We examine the coefficient of the first power of xp+2 in g\. When any one of

the arguments of

(9) /i(yi, • • • , yP, Xp+2)

is replaced by 0, (9) reduces to the sum of the remaining arguments. Then the

terms of the first degree in the expansion of (9) make up Fi+xp+2. Let us

consider the terms of any degree r>l. They vanish for xp+2 = 0. Hence they

amount to a polynomial in xp+2, with no term free of xp+2, the coefficients be-

ing polynomials in the Y. As the coefficients vanish for yi = 0, they are of

positive degree in the F.

On this basis, we see that, when Xp+2 and the Y are 0, dgi/dxp+2 equals

unity. Thus we can express xp+2 in terms of Zi and the F. We may then write,

by (8),

dZi
(10) — = ßiAYi, ■■■ ,YP, Zi), i,j=l,---, p,

dYj

•where the ß are analytic for zero values of their arguments.

A REDUCTION

5. From (7), (10), and (5), we have for every i

(11) aÂXi, Zi,---,ZP) = Í2 ßiAYi, ■ ■■ ,YP, Zi)aÂXi, Yu ■ ■ ■ , F,),
l'-l

the equations holding for any Xi, • • • , xp+2 and for the y corresponding to

Xi, • • • , xp+i. We think of the Z as obtained from xp+2 and the y.

By §2, we can assign arbitrary values to Xi and the y and then determine

a set x2, • • • , xp+i. We let yP = 0 and keep the other y arbitrary. Then Yp

becomes zero and every other F< becomes Y', the e. s. f. (§1) of degree ♦ of

yi, ■ ■ • , yP-i- By §1, the corresponding values Z' of the Z are the symmetric

functions of yi,     ■ ■ , yP-i, xp+2. The equations (11) become

(12) ai(xi, Z') = £ ßiAY'i, ■■- , Yp-i, 0, z[)aÂxi, Y'i, ■ ■ ■ , Fp_x, 0).

We study (12), regarding the basic variables as Xi, yi, • • • , yP-i, xp+2; the

Z' and Y' have definite meanings as symmetric functions of subsets of these

variables. The variables x2, • • • , xP+i are suppressed in the present discus-

sion.

First we replace the letter xp+2 in (12) by the letter yP. Then we may

write Yi for Z[, thinking of the Y as symmetric functions of yi, • • • , yP and

as unrelated to earlier parts of our discussion. We may write (12)
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(13) a<(*i, Fi, • • • , Yp) = X *«(yii • • • . yi>)ai(*i. FÍ, • • • , Fp_i, 0)

where the ô are analytic for small | y | and are not necessarily symmetric.

In (13) we let yp_i = 0 and then replace yv by y^-i. Then Yp becomes zero

and every other F¿ becomes F,'. Also YP_1 becomes zero and Y[ with i<p — i

becomes Y", the e. s. f. of degree i of yi, • • •., yP-i- We have thus, letting

My = a,(xi, Fi , • • ■ , Fjj-2, 0, 0),

(14) a,(xi, FÍ, • • • , Fp_i, 0) = X) i<j(yii • ' • - y*-3> 0. Jp-Omí-

We put yp_2 = 0 and replace yj,_i by yP-2. Then

(15) m¿ = X) 8«(?ii - - • . ^P-a, 0- 0, yí,_2)ay(xi, FÍ", • • • , FP'_'3, 0, 0, 0)

where the Y"' are combinations of yi, • • • , yP_3. We reach finally

(16) «,(*, yi, 0, • • • , 0) - ¿ 5¿í(0, • • • , 0, yi)ctj(xi, 0, • • • , 0).

The first members of (14) appear in the second members of (13). We re-

place the former in (13) by their expressions in (14). Continuing, we obtain

finally, putting ay(xi, 0, ■ • • , 0)=£y(xi), relations
a

V

(17) «¿(xi, Fi, • • • , Yp) = X) pa(yi, ' ' • i yP)£i(*i).
j=i

We permute the y in all possible ways in (17), add the resulting set of p\

equations, and divide by p\. Then

(18) at(xi, Yi, ■ • • ,YP) = ¿ <r,y(Fi, • • • , Yp)^(xi).
7=1

The a are analytic for small \Y\, the £ for small | xi|.

6. We shall effect transformations which will bring us to relations of type

(18) in which the expansion of £y about xi = 0 starts with a term ayx^-1 with

(1)9*0.

We use (5), the a being given by (18). Of course, the F are now the

second members of (1). As f\ contains Xi as a term, we see from (5) with

i=\ that not all £ vanish for xi = 0. Rearranging subscripts if necessary, we

assume that £i(0) is not zero. We now arrange so that £y(0)=0 for j>\. For

this we subtract a suitable multiple of £i from each £y with j > 1 and add to

each an a suitable linear combination(4) of the other <r,3.

Now, r being any positive integer with 1 ^r<p, let us suppose that

(a) each £y with j^r starts with <Xyx{_1 where ayp^O, and

(b) each £y with j>r contains no term of degree less than r. This situa-

(4) The same for all i.
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tion has been realized for r = 1. We shall arrange so that (a) and (b) hold with

r+l replacingr(6).

7. Let us examine any/,- in (1). It contains no terms of degree less than i.

If such a term existed it would be possible to replace some x by 0 and let the

term survive; this would contradict our stipulation of §1. For the same

reason, a power product of degree * in /,- must involve i distinct x. We see

now that the terms of degree i are an e. s. f. of xi, • • • , xp+i.

Thus the first member of (5) with i = r + l starts with terms which make up

7r of §2.

8. We now examine ar+i as given by (18). Let cy stand for ov+i.y. Let each

<Ty with j'^r be regarded as a power series in xi, • • • , xp+i. We shall show that

no such <jj contains terms of degree less than r—j+l.

Let this be false. Of all integers s^r such that some a¡ with j^s contains

terms of degree less than s—j+l, let t be the least. For j^t, <r, has no terms

of degree less than t—j; for j <t this follows from the minimal character of t

and for j = t it is trivial. Let Aj,j=l, ■ ■ ■ , t, be the sum of the terms of degree

t—j in a,. Some of the A may be zero but our assumption with regard to t

implies that not all are.

The terms of degree t — 1 in the second member of (5) amount to

É—1

(19) aiAi + a2XiA2 + • • ■ + atXi   At.

As t — Kr and as dFr+i/dxi starts with yr, (19) must be zero. The A are sym-

metric in Xi, • • • , xp+i. Hence if we replace Xi in (19) by any of x2, ■ ■ ■ , xp+i,

we get zero. Thus the equation

aiA i + a2A2w + ■ ■ • + atAtw'-1 = 0,

which is of degree at most t — l in w and which is not an identity, has at least

p+l distinct solutions for w. As t<p we have a contradiction which proves

the absence of terms of degree less than r—j+l from a¡, j—l, ■ • • , r.

9. We shall now prove that at least one (y with j>r starts with a term in

x\. Let this be false. Then, for j>r, £y has no terms of degree r or less.

Let Bj be the sum of the terms of degree r—j+l in o-j, j = l, ■ • • , r. By

§§7, 8,

r—1

(20) y, = aiBi + a2XiB2 + • ■ ■ + aTxx   Br.

Then yr can be obtained from aiBi by replacing xi by 0. Thus yT gives those

terms of aiBi which are free of Xi. As Bi is of degree r<p, each term of Bx

lacks some x. By the symmetry of Bi, the terms of ai-Bi which lack Xy with_/> 1

are obtained by replacing x¡ in yr by Xi. Thus aiBi is the e. s. f. of degree r of

Xi, • • • , Xp+i. This furnishes a contradiction when r = l, since the second

member of (20) is then merely aiBi.

(5) If r = p — l, (b) is suppressed when we consider r + l.
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Let r>í. We have then aiPi = 7r+xi7r_i and (20) becomes

r-2

— 7r_i = a2B2 + ■ • ■ + arxi   Br.

We see as above that a2B2= — 7r_i — Xi7r_2, which is contradictory if r = 2(s).

Continuing, we find a contradiction for every possible r.

10. Thus some £y with j>r starts with a term in x\. Let this be the case for

£r+i. By suitable subtractions and by an adjustment of the cr¿,r+i, we arrange

so that such £y with j>r + l as may exist contain no term of degree r. This

completes the induction commenced in §6.

We thus assume that, in (18), £y starts with ayx^-1 where ay^O.

Completion of proof

11. Let i>y(xi) be that integral of £y(xi) which vanishes for Xi = 0. Then i>y

starts with a term in x{. We consider the functions 4a of Xi, • • • , xP+i given by

p+i

(21) 4>i = Z **(*>). * = 1. • • • - P-
3=1

Because of the symmetry of the F, (5) holds if Xi is replaced by any of

x2, • • • , Xp+i. From elementary considerations of linear dependence, we see,

using (18), that the jacobian of any 4>i and the p functions Fy vanishes

identically in xi, • • ■ , xp+i.

Given any </>;, we shall show that it can be expressed as a function of the

F, analytic when the | F¡ are small. The F are expressed by (4) as functions

of xi and the y. As 4>i is symmetric in x2, • • ■ , xp+i, it is a function of xi and

the 7, analytic for small |xi| and [ -y |. We have

d(4>i, Yi, ■■■ ,YP) d(4>i, Fi, ■■■ ,YP)
(22) -= y->

d(xi, • • ■ , xp+i) d(xi, 7i, • • • , 7P)

where J is the jacobian of Xi and the y with respect to Xi, ■ • • , xp+i. As there

is no dependence among Xi and the y, J does not vanish identically. Hence the

multiplier of J in (22) vanishes. By §2, the jacobian of the F with respect to

the 7 is unity when Xi and the y are zero. The theory of functional de-

pendence tells us that 4>i is analytic in the F for small | Y\.

Í2. Replacing the F by their expressions symmetric in the y of §1, we

write </>i = fi(yi, • • • , yP) where the f are symmetric, and analytic for small

\y\-
We consider (21). When xp+i = 0, we may suppose that yy = xy, j= 1, • • • ,

p. It follows that

f.- = Ê **(yùj=i
(°) If r = 2, we understand here that 7o = l.
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and the relations (21) become (3).

13. Let there be given p relations (3), $i(z) starting with a term in z\

For any iSp, Z,y) can be expressed in terms of the F(7). It equals -íT¡ plus

terms in the Fy with j <i. The latter terms have degrees exceeding unity.

Hence the first members of (3), which are functions of the F, have a jacobian

with respect to the F which does not vanish when the F do. We can thus solve

(3) for the Fand obtain (1) with/which are analytic for small | x|. By (3), the

system (1) obtained is associative.

An extension

14. Suppose that, in (1), we use any number q>p of variables x. We

assume that, when any q—p of the x are zero,/,- reduces to P< of the remain-

ing x. The associativity relation asserts that, given any 2q — p quantities x,

we can bracket the first q or the last q. We shall derive relations (3) with q

replacing p + i as the upper limit of the second sum.

The case of q = p + i has been treated. We perform an induction from q = r,

where r>p, to g = r + l. Using/with r+1 variables x, let

gi(Xl,   •   ■   ■   ,   XT)   = /,(Xl,   •   •  •   ,   XT,  0).

Let us see that the system Yi — gi, which comes under the case of q = r, is

associative. We compare the results of bracketing the first r, and then the

last r, of xi, • ■ • , x2r_p. The first of these results would be obtained, using the

/ system, by taking the product of Xi, ■ • • , xr, 0 and combining it with

xr+i, • • • , x2r_p, 0. The associativity and symmetry of the / permits us to

combine 0, Xi, • • • , xr_p and the product of xr_p+i, • • • , x2r-P, 0. This gives

the result of the second bracketing for the g.

Thus the g system is equivalent to a system (3) with r replacing p-\-\ in the

second sum.

Suppose that, for the g system, yi, • • • , yp is the product of Xi, • • • , xr;

also that Zi, • • • , zp is the product of the y, xr+i and r — p — 1 zeros. Then

V r+1

(23) Z *,-(*,■)   =  £  *<(*,).
3-1 3=1

For the/system, the above y are the product of Xi, • • • , xr, 0, the z are the

product of the y, xr+i, and r — p zeros. By the associativity and symmetry of

the /, we get the same z if we take the product W\, • ■ ■ , wp of Xi, • • • , xr+i

and then combine the w with r+1 — p zeros. The latter combination produces

the w again. Thus the w are the z, (23) describes the /, and the induction is

accomplished.
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