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1. In an earlier paper by two of the authors (*) relations were obtained

between Dv{w) on the one hand and expressions of the form (1 — | z\ 2)p\f(-p)(z) \

on the other, where w=f{z) is a more or less arbitrary function analytic in

| z| < 1 and Dp(w) is the radius of £-valence defined below in §2. In particular,

results were obtained for functions /(z) omitting two values. The most im-

portant of these results were the following two:

First, if /(z) is analytic in the unit circle \ z\ <1 and omits two finite values

there, and if {zn\ (\zn\ <1) is a sequence of points such that wn=f(zn) is

bounded, then

lim Dp(wn) = 0
n—km

is necessary and sufficient for

lim (1 - | zn |2)4 | /<*>(*,) |=0, k = l,2,---,p.
n—*»

It can be shown by examples(2) that if the boundedness of w„ is not as-

sumed, the theorem ceases to be true. To treat this case it was shown that:

Second, iff(z) is analytic in the unit circle | z| < 1 and omits two finite values

there, if {zn\ (\z„\ <1) is a sequence of points such that w„=f(z„) becomes

infinite with n, and if there exists a number e>0 such that

(1) lim  | wn | o+')(*,-»fl,(w,) = 0,
n—>w

then

lim(l-|S„|2)fc|/("(2n)| =0, k= 1, 2, ••• ,p.
n—*°o

It is the object of the present paper to furnish an extension of the second

of these results. With the aid of a result of L. H. Loomis(3) in the case p> 1
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(') W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and

their radii of univalence and p-valence, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 128-216; in

particular Chap. IV. This paper will be referred to as SW.

(2) SW, Chap. IV, §23.

(3) L. H. Loomis, On an inequality of Seidel and Walsh, Bull. Amer. Math. Soc. vol. 48

(1942) pp. 908-911.
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we are able to replace condition (1) by the lighter condition(4) (p>0)

lim  | wn\p(log \ wn\ )pDp(wn) = 0.
n—*»

In a recent paper(5) Rogosinski has studied sufficient conditions for the

approach to zero of expressions similar to (1 — | z„| 2)p|/(p)(z„) |. His condi-

tions, while leading to simpler proofs, do not cover all the cases considered

here and in SW.

2. We turn now to the definition of the radius of /»-valence Dp(w). Let Cv

be a simply-connected Riemann configuration containing the point w0, lying

over the circle \w — w0\ <p and covering it precisely p times. Then Cv is

called a p-sheeted circle with center w0 and radius p. Now let w =/(z), regular in

the unit circle \z\ <1, map the unit circle on a Riemann configuration R. Let

Wo be an arbitrary point belonging to R. A non-negative number Dp(wo),

called the radius of p-valence of R at the point w0, shall be associated with the

point w0 in the following manner:

(a) For p = i, we define Dp(w0) =D1(w0) as the radius of univalence of R

at the point w0, which is zero if Wo is a branch point of R and otherwise is

equal to the radius of the largest smooth circle with center at w0 and lying in

R;

(b) If there exists a /"-sheeted circle with center w0 contained in R, there

exists a largest such circle, and the radius of this largest circle is defined as

DP(w0) ;

(c) If p is greater than 1, and if w0 is a branch point of order greater than

p — l, then Dp(wq) =0;

(d) If there exists no ^-sheeted circle (p>l) with center w0 contained in

R, and if w0 is not a branch point of order greater than p — l, then we define(6)

Dp(w0) as Dp-i(w0).

3. Lemma 1. Letf(z) be regular in \z\ <1 and let |/(z)| be not greater than

M in \z\ <ß (<1). Then setting w0=f(0), we have

|/'(0)| ^ (8MD1(w0)/ß2y\

This lemma is an immediate consequence of Theorem 3, Chapter II, of

SW, if /(z) is replaced by f(ßz) there. Here Di(w0) may refer to the image of

|z| <1 under either of the transformations w=f(z) and w=f(ßz).

Theorem 1. Let f(z) be regular in \z\ <1 and omit two finite values there.

Let \zn\ be an infinite sequence of points interior to \z\ <1 such that, setting

(4) The authors are indebted to the referee for improving Theorem 1 below and for ma-

terially simplifying the proofs of both Theorems 1 and 2.

(s) W. W. Rogosinski, On the order of the derivatives of a function analytic in an angle, J.

London Math. Soc. vol. 20 (1945) pp. 100-109.
(6) For a detailed discussion of the properties of Dp(w) see SW, Chap. II.
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wn =/(Zn), we have

(2)

and

(3) lim | w„
n—>»

Then

(4) lim (1
n—>«

It entails no loss of generality to let the omitted values be 0 and e, since

a linear transformation will carry any two finite omitted values a and b into

0 and e, and (3) persists. Let

(5) </>„(f) = *<*»/((*■ + *„)/(! + z„r)), - » < «- ^ *,

where a„ is so chosen that $„(0) = | wn\. The functions/((f+z„)/(l+z„f)) in

| f | < 1 omit the values 0 and e for every n, and consequently form a normal

family(7). The functions <pj£) also form a normal family, for from the indices

of a given sequence a subsequence can be chosen such that the corresponding

an approach a limit; the corresponding /((r+z„)/(l+z„f)) will contain a

subsequence converging uniformly in any closed subregion of the unit circle.

Hence <¡>n(t)—»°° with n, uniformly in |f| ^1/2. Then we may assume n

so large that [0„(D | > 1 in | f | g 1/2. Now let

(6) *»<?)"log*.(f), | r| ^ 1/2,

choosing that branch of the logarithm which makes g«(0) =log | wn\ real and

positive. The real part of gn(0 is positive. Then by Carathéodory's inequal-

ity(8)

U»(r) I ̂  3g„(o), íHái/4.
Using this in Lemma 1, we have(9)

(7) |g»'(0)| ^C{gK(0)ZMgn(0))}»'*,

where C is a constant independent of n. Here -Di(gn(0)) refers to the Riemann

configuration which is the image of | f | <l/4.

By the mapping (6) the circle gn(0)+tDi(gn(0)), \t\ <1, in the Riemann

configuration into which the function gn(Ç) maps [ f| <l/2, is mapped into the

set

C) P. Montel, Leçons sur les familles normales de fonctions analytiques, Paris, 1927, p. 61.

(8) See, for example, C. Carathéodory, Conformai representation, Cambridge, 1932, p. 44,

inequality (74.3).

(9) We may assume that gn(0) is not a branch point, since gn (0) =0 implies f'(zn) =0.

lim Wn =  °°
n—*»

| (log | wn | )D1(wn) = 0.

-k|2)|/'(zn)| = 0.
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(8) exp {gn(0) + tD&M)} = *»(0) {1 + lDi(gn(0)) + ■■■ ]

in the Riemann configuration into which the function <£„(f) maps |f| <l/2.

Now, -Di(g»(0)) must approach zero as n becomes infinite, by (3) and the prop-

erties of the logarithmic map (6).

Since Di(gn(0))—>0, for sufficiently large n the set (8) contains the circle

about 0„(O) with radius 2~l<pn(Q)Di(gn(0)), so that

J3i(w») ^ 2-V>„(0)/J>1(gn(0)).

Hence, from (7),

| g»'(0)| ^C'igMDÁwJ/tniO)}1'*,

C a constant independent of n. If in this last formula we substitute g„(0)

= log | wn\, <pn{<d) = \wn\, gl (0) =cpú (O)/0„(O) -(1-| zn\ 2)/'(z„)/| wn\, we get

(1 - I Zn"|2) | /'(*.) | á C | wn | {log | w. | D1(wn)/ | wn | }w,

and a reference to hypothesis (3) establishes (4).

Theorem 1 can be generalized to derivatives of any order. In fact, we

prove the following theorem:

Theorem 2. Letf(z) be regular in \z\ < 1 and omit two finite values there. Let

\zn\   be an infinite sequence of points interior to   \z\ <1  such that, setting

Wn =/(zn) ,

(9) lim w„ = oo,
n—>«

and such that there is a positive integer p for which

(10) lim    |   Wn\P{\0g   |   Wn\)PDp{wn)   =   0.
n—»oo

Then

(11) limCl-lz,,!*)*!/'*^,,)! -0, ft- 1,2, ••-,*.

The theorem will be proved by induction. It is true for p — 1 by Theorem 1,

and we shall assume that it holds for p — \.

As in Theorem 1 the functions <A„(D and gn(D are defined by (5) and (6),

respectively, and the proof proceeds as before until we reach inequality (7),

which is replaced by(l°)

, Un" (0)1 UnP)(0)l
(12)   I gl (0)1+    '\, '+   •   •   •  + ,      '   g Kp\Dp{gn(SS))YlW\gnifí)Y¡^\

2! pi

where Dp(gn(0)) is the radius of £-valence at gn(0) of the Riemann configura-

(10) Loomis, op. cit., inequality (2).
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tion i?Sn on which g„(f) maps the circle |f| ^1/4, and Kp is a constant in-

dependent of n.

We may assume that gn(0) is not a branch point of order greater than

p-i, since g„t)(0)=0 for 4-1, 2, ■ • • , p would imply that/<*> (z„) = 0 for

k = l, 2, • • • , p. Hence, Dp(gn(0)) may be taken positive. There exists then,

for some integer k, l^k^p, a ¿-sheeted circle C*(g„(0)) about g„(0) with radius

Dp(gn(0)). The points of each sheet of C*(g„(0)) will lie over the circle repre-

sented by the expression gn(.0)+tDp(gn(0)), \t\ <1. The transformation (6)

carries Gt(g„(0)) into a ¿-sheeted, simply connected subregion Sk(<t>n(0)) of

the Riemann configuration R4,n on which 0n(f) maps the circle |f| ^1/4.

Each sheet of S¿(</>n(0)) will lie over the region defined by the expression

exp {gn(0) + tDp(gn(0))} = 0„(O) {1 + tDp(gn(0)) +•••}, | t\ < 1.

As in the proof of Theorem 1, it is readily seen that lim„^M Dp(gn(0)) =0.

Consequently, for sufficiently large n the region Sk(4>n(0)) will contain, for

some integer k'Sk, a ¿'-sheeted circle IY(<£„(0)) about <£„(0) with radius

2-10n(O)DJ,(gri(O)),sothat

2-^n(0)Dp(gn(0))   ^  DAWn)

Ú  Dp(wn)

since Dp{wn) is monotonically nondecreasing with p. This, with inequality

(12), yields the inequality

V(0)| UnP>(0)|
gi (0) I +      ,,      + • • • +

(13) ' 2! pi

áC{2?F(«í.)/*»(Q)}»/^»(log^(0))»"(?+«,

for a suitable constant C, independent of n.

Differentiation of the function gn(f) given in (6) shows that for each

kúp, gn5(0) consists of 4>n*\0)/(f)n(0) plus a finite sum of fractions which, aside

from constant factors, contain in the numerators only products of <An'(0),

0n (0)> ' " ' > 0n*-1)(O)i ar>d in the denominators only positive powers of <j>n(0)

not greater than the ¿th. Now(n)

(14) - =  2^(-l)    Ck-i,k-jZn
kl £! ' j!

But because Dk-i(w) ^Dk(w), hypothesis (10) of Theorem 2 and the induc-

tive hypothesis imply that

(15) lim (1 - | zn h'/«>Gfc) = 0, j = 1, 2, • • ■ , p - 1.

(u) SW, Chap. I, §2, Lemma 2.
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Hence, by (14),
(k)

(16) lim <j>n   (0) = 0, k = 1, 2, • • • , p - 1.
ft—»CO

If we now multiply inequality (13) by 0„(O) = | wn\, it will follow from (14),

(15), and (16) that all the terms in the left member of the inequality so

obtained will approach zero as n tends to infinity, except perhaps the term

(1 — | z„| 2)p|/tp,(zn) | lp\- But as n becomes infinite, the right member of this

inequality will approach

C-  lim  { | wn\p{\og   | wH\ )PDp(Wn)}U(P+1).
n—>«>

Therefore, by (10)

lim(l   -\zn\2)P\fM(Zn)\   =   0,
n—>°°

which proves Theorem 2.

4. The theorems of Rogosinski, in the paper referred to earlier, have

simpler proofs than the similar theorems given here and in SW, but the

conditions imposed upon the functions are unnecessarily restrictive. On the

other hand, the condition that the function omit two values, made in our

paper as well as in SW and in the paper by Rogosinski, is actually essential

to the conclusion, as the following example, which is similar to one given in

SW, Chap. IV, §23, Remark 2, shows.

Let

/(a)-exp{*/(l-*)j -i/(l-z),

so that

/'(*)= [eXp{i/(l-s)} -l]-i/(l-z)\

We have/'(z)=0 when z = ß„ = \ — \/2mr, so that the branch points of the

Riemann configuration are

Bn = Kßn) = 1 - 2mri.

Let

zn = 1 — l/(2wir + an),

where \an\ is a sequence of positive numbers to be specified later, with

lim„^M an = 0. Then

wn = f(zn) = e'"n — 2mri — ia„.

To compute Di(wn) it is not sufficient to compute | wn — Bn\, because wn and

B„ may conceivably be on different sheets of the Riemann configuration.
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However, the segment of the real axis joining z„ and ßn is mapped by w=f(z)

on an analytic arc, of length L, say, joining wn and Bn, and Di(wn) Í¡L. But

L =   f     | /'(x) | dx.

Now |/'(x)| is easily computed to be +sin (1/2(1 —x)) -2/(1 —x)2, so that,

for n sufficiently large,

L = + 8 sin (nir + an/4) sin (an/4),

and

£>i(0 â 2-1«'.

Since an approaches zero, | wn\ (log | w„\ ) is 0(w log w) for large n. On the

other hand

(1 - | Zn |2) | /'(z„) | = | ««"• - 11 (1 + | s.| )(2»* + a,),

which is, except for a factor bounded away from zero, nan. Thus if, for

example, an = re~3/4, hypothesis (3) of Theorem 1 is satisfied, but the conclusion

of the theorem is false.

This example shows that one of the two important hypotheses of our

theorems cannot be dropped, and also shows that if the function/(z) does not

omit two values, (3) cannot be replaced by the stronger condition

lim  | wn ¡i+'D^Wn) = 0, 0 < e < 1/2.
rt-+0O

Whether the other hypothesis, on the rate at which DP(wn) approaches zero,

is required the authors do not know. The example of Seidel and Walsh re-

ferred to above shows that (3) cannot be replaced by

lim | wn\ 7Di(Wn) = 0, 0 < y < 1,
n—»«

but the necessity of the factor log |w„| is an open question.

Aberdeen Proving Ground,

Aberdeen, Md.

University of Rochester,

Rochester, N. Y.

Institute for Numerical Analysis,

Los Angeles, Calif.

Harvard University,

Cambridge, Mass.


