
CONFORMAI, MAPPING OF OPEN RIEMANN SURFACES^)

BY

ZEEV NEHARI

1. Introduction. It was recently shown by Ahlfors [l](2) that the well

known canonical conformai mapping of a schlicht domain of connectivity n

onto an «-times covered circle [5,7] can be generalized, in the case of an open

Riemann surface, in the following manner: An open Riemann surface of genus

g which is bounded by n closed curves can be mapped conformally onto a

multiply-covered circle, the number of coverings not exceeding n + 2g.

This result suggests to look for other types of canonical mappings of open

Riemann surfaces which are analogous to the corresponding classical canon-

ical mappings used in the case of multiply-connected schlicht domains. It

will be shown in this paper that these mappings exist and that, moreover,

many of the relations between various canonical mapping functions and

domain functions known in the schlicht case have their counterpart in the

theory of open Riemann surfaces.

In the following, R will denote an open Riemann surface of genus g which

is bounded by n closed curves. R will be assumed to possess a finite

Dirichlet integral, so that the existence of the fundamental harmonic domain

functions of 7? is assured. A system of g pairs of canonical cuts (a*, ßk),

k — l, 2, • ■ -, g, will transform 7? into a domain of connectivity ra+L

provided the cm,, ßk have no points in common with the boundary curves

b„ v = l,   ■ • ■ , n, oí R.

Pursuing the analogy of Riemann's theory of the Abelian integrals, we

shall not start by considering single-valued functions on R, but we shall

instead define certain standardized types of multiple-valued domain functions

out of which the single-valued functions we are interested in will later on be

built. While it is clear that these domain functions will have to show a gen-

eral resemblance to the Abelian integrals of the first, second, and third kind

on a closed Riemann surface, there are many different possibilities of defining

them. For the purposes of conformai mapping of R onto standard domains,

it seems that the most convenient method is to define these functions in such

a way that if R is mapped, in the Schottky sense [ll], onto "half" a closed

Riemann surface S of genus n-\-2g — l, these functions are transformed into

the normal Abelian integrals on S. They will therefore be termed functions

of the first, second, and third kind.

2. Functions of the first kind. The functions wk(z), k = l, • ■ • , g, of the first
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kind are defined as follows: w*(z) is free of singularities in R and has no

periods about the cuts a¡, ¡9*k. About ak, wkiz) has the period 1 and on the

boundary V of R, Wkiz) is pure imaginary.

In order to prove the existence of the functions Wkiz), we proceed as fol-

lows. We write w*(z) = 0^(2)-fía* (z) and have thus to find a harmonic func-

tion Wk which vanishes on T, has no periods about the «¡, ly*k, and has the

period 1 about a*; moreover, its harmonic conjugate w*(z) is to be free of

periods about the a¡, l— 1, • • • , g.

If g(z, f) is the Green's function of R with respect to the point, we con-

sider the harmonic function

i(z; ak) =   I
J a

àgjz, f)

dnr
ds¡,

where the integration is performed along ak. The function w(z; ak) vanishes

for zET, since g(z; f) =0 for z£T. Since w(z; ak) does not vanish identically,

it cannot be single-valued in 7?. It will, however, only have a period about the

cut ak and no periods about the other cuts. This follows from the observation

that the period of the conjugate of the Green's function about ak is not

affected by the singularity of the Green's function completing a circuit along

one of the other cuts. In the case of a circuit about ak, however, this argument

is not valid any more, since the order of the integration along ak and of the

singularity performing a circuit about ak cannot be interchanged. We now

form the function

9

(1) viz) = m(z; ak) + X3 X¡«(z; ßi),

where the X; are real constants, viz) clearly vanishes on T, has no periods about

a¡, l9*k, and has a nonvanishing period about a*. We now determine the

constants Xj in such a way as to make the periods of the harmonic conjugate

of viz) about ai, 1=1, ■ ■ ■ , g, vanish. This will be possible if the determinant

of the periods of the harmonic conjugates m(z; ßi) of m(z; ßi) about the a¡

does not vanish. This is indeed the case. For suppose it does vanish. Then

there would exist a linear combination

a

(2) viz) = E/*!«(*; 00
¡=i

whose harmonic conjugate rjiz) is free of periods about the a¡. By Green's

formula, we have

I   I   ÍVx + Vv)dxdy =   I   ̂ ¿t? + E  I    ydij + X)  I    ydrj,
JJr Jr 1=1 J a, i-l J B,

where the integrals over a¡ and ßi are to be taken, in different directions,
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along both edges of these cuts. The integral over T vanishes, since r¡=0 on V.

The pairs of integrals over the ßi cancel each other, since r¡ has no periods

about ai and has therefore the same value on both edges of ßi. Finally, the

integrals over a¡ vanish, since we may write

/ydrj = qi I    dij,

where g¡ is the period of 77 about ßi and the integration is to be extended

over one edge of a¡ only. Since rj has no periods about «¡, the last integral

vanishes. Hence

I   I   iVx + Vv)dxdy = 0,

whence r¡ = 0, since 77 = 0 on V. But this is possible only if all the pi in (2) are

zero, since otherwise rj would have nonvanishing periods about some of the /3¡.

We have thus proved that the constants Xj in (1) can be so chosen as to

make the periods of the conjugate of viz) about the ai vanish. The particular

function for which this is the case, and which has been multiplied by a suit-

able factor so as to make its period about ak equal to 1, will be denoted by Uk (z).

It is immediately confirmed that the analytic function

Wkiz) = Wkiz) + iwkiz),

whose real part is «*(z), is the function of the first kind defined at the begin-

ning of this section.

It is convenient to introduce yet another type of functions of the first

kind, w*(z), which will be defined as follows: w*(z) is free of singularities in

R and has no periods about the cuts «j, l9*k. About a*, wk*iz) has the period 1

and on the boundary V of 2?, w**(z) is real. The existence of the functions

w*(z) is shown by a slight modification of the preceding argument.

There is yet a third type of functions which may also, with some justifica-

tion, be called functions of the first kind. These functions, which we shall

denote by W,iz), v = l, ■ ■ ■ , n, are defined as follows. If Í2„(z) denotes the

real part of W,iz), then ßF(z) is harmonic in 2?, vanishes on r„, p?*v, and takes

the value 1 onT,; moreover, lF„(z) has no periods about the ak, k = 1, • • • , g.

The function Í2„(z), which is an immediate generalization of the usual har-

monic measure, is easily constructed by completing the function

1 r dgiz, r)
— I    -ds[
2wJr,     d»r

to an analytic function and adding a suitable linear combination of functions

Wk*iz) with imaginary coefficients so as to make its periods about the ak,

k = l, • • ■ , g, vanish.
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Only n — 1 of the functions il,(z) are linearly independent. Indeed, the

function E"-i ^»—1 vanishes on V and both this function and its conjugate

have no periods about the a*. As shown above, such a function vanishes

identically.

3. Functions of the second kind. We introduce two types of functions of

the second kind, t(z, f) and t*(z, f), by the following definitions: t(z, f) and

t*(z, X) are free of singularities in R, except for a simple pole with residue 1

at z = X (XER). Both ¿(z, f) and t*(z,Q have no periods about the ahl = l, • • -,

g, and the boundary components Tu ■ • • , Tn. Re {t*(z, f)} and Im {t(z, f)}

are constant on each T,,v = l, • • • , n.

The existence of these functions is not difficult to show. We first find, by

solving a Dirichlet problem, the harmonic functions

h(z) = Re {^4 + hiiz), k(z) = Im \—^-\ + *iOO.

with hiiz) and kiiz) harmonic in R, which vanish on T. If cr,(z), v = 1, • ■ • , n,

denote the harmonic measures

M        1   Ç    dgjz, f)

of the boundary components T„ we construct linear combinations

n—1 n—1

Ä2(z)   =   Ä(z)  +  Et^»(2). *ï(z)   =   *(z)  +   ETv'o-„(z),
c=l v=l

whose harmonic conjugates are free of periods about the T„ v = l, ■ ■ • , n.

This is possible for the same reasons as in the schlicht case.

If h2(z) and k2(z) denote the harmonic conjugates of h2(z) and k2(z), re-

spectively, the functions

H2(z) = h2(z) + ik2(z),        K2(z) = k2(z) — ik2(z)

will have constant real or imaginary parts, respectively, on T„ v = l, • • ■ , n,

and will be free of periods about the T,. The "interior" periods of H2(z) are

imaginary and those of 7i2(z) are real. By adding a suitable linear combina-

tion with real coefficients of functions iw*(z) to H2(z) and of functions w*(z)

to K2(z), the g periods of these functions about the a¡, 1 = 1, • ■ ■ , g, can be

made to vanish. The possibility of finding these linear combinations is shown

in exactly the same way as in a similar case in the previous section. It is then

easily confirmed that the functions obtained by this process are indeed the

functions of the second kind, t*(z, f) and t(z, f), defined above.

4. Periods of the functions of the second kind. The periods of the func-

tions of the second kind about the ßk are expressible in terms of the functions

of the first kind. We have



262 ZEEV NEHARI [March

(3)
2iri

(4)

— f t*'iz, f)& = Re {w¿(t)} + i Im {Wtf)},
TTl J Bk

-: f t*\z, t)dz = Re {wk*'in} + i Im {w£(Ç)}.
2xî «/^

These relations are analogous to those holding on a closed Riemann surface

and, like those, are most easily proved by Riemann's method of contour

integration. Let R* denote the domain of connectivity w+1 into which 7? is

transformed by a system of canonical cuts iak, ßk), k = l, • • ■ , g, and T* its

boundary. We then have, by the residue theorem,

-;   f    t*iz, i-)w'iz)dz =  wiiX).
2iri J r*

The integration path V* is composed of the boundary components V„

v = l, ■ • ■ , n, and the closed curves a¡, ßi, 1 = 1, • • • , g, the latter taken

twice, in different directions. Along ßi, we have, since t*{z, f) is free of periods

about a¡ and ¿*(z, f) has therefore the same values on both edges of ßi,

f      t*iz, t)w¿ iz)dz + f      t*iz, t)w¿ iz)dz = 0.

Along a¡ we have

f      t*izA)w¿iz)dz+ f      t*iz, t)w¿ iz)dz

= piit) j        w¿iz)dz = piit) j    dwkiz),
J a;(-) ^ "l

where piit) is the period of 2*(z, f) about ßi. For l9*k, the last integral vanishes

and for l = k it has the value 1. Thus,

w*'(f) = — f   t*'iz, t)dz + ¿ — f   t*iz, Ç)wk'iz)dz.
2wi J ßk ,=i  2iri J r,

The values of the integrals over T, are real. Indeed,

f   t*iz, Ç)wk'iz)dz = -   f   Wkiz)t*'iz, fldz,
J T, J T,

since both ¿*(z, f) and w*(z) have no periods about T,.wkiz) is pure imaginary

on T and the same is true of ¿*'(z, f) dz = dt*iz, f). As a result, the integrals

are real, and we have

(5) Re /—: f ¿*'(z, f)ázl = Re {w£(z)}.
\2TviJßk )
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By the same procedure, we also obtain

(6) Im {- f  t*'iz, S)dz\ = Im {*>**'(*)}.
\2tIJ Bk )

Combining (5) and (6), we arrive at (3). (4) follows by the same argument,

applied to /(z, f).
Before we pass to the functions of the third kind on 7?, we shall discuss

two domain functions closely allied to ¿(z, f) and /*(z, f).

5. The Bergman kernel function. On T, dt*iz, f) is pure imaginary and

dtiz, f) is real. For the same reasons as in the case of schlicht domains [6, 8],

it will therefore be useful to introduce the functions

(7) Miz) = Miz, r) = 2-1 [¿(z, f) - t*iz, D]

and

(8) Niz) = Niz, r) = 2~*[t(z, f) + t*iz, f)J,

which, on r, are connected by the relation

(9) N'dz = M'dz.

N clearly has a simple pole with the residue 1 at z = f and M has no singu-

larities in 7?, and both M and TV have the same periodic behaviour in 7? as t

and t*.

In the schlicht case, irM'iz, f) is identical with the Bergman kernel func-

tion K~iz, f) [2, 3, 4] of the class of regular square-integrable functions with

a single-valued integral. We shall now show that a similar result holds in the

case of the open Riemann surface 7?.

Let /(z) be a function which has no singularities in 7?, is continuous in

7?+r, and has no periods about the T, and ak, and consider the integral

=—r mn'íz, s)dz,
2-kiJv

taken over the boundary V* of the domain 7?* into which 7? is transformed

by a system of canonical cuts. The integral exists, since the differential N'dz

is regular on T and the ak, ßk can be chosen to be analytic curves. Since the

integrand is single-valued in 7?*, we have, by the residue theorem,

I = - fit).

The integrals over the ak, ßk are to be taken over both edges of each cut, in

different directions. Since both /(z) and 7V'(z, f) have no periods about at,

they have the same values on both edges of ßk- As a result, the integrals over

ßk cancel out. On both edges of ak, the values of /(z) differ by the period of

f'z) over ßk, say <7> Hence,
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f       fN'dz + f       fN'dz = qk f   N'dz,

and this again vanishes, since TV has no periods about ak. We thus obtain

i=- fin=t1- r mN'iz, i)dz.
¿■Ki J r

or, in view of (9),

(10) - 7 = ftf) = — f W)M'iz, t)dz.
LiciJ r

By employing  the  same  procedure as   before   to the integrals ifak(-)

+fat(+))fM'dz and (/&(+) +fßk(-))fM'dz, we see that these integrals also vanish.

(10) may therefore be replaced by

(11) 7ïï)=—f W)M'iz,t)dz,
¿iriJ r*

where the integration is now extended, in the positive sense, along the whole

boundary of 7?*. Since both / and M are single-valued and regular in 7?*, we

may use Green's formula in order to transform the line integral on the right-

hand side of (11) into an area integral. We obtain

fit) = — ff   f'iz)M'iz, t)dxdy
IT   J   J R*

or

(12) /'(f) =- f (   M'iz, f)f'(z)dxdy,
T   J   J B

where 7?* has been replaced by R, as this makes no difference in the area

integration. Although (12) has so far only been proved for functions/(z) which

are continuous in 2?+r, this relation will, by a standard argument, also hold

for functions which are not continuous on V.

(12) shows that the function

(13) Kiz, f)-M'iz, f)
7T

has the characteristic reproducing property of the Bergman kernel function

with regard to the class ^2(7?) of all regular and single-valued functions/'(z)

in 7? which are square-integrable over 7? and whose integrals are free of

periods about the T, and ak. Since 7T(z, f) is also in J^2iR), it is therefore

identical with the kernel function. By the well known formalism of the kernel
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function [2, 3, 4], 7£(z, f) may be computed—if the area of 7? is finite—in

terms of a complete system {<p?iz)} of functions in J^2iR) which are ortho-

normalized by the conditions

I   I   4>f,iz)<i)Tiz)dxdy = 8ßT.

We have

(14) K(z, f) = E <t>A*)Mf),
ß=i

where the series on the right-hand side converges absolutely and uniformly

in every closed subdomain of 7?. We omit the proof of the expansion (14) and

its convergence, since it is word for word the same as in the case of a schlicht

domain. If the area of 7? is infinite, we shall obtain the kernel function by the

formula (14), if we restrict the class J/JiB) to contain only such functions

which have a double zero at those points of R which lie above z= <*>.

Since the kernel function algorithm (14) seems to be the only computa-

tional approach to the domain functions on R which has any degree of prac-

tical feasibility, it is of interest to express both ¿(z, f) and £*(z, f)—and not

only their difference—in terms of the kernel function. Generalizing the pro-

cedure leading to a similar formula in the schlicht case [9], this can be done

as follows. Let viz, 77) be any function which has no singularities in 2?+r

except a simple pole with residue 1 at z = r\, and which has no periods about

the r„ and the ak ; we may, for instance, take viz, 77) to be the normal Abelian

integral of the second kind on the smallest closed Riemann surface of genus

g into which R can be embedded. Consider the integral

1 = —7 f 2-1 [t'(r,, r) + t*'iv, r)]0(„, z)dv,
2ti J r*

where T* again denotes the boundary of R*. By the residue theorem, we have

(15) 7 = 2-i[/'(z,f)-M*'(z, f)]-ü'(r,z).

As before, it is easily seen that the integrals over T* —T cancel out, and we

may therefore also write

7 = —- f 2-1 [/'(„, f) + /*'(„, t)]v(V, z)dv
2ti J r

or, by (8), (9), and (13),

I = — I   Kirt, f)»(t;, z)drj.
2iJt
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Since, by (14),

7C(t7, f) = Kit, ¡j),

this may also be written

I = —{ Kit, rj)viv, z)dv~.

Combining this with (7), (13), and (15), we finally obtain

t'iz, t) = v'it, z) + K(z, f) + —( viv, *)K(t, v)d*~,

(16) 1

t*'iz, t) = v'it, z) - Kiz, f) + — f viv, z)Kit, ñ)dj.
2iJt

These are the desired formulas for t'iz, t) and /*'(z, t) in terms of the kernel

function.

We add here a formula showing the relations between the kernel function

and the functions of the first kind. Combining (3), (4), (7), and (13), and re-

membering that Kiz, f) =Kit,z), we obtain

(17) — f Kit, zjdl = w£iz) - Wk*'iz).
i J ßk

The analogous formula for the function 7V(z, Ç) is

(18) — f N{z, t)dz = w£iz) + wk*'iz).
TlJßt

6. Parallel slit mappings. We shall now prove the following theorem:

Theorem. Given an open Riemann surface R of genus g, and g-\-l points

fo, Tii " • ' > fo on F, there are two possibilities:

(a) Either R can be mapped conformally by a function w = F(s) onto a

ië +1) -times covered plane with slits parallel to the real axis such that Fitk) = °°,

k = 0, 1, ■ • ■ , g, and the residue of Fiz) at z = to is 1, or

(b) it is possible to map R conformally onto a less than ig+l)-times covered

plane with slits parallel to the real axis, such that the poles of the mapping func-

tion coincide with g or less of the points Çk, k = l, ■ ■ ■ , g.

Proof. Consider the function

(19) Fiz) = t(z, to) + E Mz, tk) + ibkt*iz, tk)},
*=i

where ak, b¡0 are real constants. From the definitions of t and /* it is obvious

that Im {Fiz)} is constant on each T,. Fiz) will therefore yield the required
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parallel slit mapping, if it is possible to choose the constants a*, bk in such a

way as to make Fiz) single-valued on R. Since the only possible periods of

Fiz) are those about the ßk, the conditions to be imposed on the ak, bk will

read, in view of (3) and (4),

- Re {wk*'ito)} = E «¡ Re {wfiti)} ~ bt Im {wk*'iti)},

(20) 7
- Im {w£ ito)} = E «i Im {w£ iti)} + bt Re {w£ iti)},

i=i

k = 1, 2, • • • , g.

This is a system of 2g linear equations for the 2g unknowns ai, bi, 1=1, • • ■ , g.

If the determinant of this system does not vanish, it has a solution and we are

in the case (a) of the theorem. If the determinant vanishes, there exists at

least one nontrivial solution of the homogeneous system and it is easily seen

that the alternative (b) of the theorem is realized. This completes the proof of

the theorem.

There is yet another way of constructing parallel slit mappings. Instead

of giving the location of the poles and then determining the residues in such

a way that the periods vanish, we can give the residues and then try to

determine the location of the poles in accordance with this condition. The

problem to be solved may be stated as follows. Given g complex constants

yi, 1 = 1, • ■ • , g [yi = at+ibi in (20)], and a point to on 2?, to find g points

fi> • ■ • i ?» on 2? such that the equations

(21)

Re iwfito) + ¿7iW*'(fi)|  = 0,

Im íw£ito)   + E   7iw'(fi)|  = 0, k = 1,

are satisfied.

The question as to the solvability of the system (21) is a highly trans-

cendental problem allied to the well known Jacobi inversion problem [10, 12],

and we shall not pursue it here any further.

7. Representation of the Ahlfors mapping in terms of the kernel function.

We shall show in this section that the functions w = Giz) which map R onto the

(ra + 2g)-times covered unit circle can be expressed in terms of kernel func-

tions. We have

n+2g _

(22) G'iz) = w E àiKiz, Zi),
i=l

where z¿ are the zeros of Gi¿) and G'izi) =5i-1.

Let fiz) be a function which has no singularities on R and is free of
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periods about the ak, k = l, ■ ■ ■ , g, and the T„ i»"»l, • - • , «. We further

assume that/'(z) is continuous in 2?+r. Since/'(z) [G(z)]_1 is single-valued in

7?, we have, by the residue theorem,

1    r   fiz) -!+*«
(23) ■ 7 = -—\L±l dz = E Sif'izi).

2iriJv   G(z) ¿=i

Since, on V, \ Giz) | = 1, we may also write

/ = •— f f'(z)G(z)dz,

or, using Green's formula,

(24) 7 = — ff f(z)GT(z)dxdy.
T   J   J R

Clearly, we may now drop the condition that/'(z) is continuous on T. Com-

bining (24) with (23), we have thus the formula

1     C C _ n+2g

(25) - }'iz)G'iz)dxdy = £ 5¿/'(2i).
7T   J   J R j_l

On the other hand, if 77(z) denotes the function

n+2j;

Hiz) = t X SiK(z, Zi),
«-i

where 7C(z, z,) is the Bergman kernel function, we have, by (12),

\      pf _ n+2s

— f'iz)Hiz)dxdy =  E Sif'izi).
IT   J   J R i_l

Comparing this with (25), we obtain

(26) f f fiz) [G'iz) - Hiz)]dxdy = 0.

Since [G'iz) —Hiz)] satisfies all the conditions imposed on/'(z), we may set,

in (26),/'(z)=G'(z)-77(z). We thus obtain

//.
¡G'iz) - Hiz)\*dxdy = 0,

J   J R

whence

G'iz) = Hiz).

This proves the identity (22).

It is worthy of note that in reality we did not use the assumption that/(z)
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is free of periods about the ak and the V,. We therefore have the interesting

result that the formula (22) remains true if our particular kernel K(z, f) is

replaced by the kernel of the family of all single-valued square-integrable

functions on 7?, or the kernel of any subclass of this class whose integral has

an arbitrarily prescribed periodic behaviour on 7?.

8. Functions of the third kind. There are again two types of functions of

the third kind. The first of these, to be denoted by p(z, f), is an obvious

generalization of the functions of the second kind defined above. p(z, t) is

regular in 7?, except at the point z = t, where p(z, t)+iog (z —f) is regular;

the real part of piz, t) is constant on the boundary components V„ and

piz, t) has no periods about the at, k = l, ■ ■ • , g, and the T„ v = l, ■ ■ ■ , n.

piz, t) is easily constructed by first adding to the analytic function whose real

part is the Green's function of 7? a suitable linear combination, with imaginary

coefficients, of functions Wk*iz) which removes its periods about the ak, and

then adding another linear combination of functions W,iz), with real coeffi-

cients, which makes the periods about the T, vanish.

The second type of function of the third kind cannot be defined by merely

substituting constancy of the imaginary part on T, for constancy of the real

part in the above definition. In fact, it is easy to show that, even in the case

g = 0, such a function does not exist. This difficulty can, however, be circum-

vented, by introducing a function of three arguments, g(z; u, v), which

possesses the following properties. q = qiz; u, v) is regular in 7?, except at z = u

and z = v, where g+log (z — u) and q — log (z — v), respectively, are regular;

the imaginary part of q is constant on the boundary components V, and q

has no periods about the ak and the T,.

The construction of g(z; u, v) proceeds as follows. Let 7V(z, u) be the Neu-

mann's function of 7?, that is, the function which is harmonic and single-

valued in 7?, except at z = u, where 7V(z, w)+log \z — u\ is harmonic, and has,

on T, the constant normal derivative 2w/L, where L is the length of T. Vet

Ñiz, u) denote the harmonic conjugate of 7V(z, u), and consider the expression

P = Niz, u) + iÑiz, u) - Niz, v) - iNiz, v).

Since, for z£r,

dN dN 2w
dN =- ds =-ds = — ds,

ds dn L

we have

dP = d[Niz, u) - Niz, v)]

on T, that is, the imaginary part of P is constant on each T,. We now add to

P a linear combination, with imaginary coefficients, of functions Wkiz) which

cancels the periods of P about the ak, and filially add a linear combination,

with imaginary coefficients, of functions W,iz) which removes the periods
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about the V,. The function which we obtain in this way is easily identified

with the desired function of the third kind g(z; u, v).

In order to obtain complete symmetry in the definitions of the two types

of functions of the third kind, it is advisable to define also the first type of

these functions as a function of three arguments. We write

(27) piz; u, v) = piz, u) - piz, v).

9. Periods of the functions of the third kind. The periods of the functions

p and q about the ßk are computed in a similar fashion as those of the func-

tions of the second kind. When V* again denotes the boundary of the domain

7?* into which R is transformed by a system of canonical cuts, we have, by

the residue theorem,

-f *2iriJf
(Z, t)Wkiz)dz =  Wkit)-

As in §4, the integrals over the a¡ and ßi cancel out, with the exception of the

integrals over both edges of ßk which contribute a term il/2tri) fßkp'iz, t)dz.

We thus have

w*(f) mT-'f ^'(2' r)¿z + ¿ T^ f   ^2' VMz)dz.
2iriJßk ,r_i  2tiJt,

On the r„, p'iz, t)dz = dpiz, t) is pure imaginary, and so is wkiz). Taking real

parts, we therefore obtain

Re {wkit)} = Re {— f p'iz, t)dz\ .
\2inJßk )

Replacing w¡t(z) by w*(z), we obtain in a similar fashion

Im {wk*it)} = Im |—-; f p'iz, t)dz\ ,
\2iriJßk )

and finally,

(28) —: f p'iz, t)dz = Re {w*(f)} + i {Im wk*it)}.
2-Kl J ßk

For the function of three variables, piz; u, v), we have, by (27),

(29)    -: j   p'iz; u, v)dz = Re {wkiu) — wkiv)} + i Im {w*iu) — w*iv)},
2iri J ßk

and for g(z; u, v), we obtain, by the same procedure as before,

(30)    -; I   q'iz; u, v)dz = Re {wk*iu) — w*iv)} + i Im { wkiu) — wkiv)}.
2iri J a,.
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10. Circular and radial slit mappings. Having defined the functions of the

third kind on an open Riemann surface and having expressed their periods in

terms of functions of the first kind, we are now in a position to prove the

following mapping theorem.

Theorem. Every open Riemann surface R of genus g can be mapped con-

formally onto another open Riemann surface which has no more than g + 1

sheets and is bounded by slits along circular arcs centered at the origin; we can

moreover prescribe the location of one pole and one zero of the mapping function.

The same statement holds if the circular slits are replaced by rectilinear slits

pointing at the origin.

Proof. We shall confine ourselves to the case of the circular slit mapping.

The radial slit mapping is proved in a very similar manner, the only major

difference being that the function piz; u, v) we shall use in the following argu-

ment is to be replaced by g(z; u, v).

Suppose that z = uo is the given zero and z = Vo is the given pole of the

mapping function, and consider the function

9

(31) giz) = X) Piz; «m. *v).
p=0

where piz; u, v) is the function of the third kind introduced above and

Up, Vp, P = l, • • ■ » g, are points of 7?. By (29), giz) will have—up to the com-

mon factor 2iri—the period

(32) X* = Re < E Wkiu,/) - wkM > + i Im < X) w**(w,0 - wk*M >

about the path ßk, k = l, ■ • ■ , g. Apart from the \k, the only periods of giz)

are those caused by the logarithmic poles.

Denote by ak and bk the expressions

«/.-t = — Re {wkiuo) — Wkivo)},        bk = — Im {w*iu0) — w*iv0)},

and suppose that the points m„ and vß, p = l, ■ ■ • , g, can be chosen so that

the equations

(33)

Re < E i»kiuß) — WkM> = ak, k = I, • ■ ■ , g,

Im < E Wk*iu¿) — WkM> = bk

are satisfied. In view of (32), this entails the vanishing of the periods X* of

giz). The only periods such a function g(z) will have will therefore be the

periods  27tî about sufficiently small  paths surrounding the points w„, p
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= 0, 1, • • • , g, and, similarly, the periods — 2iri about the points vß. The

function/(z) =ceW will therefore be single-valued in 7? and have simple poles

at the points oM, p = 0, 1, • • ■ , g, and simple zeros at the points w„. The real

parts of the functions piz; u, v) are constant on the boundary components

r„ v=l, • ■ • , n. By (31), the same is true of giz). In view of ¿|/|/|/|

= d Re {g}, we have therefore

¿|/|=0,        z ET,, v = 1, • • • , n,

that is, the modulus oí fiz) is constant on each boundary component. Since the

function giz) has no periods about the V„ the variation of arg/(z) along each

r„ vanishes. Using the argument principle, it is therefore easily shown that

w=fi¿) maps 7? onto an open Riemann surface consisting of g+1 sheets, all

covering the full w-plane, whose boundaries are n circular slits centered at the

origin.

Our theorem will therefore be proved if we can show that, for arbitrarily

given ak, bk, it is always possible to find 2g points uß, vß, p = l, • • • , g, on R

so that the system of equations (33) is satisfied.

It is clearly sufficient to prove this possibility for any open Riemann

surface which is conformally equivalent to 7?. As such we shall choose the

surface A obtained from 7? by the Ahlfors mapping described in §1 and a

subsequent linear substitution transforming the interior of the unit circle into

the upper half-plane. This surface A consists of not more than n-\-2g sheets,

all covering the entire upper half-plane; all boundary components of A lie on

the real axis.

The mirror image of A with respect to the real axis will be denoted by A.

By connecting A with A along their corresponding boundary components

we obtain a closed Riemann surface, which we denote by B. By elementary

considerations, the genus of B is found to be p = 2g-\-n — 1.

The function of the first kind on the open surface A—which we again

denote by wkiz) and Wk*iz)—have particularly simple properties. Since

Wkiz) is pure imaginary on V and w*iz) is real there and, on the other hand,

r coincides with the real axis, both w^(z) and w*iz) can be analytically con-

tinued—by Schwarz' reflection principle—throughout the whole closed sur-

face B by means of the equations

(34) w(z) = — wiz),        w*iz) = w*iz).

In view of (34), the system Í33) may be replaced by

Re < E   Wi(0 + Wki%)> = ak, k = 1, • ■ • , g,

(35) U7 j
Im < XI Wk*iuß) + Wk*i%) > = bk.
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We now choose a system of p ip = 2g-\-n — l) pairs of canonical cuts a[ ',

ß1®, a = 1, • • ■ , p, on B. Obviously, g of the curves a[B>, say for a = 1, • • • , g,

may be taken to coincide with the curves a\, • • • , aa on A, and a further set

of g of the curves q¿b), say for cr = g+l, ■ ■ ■ ,2g, may be identified—apart

from their orientation—with the mirror images of the a*, k = l, • • ■ , g.

Since the remaining n — l pairs of periods drop out when 23 is separated

into A and A, we may identify the balance of n — 1 curves o£ ' with the n — l

closed curves obtained by describing n — 1 of the n boundary components

r, back and forth. We denote by F„(z), a=l, • • ■ , p, the normal Abelian

integrals of the first kind on B related to our particular choice of the ai '.

By its definition, the function F,(z) is free of singularities on B, has the

period 1 about a,, and has no periods about a[ , T9*ff.

Consider now the function

Vkiz), k = 1, • • ■ , g.

In view of the symmetry of B, this function will also be free of singularities

in B. It will clearly be free of periods about all the a£5) with the exception of

at+„, about which its period will be — 1 (since the orientation of the surface

has been changed by the reflection). Hence,

(36) Vkiz) = - Vg+kiz), k - 1, • • • , f.

Accordingly, the function Vkiz) + VB+kiz) will be pure imaginary if z is on

the real axis. Indeed,

Vkiz) + Vg+kiz) = Vkiz) -TM= Vkiz) -VM= i Im {F*(z)}       (z = z).

Since, moreover, this function has no periods about the T, and the a¡ (f,9*k),

and the period 1 about ak, it is identical with the function of the first kind

Wkiz) on A. Thus,

(37) Wkiz) = Vkiz) + Vg+kiz).

Similarly, we obtain from (36) the identity

(38) wk*iz) = Vkiz) - Vç+uiz).

With the help of these relations we shall now show that—apart from some

additional conditions which have to be dealt with separately—the solution

of the system (35) can be reduced to the classical Jacobi inversion problem

related to the closed Riemann surface B. In our case, the Jacobi problem

consists in finding a set of p points tr, r = 1, • ■ • , p, on B such that the equa-

tions

(39) E V.(zT) = y„ ft - 1, • • • ,p,
T=l
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are satisfied, where the yc are arbitrarily given complex numbers, not all zero.

It was shown by Riemann [lO] and Weierstrass [12] that the Jacobi problem

always has a solution and that the zr are analytic functions of the arguments

7i, • • • , 7p-
Adding and subtracting the rows of index k and k-j-g (A = l, • • • , g) in

(39), we see, in view of (37) and (38), that (39) can be replaced by

V

E V0kizT) = ak+ ia£, k = I, • ■ ■ , g,
r=l

(40) E ■*W = h' + ibk,
T-l

V

E V2g+,izT) = y2g+„ v = 1, •••,«- 1,
r=l

where ak-\-ia£, b£ -\-ibkiak, a£, bk, b£ real) has been written instead of

7/t+7i+* and yk—yg+k. In view of the solvability of the Jacobi problem, the

system (40) can therefore be solved for arbitrarily given values of the con-

stants on the right-hand side.

Taking the real part of the first equation (40) and the imaginary part of

the second one, we obtain

(41) Re < E Wkizr)> = ak,       Im < E i»k*izr)> = bk.

This system would be identical with the system (35) upon the solvability of

which the proof of our theorem devolves, if n — 1 of the points z were situated

on the real axis and, of the remaining 2g points, g points were in the upper

and g points in the lower half-plane. Indeed, Re {u>&(z)} =Im {wk*iz)} =0

for real z, and the g points zr in the lower half-plane can be identified with

the point vß in (35). Our task is therefore reduced to showing that by giving

suitable values to the—so far arbitrary—constants a£, b£, y2g+, in (40) we

can obtain a solution Zi, ■ ■ ■ , zp of this system of equations which has this

particular distribution.

The Jacobi problem (40) always has a solution and, as already mentioned,

the solving points z are analytic functions of the parameters on the right-

hand side. We now apply small variations ha£ , hb£ , ôs,, ht, iy2g+, = s,-\-it,) to

the arbitrary parameters on the right-hand side. This leads us to a solution

zT-\-ibzr of a slightly modified Jacobi problem, which will still satisfy the

equations (41). Up to second-order terms, the variations of the parameters

and the variation hzr will be related by

V V V

E w£ izT)dzT = iôa£,     E w*'(zr)5zr = hb£,     E V2g+,izr)8zr = 8s, + i8t,.
T=l r=l r=l
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Using the notations

WkiZr)   =   Ckr +   lCk„ WkiZr)   =   Ckr +   ICkr,

V'2g+,izT) = d,T + id',r, zT = xT + iyT,

and separating real and imaginary parts, this may also be written

0,

8ah, k = I, • • • , g,

8b k\

0,

8s„ v = 1, • ■ • , n — I,

8t,.

If we could show that, for arbitrarily given variations §yr, we can always de-

termine corresponding variations oxT, 5a/, ob£, ôt„ Ss„ so that this system

of equations is satisfied, we would have proved that the solutions zT can be

arbitrarily moved "up and down" without violating the conditions (41). This,

in turn, would show that we can always obtain the desired configuration of

solutions zr, namely, g points with Im {zT} >0, g points with Im {zr} <0, and

n — l points satisfying Im {zT} =0.

Let now ¿>yr, r = l, • • • , p, be an arbitrary "vertical" variation. If the

rank of the matrix

Cn • • •   Cip

Cgl   •    ■    ■   Cgp
M =      *, *,

Cil •  •  •   Cip

*i *i
■ Cgl *  '   ' Cgp

is 2g, there exists a system of solutions ôxi, • • • , 5x2g oí the equations (43)

and (44). Inserting these solutions in the equations below (43) and (44), these

equations can then be satisfied by giving to 8a£, bb£, ôs„ St, suitable values.

(43)

(44)

E   CkrSXr  —   Ckr8yT
T—l

V

E   CkrÔXr +   Ckr8yT
T-l

V
•ir^   * . *'»
/ .   CkrOXr  —   Ckr8yT

T-l

p

E Ck'rôxr + ckT8yT
T = l

p

2_, d,T8xr — d,T8yT
r-l

P

E d',T8xT + d,T8yT
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As long as the rank of the matrix M is 2g, the ordinates of the points zT can

therefore be arbitrarily changed in a continuous manner, without these points

ceasing to be solutions of (41).

This argument fails, however, if the rank of M is lower than 2g. In this

case we proceed as follows. We set ôyr = 0, r = 1, • • • , p, and try to find a

nontrivial solution bxr, t = 1, • • • , p, of the system (43) and (44). Such a

solution certainly exists, since, in view of the fact that the rank of M is lower

than 2g, the homogeneous equations

V

X2 ckT8xT = 0, k = I, ■ ■ • , g,
r=l

P

E CkÍ8xT = 0
T=l

have a non trivial solution. There exists, therefore, in this case, a "horizontal"

variation Szr which leaves the conditions (41) unchanged. Now there are two

possibilities. Either the matrix M belonging to the points zT-\-xr is already of

rank 2g, or else there are finite horizontal intervals adjacent to one or more

of the points zT in which the rank of M is still lower than 2g. If the first alterna-

tive is true, we are back in the case discussed before and we may continue to

apply "vertical" variations. All that remains to discuss, therefore, is the sec-

ond alternative.

In that case, all determinants containing 2g columns of M vanish identi-

cally if at least one of the variables zT, say Zi, on which it depends varies in a

finite horizontal interval. Keeping the other variables constant, the vanishing

of the determinant is equivalent to the identity

(45)     Piz) = ¿ [hk Re {w£iz)} + hi Im {w£"(z)}] = 0,     hk, h£ = const,
*=i

if z varies in a finite horizontal interval. Since (45) is everywhere in B a regu-

lar harmonic function, (45) is even true on the whole horizontal line L of

which the interval in question forms part. Beyond L, Piz) can be continued by

the Schwarz inversion principle, P(z) being of the same absolute value but of

different sign at two points symmetric toZ. On the other hand, we have also

P(z) =0 on the real axis, since there w£ (z) is imaginary and wfiz) real. If L

were different from the real axis, the function Piz) would therefore have the

periodic property Piz-\-2di) =Piz), where d is the distance of L from the real

axis, which is absurd.

We have thus proved that the point Zi lies on the real axis. Since each of

the determinants of order 2g to be formed from M depends only on 2g points

zT and excludes in —I) other points, and the preceding argument is valid for

every such determinant, it follows that, in the case under discussion, at least

n of the points zr must lie on the real axis.
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Summing up our results, we have shown that it is always possible to

make arbitrary continuous variations of the ordinates of the points zT,

t = 1, • ■ • , p, without violating the conditions (41), provided not more than

n — l points zr are located on the real axis at the same time. In particular, it

is always possible to obtain such solutions of (41) for which g of the points zr

are in the upper half-plane, g others are in the lower half-plane, and the re-

maining n—l points lie on the real axis. As shown before, this implies the

proof of our mapping theorem. It should be noted that these circular slit

mappings are not unique. As shown by the proof, there is a family depending

on 2g real parameters of such mappings. Only for g = 0, that is, in the schlicht

case, is the mapping uniquely determined.
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