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Introduction. The helium wave equation has been studied by several

authors^) with a view to obtaining the exact solution for the ground state,

or at least to establishing its existence. The subject is of importance as a

matter of principle, since it implies the decision whether the present formula-

tion of nonrelativistic many-body problems is correct(2). Also, the validity

of the variational method(3) depends upon it, for this method would be mean-

ingless if there existed no stationary state at all.

Unfortunately the attempts of these authors have not been successful ;

their method of series expansion proved to be powerless to control many-

particle problems.

In the present paper, the writer wishes to settle this problem by showing

rigorously that the wave equation for the two-electron problem, in particular

the helium wave equation, has a very large number—even infinity if the

nucleus is assumed to be infinitely heavy—of solutions corresponding to

stationary states of the system. In particular the existence of the ground

state solution is established.

Our method is different from those adopted by the authors cited above.

We shall not attempt, for the present, to find explicit expressions for the

solutions and shall resort to a method based on the abstract theory of oper-

ators in Hubert space. The essential part of our theory may be regarded as

already completed in the previous paper (4), where it was shown that the

Hamiltonian operator of every atom, molecule, or ion is essentially self-

adjoint(6). This means that the closed Hamiltonianff of such a system, which

is uniquely determined by the given Hamiltonian as a formal differential

operator, is self-adjoint in the strict sense, that is, that it has a complete set

(discrete or continuous) of eigenfunctions. Further, it was shown that eigen-
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functions (6) of H are, if they exist, sufficiently differentiable (even analytic)

and are solutions of the wave equation considered as a differential equation,

except at singular points of the potential [I, §8].

The only one thing left to be proved in the present paper is, therefore, the

existence of these eigenfunctions, or what comes to the same thing, the existence of

eigenvalues of H(7). This part of our theory alone is dependent on the number

of particles, and is easily carried out in the case of the two-electron system by

making use of known results concerning the spectrum of hydrogen-like atoms.

The proof given below is rather in the nature of rough estimation of eigen-

values, and has nothing direct to do with the complicated differential equa-

tion. The result would be much improved by more detailed calculation. It will

be noted here that, although there might be formally nothing new in this part

of our theory(8), it assures the existence of solutions of the wave equation only

when we know the result of the previous paper(9).

Clearly our method does not inform us of the behavior of the wave func-

tions at singular points of the potential. Once their existence is established,

however, we are not without means to study their behavior at such points.

For instance, we can show that they are still bounded at those singular points.

But we shall not enter into these details in this paper.

It seems that our method should be preferred to the classical one such as

series expansion, for the existing analytical tools are too weak to permit us a

frontal attack in that sense even in the simplest case of many-particle prob-

lems. If we pass to problems of three or more electrons, the classical method

is entirely out of question, whereas our method might be expected to be

successful if we carry out more detailed calculations than those given in this

paper, which are indeed quite rough ones.

1. Principle of the method. According to the result obtained in the

previous paper(10), the closed Hamiltonian H of every atom is a self-adjoint

operator(u) in the Hubert space § consisting of all quadratically integrable

functions defined in the configuration space. It means that H can be "di-

agonalized" as(12)

H =   f     X¿£(X).

(6) In the following we mean by an eigenvalue a discrete one, and similarly for an eigen-

function, if the contrary is not positively stated.

(') Cf. footnote 11 of I.

(8) In fact, it can be regarded as the zero-approximation in the variational method, see §5.

(») I, Introduction, §8.

(10) I, §6 and introduction.

(u) M. H. Stone, Linear transformations in Hilberl space, Amer. Math. Soc. Colloquium

Publications, vol. 15, New York, 1932, p. 50.

(u) Footnote 11, chap. V, J. v. Neumann, Mathematische Grundlagen der Quantenmechanik,

Berlin, Springer, 1932, p. 61.
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This is a convenient expression comprising the continuous as well as the

discrete spectrum. £(X) is called a resolution of the identity and is a family

of projection operators with the following properties(12)

1. £(X)£0x)=£(Min(X,M)),
2. £(X+e)^£(X) (e-*0, e>0),
3. E(X)->0 (X^- «j), £(X)->1 (X-*+ co).

As yet we do not know whether H really possesses those eigenvalues which

the experimentation has disclosed. But if we can show that

(1) N ^ dim£(M) < + w(13)

for some positive integer N and a real number ß, ECK) can change only dis-

continuously in the interval — <» <X^m and there are at most a finite num-

ber of eigenvalues(14) and no continuous spectrum, while there are at least N

eigenvalues in that interval(15).

This is the principle of our method. We shall show that in the case of the

two-electron problem, we can find N and y, satisfying (1) and such that N

can be made very large by suitable choice of ¡x, even as large as we like if the

nucleus is assumed to be infinitely heavy.

For this purpose, we make use of the following general lemmas.

Lemma 1. Let H be any self-adjoint operator with the domain Oh and let

E(\) be the corresponding resolution of the identity. If there is an N-dimensional

linear manifold '¡DInQOh such that (Hf, f)^¡j.(f, f) for every /G9D?;v, then
dim E(ß) ^ N.

Proof. If dim E(p)<N contrary to the assertion, there would be an

/G9)Îjv Cf^O) which is orthogonal to all elements of the range of E(¡x), that

is, E(p)f=0. It follows from the spectral formula that {Hf, f)>¡x{f, f), con-

trary to the hypothesis.

Lemma 2. Let H and H' be two self-adjoint operators with the domains

Oh and Oh', and let £(X) and E'(K) be the corresponding resolutions of the

identity. If OhQOh> and (Hf, f)^(H'f, f) for every fEOH, then dim £(X)
^dim £'(X) for every X.

Proof. Let Mn be the range of £(X)-£(Xi) (X>XX). Then WlNÇOH, and

it follows from the spectral formula that (Hf, /)^X(/, /) for every /G3)Îjv.

Hence we have by hypothesis (H'f,f)^\(f,f) for every/Guïïîiv. Application

of Lemma 1 to the operator H' yields dim E'(~k)^N = dim (£(X)-£(Xi)).

Making Xi—>— «>, we obtain dim £'(X) ^dim £(X).
2. First estimation. As we have shown [I, §6] the closed Hamiltonian

H of the two-electron problem is given by

(13) dim £(m) is the dimension number of the range of -E(m)-

(") A degenerate eigenvalue is always counted repeatedly.

(16) dim £(m)< + °° is essential, for otherwise there might be no eigenvalue at all, the

spectrum being entirely continuous.
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~         2        2                           2        2 2
(2) H = pi + pi + 2ap! p2-1-

ri       ri      Zru

Here we used a system of units slightly different from usual atomic units(16),

Z is the atomic number, and a is given by

a = m/(M + m), 0 < a < 1,

where m and M are the electronic and the nuclear mass respectively. (2)

can also be written in the form

2         2 2
(3) H = (1 - «)(pî + pî) + a(Pl + p2)2-+

r\       r2       Zr is

The domain D0 of 5 was shown to be the set of all functions/(ri, r2) whose

representations F(pi,pi) in momentum space satisfy the conditions [I, equa-

tion (11)]

I   | F(pu P2) I dpxdpi < 00, i Pi\ F(pi, Pi) I dpidpi < co (* = 1, 2).

These are precisely the conditions expressing that the kinetic energy operator

7"o=Pi+P2 + 2api-p2 can be applied to / [I, §2]. It was further shown that

the potential energy operator is defined for all these functions [I, §5] and

that the domain D0 of the total Hamiltonian H is identical with that of To

and independent of the potential [I, §§6, 9]. In particular O0 is independent

of a and Z.

First we compare H with the operator

H'= (1 - a)(p] + pi) - —-
r%      r2

According to what we have just stated, H' is also self-adjoint with the same

domain Do- Since by (3)

H = H' + a(Pl+p2y +
Zr12

it follows that (Hf,f) ^ (H'fJ) for every fEO0. It follows from Lemma 2 that

(4) dim £(X) g dim £'(X)        (- co < X < + »)(»),

where £'(X) is the resolution of the identity(12) belonging to H'.

Now the nature of the spectrum of H' is evident, for H' is the Hamil-

tonian of a system composed of two independent hydrogen-like atoms. Since

(IS) See, for example, Kemble, footnote 1, p. 420.

(") It is essential here that the domains of H and H' are the same.
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the eigenvalues of the operator p2 —2/3r_1 for a hydrogen-like atom are given

by — ß2n~2 with multiplicities w2 (n = \, 2, ■ • • )(18), it follows that the lowest

eigenvalues of H' are given by

1 — a \        »V
(« - 1, 2, • • • )

with multiplicités 2«2 for w^2 and 1 for « = 1, and that the spectrum of H'

contains no other points in the interval X< — (1— a)~l. In other words we

have dim £'(X) < °o and hence by (4)

(5) dim £(X) < co if X < - (1 - a)-*.

3. Second estimation. We rewrite (2) in the following form:

H = Hx + H2 + W,

Hi = Pi - 2rx  ,
(6) 2 -1     -1

H2 = p2 - 2(1 - Z   )r, ,

W = lapxpi + 2Z   (r%2 — r2 ).

If we regard Hi as an operator of the one-electron problem, it has eigen-

values—w-2 (»= 1, 2, • • • )(18). The normalized wave function for the ground

state is(19) 4>(rù =7T~1/2e~ri. Similarly H2 has eigenvalues

- (1 - Z-1)2»-2 (« = 1, 2, • • • )

and corresponding eigenfunctions

(7) fc,i„(r»)       (n = 1, 2, ■ • ■ ;/ = 0, 1, ■ ■ • , n - \;m = 0, ±1, • • • ,   ±0,

where we denote as usual by n, l, m the total, azimuthal, and magnetic

quantum number respectively.

Now we introduce the "trial function" f{t\, r2)=(p(ri)\{/(r2), where <Kr2)

is a linear combination of (7) and will be specified below. It is easily seen that

(H,f,f) = (ffrf, +)t(f, *), = - (*, *),,

W, /) = (0, *M#i*, *)i = (#«*, *)*
(pvPîfJ) = (pi4>, 4>)v(pé, *)» = 0.

and hence that

(Wf, f) = - f | vKr2) |2¿r2 f (- - -) | 0(n) Ydn ̂  0.
Z J J   V12      r2/

The last inequality follows from the fact that <£(ri) is spherically sym-

(18) See, for example, Kemble, footnote 1, p. 157.

(19) See, for example, Kemble, footnote 1, p. 160.
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metric(20). Thus we obtain by (6)

(8) (#/,/) ú (Hrf.t), r (*,*)*

Let Wy be the set of all linear combinations of (7) with n^n0. The dimen-

sion number N of Wfi is

(9) N = £ n2 = — w0(w0 + l)(2n0 + 1).
n-l 6

Since \¡/nim are eigenfunctions of iJ2 corresponding to the eigenvalues

—1   2—2 —12   —2

- (1 - Z   )n   (á- (1-2  ) no ),

it follows that if ^EWn,

(io) (zw, t)2 û - (i - z"1) V(*. «»

Let SDcjv be the set of functions of the form

f(ru r2) = *(r,)*(r,) (# £ 3»w).

Then SDijv is also an iV-dimensional linear manifold, and by (8), (10), and

(/./) = W>. 0)i(^, 1^2 = (^, 1W2 we have

(Hf,f) Í - {1 + (1-Z_1)W2}(/,/)

for every/G50ÎA'. It follows from Lemma 1 that

(11) dim E(ß) ^ N   with   ju - - {l + (1 - Z^V'}.

4. Result. By (5) and (11) we have an N and /i satisfying (1) provided that

n0 satisfies the inequality

(12) - {1 + (1 - Z_1)W2}  < - (1 - a)"\

and can conclude that H has at least N eigenvalues. Solving (12), we have

wo < (1 - Z^V - 1).

In the case of the helium atom, we put Z = 2, ar1 = 4X1820 and obtain

Wo =21820. Hence we can take w0 = 42 and then TV is given by (9) as N= 25585.

Of course there is no particular meaning in these figures, for they are the

most conservative estimates. If the nuclear mass is as usual assumed to be

infinity, we have a = 0 and n0 and N can be taken arbitrarily large.

(20) It is sufficient to show that f(r\¿— r~1)\<j>(r¡) |2án SO and, since <t>(ri) is spherically

symmetric, it is in turn sufficient to show that the surface integral /(r~ — r~ )dSi taken over the

sphere Si:ri = const, is £0. But/r^¿Si is equal to the Newtonian potential at the point t% by a

uniform mass distribution on Si, and it is well known that this is equal to r\ fdSi or r, fdSi

according as r^ ¿n or r2>ri. Hence we have in any case f(ra — r¡" )dSi SO.
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These considerations can also be made within each of the subspaces of §

characterized by definite values of the quantum numbers / and m, and lead

to the same number wo = 42. It follows that there are at least 42 — I eigen-

values for each pair of I and m.

Evidently the eigenfunctions we have shown to exist must be either sym-

metric or antisymmetric with respect to t\ and r2. If we carry out the above

calculation with respect to symmetrized trial functions, we can see that our

eigenfunctions are mostly antisymmetric, except that of the ground state

which is obviously symmetric. Of course this does not mean that other sym-

metric eigenfunctions are nonexistent; undoubtedly we have lost them only

because our estimation was too rough. It will be possible to recover them if we

make more detailed estimation of exchange integrals. But we shall not enter

into such details of calculation here.

5. Convergence of the variational method. Since we have shown the

existence of eigenfunctions of the Hamiltonian, especially of the ground state

solution, the variational method of Hylleraas(3) and others is placed on a firm

basis. In fact, it is nothing but an application of our principle (1) which is

aimed at getting as small a value for ß as possible for the fixed value N = 1 or

other small value of N, while our aim was to make N as large as possible by a

suitable choice of ju.

But it is a different question whether we can expect ultimate convergence

of the variational method to the correct eigenvalues and eigenfunctions. This

is really a difficult problem, and it seems that a satisfactory answer has not

been given. Clearly the result depends essentially on the underlying system

of functions.

A sufficient condition for the convergence of the variational method was

derived in the previous paper [I, §10] in the case of the general many-particle

problem, and the system of Hermite orthogonal functions was shown to

satisfy it. But we do not know whether other familiar sets of functions, espe-

cially those used by Hylleraas(3), satisfy that condition. Thus we have as

yet no decisive proof that his method is convergent to correct results, al-

though it is highly plausible(21)-

In conclusion, the writer wishes to thank Professor K. Ochiai for his inter-

est and encouragement. He is indebted also to Professor E. C. Kemble of

Harvard University for the publication of this work.
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(21) In the paper of Coolidge and James, footnote 1, the subject is discussed and a proof

of the convergence of Hylleraas's method is given, but in the writer's opinion the proof is not

complete from the mathematical standpoint, for due attention is not paid to the order of

summation in a double series.


