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1. Let T represent the class of analytic functions/ which are regular and

schlicht in \z\ >1 with the exception of a simple pole at infinity where they

have the normalized Laurent expansion

di       a2       tta

(1) w « fiz) «* + — + — + — +••-.
Z Z2 Z3

Furthermore, let S denote the class of those functions <j> which are inverses of

functions in T; hence <p affords a conformai map of a domain D (of mapping

radius one) containing w= °° onto the exterior of the unit circle C: \z\>l

and at w= «, <p has the normalization

bi ¿>2 ¿>3
(2) <¡>{w) = w + - +      + -+••..

w      w¡     w3

The underlying problem confronting us in this paper is the determination

of precise upper bounds for the moduli of the coefficients in these normalized

expansions at » for functions in the classes S and T. This problem for the

first two coefficients in each class has already been solved. We note first

that since 4> and / are inverse, ai= —bx and a2= —b2, so for these two cases,

discussion of only one of the two classes is necessary. For higher coefficients,

the a's and b's are related by certain polynomials, so in general, a separate

study must be made for each class.

Gronwall [6](1), Bieberbach [l], and Faber [3] showed that |ai| ^1

with the unique function

(3) fiz) = z + eia/z, a real,

giving us the equality. This function maps the exterior of the unit circle onto

the entire w-plane with the exception of a cut along a line segment of length

4 which is bisected by the point w = 0. In 1938, Golusin [5] and Schiffer [13]

proved that \a2\ ^2/3, with equality holding only for the function

/        eia V'3
(4) /(*)-«(l + —J    , «real,
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which maps \z\ >1 onto the whole w-plane except for a cut consisting of

three lines, each of length 22/3, radiating symmetrically from the origin.

In this paper, the precise upper bound for | ¿^3j is established. Further-

more, certain general properties of the extremal functions for the problem

of maximizing \bn\ are found. Certain general facts are found concerning

the region of variability of the points (a« a2, ■ • • , an) in the space of 2« real

dimensions.

2. In this study, variational methods are applied to the mapping functions

in the classes T and 5 from which conditions are derived for the extremal

functions. The point of departure will be the Julia [8] variation formula for

the mapping functions, which is a specialization of the Hadamard [7] varia-

tion formula for the Green's function. Because of its central role in the subse-

quent investigation, a derivation of this formula will be briefly sketched

which is different and simpler than those in the literature.

Let D represent a simply connected domain in the w-plane, bounded by

an analytic curve and containing the point at infinity. We shall denote by

f(z) a schlicht function defined in the exterior of the unit circle, C: \z\ >1,

and mapping C onto D such that the points at infinity correspond. The in-

verse of/(z) will be called cp(w). At the outset, we shall ask that/(z) be normal-

ized so that in the neighborhood of infinity,

ai       a2

(5) w = f(z) = az + «o H-1-h • * * 1 a > 0.
z       z2

Let us now make a small variation in the domain D, calling the new do-

main D*. D* will also be assumed to be bounded by an analytic curve. We

may consider the mapping f*(z) taking C onto D* which has the following

normalization at infinity:

*        *

(6) f*(z) = a*z + at + _ + _+... , a* > 0.
z       z2

Using the conventional variational notation 5/(z) =/*(z)— f(z), the func-

tion 5f(z)/zf'(z) is regular in C. Hence its real part is harmonic and may be

represented by the Poisson integral:

5f(x)        1   y      (z + x\        / ôf(z) \ dz
(7) Re-^^= — <* Reí—— ) Re l^LL)—,

xf'(x)     2Tjy      \z-x)       \zf'(z)J iz

where x is an interior point of C, the integration extending over the boundary

7 of C and taken in a positive direction relative to C (clockwise around 7).

Let s be the parameter of arc length on the boundary T of D, chosen in

such a way that s increases when T is traversed in the positive sense. Since

(8) dw = f'(z)dz = izf'(z)d<p
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when z = e'*, we may write

r bHz) "1 dz r 5/(3) 1 d<p
(9) Rer^ k"Re   - hr*L zf (z)J iz L— îw J ds

in which w' =dw/ds is a unit vector directed along the tangent to Y. Then iw'

is a unit vector directed along the interior normal to T. Re [ôfiz)/iw'] = bn

is the length of the projection of the shift 5/(z) in the direction of the normal

to r, taken to be positive toward the interior of D. Thus (7) may be rewritten

$/(*) 1    /"       /z + x\       d4>
Re-^—=-<J> Reí—-jare — d<b

xf'ix) 2-kJ y      \z — x)      ds

If      (z + x\ di
= — * Re I-) [iw'5n\ —;

2icJ y      \z — x/ izLf

xf'ix)
(10)

dw

(2)

We now observe that ôw = iw'ôn is the normal component of the displacement

5/(z); this leads to the formula:

ôfix)        ir       /z + x\   owe
(11) Re^-= — <*Re(-)-

*/'(*)      2*Jy      \z - x) iz2f

The term

bwdw do
(12) -= - 8n — d<f>

iz2f'iz)2 ds

bwdw

is real on 7, so we may write

z + x    bwdw

in which the integral on the right is an analytic function of x. Consequently

we may complete these harmonic functions to analytic functions; namely,

i/(*) 1   r z + x   bwd
(13) Re -^-- = Re — <b    - ■-

xf'ix) 2wJy z - x iz2f'i

bfix)        1   f    z + x    bwdw
(14) -= — en-\- ik,   k = real constant.

*/'(*)     2*J y    z - x iz2f'iz)2

To evaluate k, let x become infinite, then

5a      a* — a 1   f    bwdw

a a 2wjy  iz2f'iz)

1    P
(15) --<b    . .„, x. + ih.

.irj y

Since the term on the left and the integral on the right are both real, k = 0.

Thus

(16) bfix) = xf'ix) -£
z + x    bwdw

z — x iz2/'(z)2
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In this derivation, Bw has meant the normal component of the displace-

ment 5/; that is, èw = iw'Re (ôf/iw'). In practice, however, the boundaries T

and T* are given, and, in general, the function/* will not be known, making

it difficult to determine 5/(z) or the normal component of 5f(z). It will be

more convenient to work with the actual normal displacement; that is, the

vector obtained by going from T to T* along the normal to T.

It can be shown without difficulty that if the actual normal displacement

is regular enough, say it is a twice continuously differentiable function of the

arc length s, and if T and V* are in a Fréchet neighborhood of order e (that is,

to each point w of T we can associate a point w* of T* such that | w — w*\

= 0(e) and vice versa), we can interpret the àw in (16) as the actual normal

displacement and introduce an error of at most order «2 in the expression for

ô/(x). These details will not be presented here; formula (15) with on inter-

preted as the actual normal displacement is the variation formula of Julia in

a form given by Biernacki [2].

The class of functions/(z) in which we make the variation will now be re-

stricted by a further normalization at infinity; namely, we shall require that

in the neighborhood of infinity,

(17) f(z) = z + «i/z + a2/z2 + • • • .

If f(z) =g(z)/a and/*(z) =g*(z)/a*, then

(18) hf(z) = Sg(z)/a - g(z) ba/a2,

again considering only first order terms (neglecting terms o(t)). Applying

formula (16) to g(z) and taking da from (15) with A = 0, we get

r  z + x    1      dwdw r    1      Swdw
(19) 5/(x) = x/'(x) (b-+/<*) <b-■-■ •

wjrT z - x 2iri z2f'(zY Jy 2«   z2/'(z)2

The added term restricts the variation to the class of functions having

derivative one at infinity, but has not yet restricted the variation so as to

leave the constant term zero. To do this, we expand the right-hand side in

powers of x and subtract the constant term; for if /(x) =g(x)—a0 and /*(x)

— &*(x)—a*, we have 5/(x) =5g(x) —5öo- This leads to the final variation

formula:
r z + x    1     bwdw        C 1     Swdw

(20) 8f(x) = xf'(x)d>   - _^ + 0(/(at) + 2l!)—-—— -
J y   Z —  X  2irl   Z2f (z)2      J y 2-irl   Z2f (z)2

Let z = 0(w) be the inverse of w=f(z) ; then <j>(w) has a power series expan-

sion at infinity of the form

(21) <f>(w) = w + bi/w + b2/w2 + • • • .

We also let <j>*(w) be the inverse of f*(z); then we can set y*=/*(x) and

y =/(x). The variation of <f>(y) can be found by noting that x = <p*(y*) =<j>(y);
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thus

bcbiy) = 4>*iy) - <biy) = <t>*iy) - <t>*iy*)

(22) = -<l>*'iy)iy*-y)+Oie2)

= - **'iyWix) + Oie2), \y* - y | = O(é).

However, <p*'iy) =0'(y)+O(e), so for a first variation,

(23) i*(y) = - -p'iyWix).

Substituting  (23)  into  (20) gives the following variation formula for the

normalized inverse functions z=<piw), x=<j>iy):

b<Piy) — — <¡>iy) <p-bwdw
J t <t>iw) — <t>iy) 2iti   <piw)2

rr !  i   <t>'iw)2
— (b  [y<p'iy) + 2<j>iw)<p'iy) J -; -bwdw.

Jv 2iri   <(>iw)2

Since we are interested in studying the extremal coefficients of <piw), let

us obtain the variation formula for the coefficient bn by expanding both sides

of (24), in powers of y, and comparing coefficients. We first note that (24)

can be written in the form :

r r    2<piw)2

J r l<piy) - 4>iw)

11    ï'iw)2
- 2<biw)(j>'iy)   -— bwdw.

J 2-Ki   <piw)2

The term

(26) T7T—7= ¿-K(0:r"
4>iy) — t      „=i  «

is the generating function for the derivatives of the Faber polynomials P„(¿)

of degree re (Schiffer [14]). We then obtain

bbn = <f I — <piw)2P'ni<t>iw)) + in+ l)bn
J r Lre

(27)
11    cf'i-w)2

+ 2<j>iw)in — l)2>n-i-bwdw,
j 2iri   (¡>iw)2

or

/• T 2        , 11     bwdw
- z2Pniz) + (re + l)bn + 2z(« - l)ôn_!   — —— •

yLn J 2iri z2f iz)2
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The variation formulas (20), (25), and (28) were derived under the as-

sumption that the boundary T was analytic. Since we have no guarantee that

our extremals will haye sufficiently smooth boundaries, we must try to

eliminate this restriction by removing the integration over the boundary.

This can be done by specializing the variation of V to the following:

ap2
(29) w* = w +

w — Wo

where w0 is an arbitrary fixed point in D, p is a positive number, and \a\ =1.

The function w*(w) is univalent in the exterior of a circle of radius p about Wo;

and hence affords a one-to-one mapping of T onto an analytic curve T* if p is

sufficiently small. The normal projection of this shift of T is

(1        ap2    \  w'dw
-__)-,

iw'   w — wo/ z2f'(z)2

and substitution into (16) yields

5/(x)        1    /"  z + x        /  1        ap2    \   w'dw

(31)

f(x)        1    f z + x / 1        ap2    \  w'a

xf'(x)      2%J y z — x \iw' w — wo/ z2f'(z)2

1     r  z + x ap2          dw

iirij y Z — x w — wo z2/'(z)2

1       /*    1 +  XZ ff/D

4nriJ y   \  —  XZ   W —

ap2 dw

wo z2/'(z)2

since (iw'dw)/z2f'(z)2 is real on 7, and z = i/z on 7. We can apply the residue

theorem to these integrals to obtain, with w0=/(zo),

1 ,   ap2  zo + x    xf'(x)
öf(x) = ap1-

/(*)-/(*>) 2    zo-x  z2/'(zo)2

äp2   1 + fox    xf'(x)

+ ~Y  1 - z0x ¿¿/'(zo)2 '

This variation is not yet normalized to remain in the class T. Going through

the same procedure used in normalizing (16) to get (20), we obtain the

normalized variation formula

ap2 r 2 /zo + x \      1
(x) = -Î-  -— + (-*/'(*) + j(x) + 2zo h-

2   L/(x) -/(z0) T Vzo - x   ' JW /¡»TO"

Kl + zox 2 \       1

1 - zox zo / z;/ 02   LM - Zox   " x '  zo / Zo/'(zo)2

Using (23), we obtain the corresponding variation formula for <p(w) ; namely,
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ap2 T 2<t>'(y)       U(wo) + <p(y)
8<t>(y) - - —-+ ( 77——-rr <t>(y) + y<t>'(y)

2   \_w — wo      \<b(wo) — <t>(y)

(34) + 2<t>(wo)<t>* w
<i>(wo)J  <t>(Wo)2  J

dp2 TI + *(y)i(w0)    . ,   ,       ,. ,   ,   24,'(y) If'(wo)2

2  Ll - 4>{y)$(m) *(«.) J $(wo)2

where w0=/(zo).

Expanding both sides of (34) in powers of y, we obtain the variation

formulas for the coefficients bn:

4>'(wo)2

<t>(w0)2

(35)

5bn = — il— <t>(wo)2PU<l>(™°)) + (n+l)bn+1+2<l>(wo)(n-l)bn-A

n—1 \

+ 2 ]£ (n — p — 2)J„_,_2wS>

+ —-r~77 p» ( -T—, ) +(»+i)5n+——(«- i)5„-i ^r~
2   L»   <HW°) \<b(wo)/ 4>(wo) J0(wo)2

where ô_i = l and 2>o = 0, the -Pn(¿) representing the polynomial whose coeffi-

cients are the complex conjugates of those of Pn(t). In terms of z, this be-

comes

ßp2 ÍT 2    2   , 11
Sbn = -^  — z0P„(zo) + (n + l)è. + 2zo(w - 1)*_,

2   (L« J 35/(zo)2

n-l -V

(36) + 2 £ (n - y - 2)ôn_,_2/(zo)4
»=o I

ap2T2    1   _,/l\ ; 2 "     1       Ï
+ —   - -7 K(-) + (« + Don + - (» - l)i„_i   —-—•

2   \_n   z\       \zo/ zo Jzo/(zo)2

The corresponding variation formula for the coefficients an can be found

by expanding (33) in powers of x:

ap2 (F Ï+1 ,"|       1 2     , )

2   (L v=i J z'of'(zo)2       n )

ap2F <** 1"1       1
+ -—   (»+l)o,+ 2E(»-v)dM-   —

2   L ,=1 zJJ Zo/ ('(zo)2

Rn(t) being the Faber polynomial of degree n generated by

(38) —*— = ¿-ÄlWr-,
HZ)   — < n=l    «



428 G. SPRINGER [May

The variation formulas Í33) to (37) no longer involve contour integrals

explicitly, but are "interior" variations in the sense that they appear to be

independent of the boundary behavior of the functions. Since we initially

made the assumption that T was analytic, it would appear that this restric-

tion must also be placed on formulas Í33) to (37). An arbitrary boundary

curve may, however, be considered as the limit of a sequence of analytic

curves (Walsh [17]). The above formulas are valid for the approximating

analytic curves, and since they involve only the mapping function and its

derivatives at the given interior point, Í33) to (37) converge uniformly to the

desired variation formulas for arbitrary domains.

In the preceding limiting operation, however, we have neglected an im-

portant consideration ; that is, we have not shown that the terms of higher

order, which we neglected in considering only the first variation, also con-

verge uniformly and do not affect the first variation. To demonstrate this,

we shall use the knowledge of the form of the variation formulas (32) and

(34) obtained for analytic boundaries from the Julia formula to motivate a

direct proof of the same formulas, which, however, will allow us to make a

better estimate of the higher order terms when we extend to nonanalytic

boundaries. (See Garabedian and Schiffer [4].) This will later enable us to

conclude that the extremal problems we consider are solved by functions

mapping the circle onto domains bounded by analytic arcs. Thus the

original forms of the Julia formulas (20), (25), and (28) can be applied and

will lead to several important results in characterizing the extremal domains

beyond the analytic character of their boundaries.

Once again assume at first that V is analytic, and that D is deformed into

D* by the variation (29). Let the function <piw), given in (21), map D onto C,

and let

b*      b*
(39) **(w) = bliw + b*0 +—+ — +... , J-i > 0,

w      w2

map D* onto C. Then Taylor's formula tells us that

(40) log | **(/) | - log | **(y) | + Re (ap2^- —Î—) + 0(p2),
V     <t>iy) y — wo/

where <p'* iy) /4>* iy) is replaced by <p'iy)/4>iy) since their difference tends to

zero with p. The left-hand side of (40) vanishes when y* is on T* (or when y is

on T), so the harmonic function which is the real part of

<p'iy)        1
(41) Hiy, wo) = log <t>*iy) + ap2 —f- -

4>iy)   y — Wt>

has values of order o(p2) when y is on T. Hiy, w0) has a logarithmic singularity

at y = <x> and a simple pole at y = w0. The function
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<t>'iwo)2 1 <?'(w0)2 4>iy)
(42) Kiy, wo) = ap2—^—-äp2^—-———

4>iwo)   <t>iy) — 4>iwo) <?(wo)    1 - 4>iy)$iwo)

has only a simple pole at y = w0 and has there the same residue as Hiy, w0).

Re Kiy, w0) has value zero when y is on T, so the function Re iH—K) has

only the logarithmic singularity at infinity and boundary values of order

oip2). Thus Re iH—K) differs from the Green's function of D, log |<A(y)|,

by terms of order oip2), that is,

log | 4,(y) | = log | 4>*(y) |

+ Re  < ap21-I
(43) I      \4>(;y)   ^ - wo       0(wo)   <>(y) - <t>iwo)/

^'jwo)2 <¡>jy) \

^(wo)   l — <K;y)<Kwo)J

We may complete this harmonic function to an analytic function to obtain

<t>*iy) Ji'iy)     i       4>'iwo)2 i

+ dp2-} + oip2).

log -—— = — ap2

$'iw0)2 4>iy)

<piy) \4>iy)   y — wo      (j>iwo)   <t>iy) - <t>iwo),
(44)

— dp2-h ¿p2C(wo) + oip2)
$(wo)    1 — 4>iy)<piwo)

where C(w0) is a real function of w0 alone. To determine C(w0), let y tend to

infinity. Then since log b*i is real, we get

¿ß'iwo)2       1   (    t'iwo)2 $'iw0)2\
(45) C(wo) = — Im a-= —<a-a-> .

<£(wo)2       2i I    <i,(wo)2 fiwo)2 )

Applying the exponential function to both sides of (44) gives us 8<j>iy), and

then, using (23), we obtain the variation formula (32).

In this second proof, we assumed V to be analytic. If T is not analytic,

we can approximate V uniformly by a sequence of analytic curves T„ for

which (32) holds as a first variation. The remainder terms of order oip2),

which were neglected, are all composed only of the mapping functions and

their derivatives which converge uniformly to the mapping functions for D

and its derivatives, and hence remain of order oip2). We may then use formu-

las Í33) to (37) for arbitrary domains.

Another class of functions which we shall consider in this study is the

class of functions

(46) foiz) = z + c + ai/z + a2/z2 + ■ ■ ■ ,

analytic and schlicht in C, and mapping C onto a domain not containing

the origin. The variation formula for ô/0 can be obtained in a manner com-

pletely analogous to that described above. In this case, we use the special
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variation which leaves the origin fixed :

(47) w* = w + ap2w/wo(w — wo).

In this way, we find

ap2 r 2 2
Sfo(x) =-■-h-—

2   L/o(x) - /o(zo)      /„(so)

("zo + x )        1      1
(48) + ^-x/o' (x) + /,(*) \ ——-

Izo — x J zj/o (z0)2J

âp21~1 + xzo "11
+-r"h—~xU{x) + Mx) WfTT*

2   LI - xzo Jzo/o'(zo)-

for any z0 in C.

3. We now pose the problem of finding the function of the class for S

which |ô„| is a maximum. This problem has meaning since 5 is a normal

family.

If 4>(w) is in S, the eia4>(e~iaw), a real, is also in S, and has as its wth coeffi-

cient ei(n+1)a2>„. If | b„\ is a maximum, we can choose a so that ei("+1)"Z>„ is real;

thus we can rephrase our problem to seek the maximum of Re bn, where the

extremal bn will be real.

From (36), we obtain for each point z in C,

Re 8bn = Re ap2 il— z2P'n(z) + (n - l)6_is + (n + l)i„ + (n - l)5n_i —
,. * vL* z
49

11
rÁl)]^+%*m~-%}>

where a is an arbitrary constant with \a\ =1 and w=/(z) is the inverse of

z = tp(w). If b„ is an extremal, then Re5bn = 0; the arbitrariness of a now al-

lows us to conclude that for all z in C,

— z2P'n(z) + (n- l)i„_iz + (n + \)bn +(n- i)Bn^— +-T'A—\
n z       n   z2       \ z /

(50)

= -s2/'(3)2E vb,f(z)»-»-\
»—i

For convenience we shall set

1
Qn(z) = — z2Pn(z) + (n- l)è„_iz + („ + 1)6„

n
(51a)

+ (n- l)ft„-i —+ —P„( —),
z        »       \ z /
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and

n-2

(51b) Sn(w) = -  £ vh,w*-
■2-

Since Ç„(z) is analytic in the whole plane and agrees with z2/'(z)25„(/(z)) in

C, Quit) can be used to extend z2/'(z)25„(/(z)) to the whole plane. Thus (50)

is valid for all z, and by separting variables, taking the square root, and

integrating both sides of (50), we find

(52) j (0„(s))1/2 - - j iS„iw)y'2dw.

These integrals are analytic functions except at the zeros and poles of the

rational function Ç„(z) and the zeros of the polynomial 5„(w), which are

actually only a finite number of points. Thus w is determined as an analytic

function of z with branch points at most at the zeros and poles of Ç„(z) and

S„iw). We conclude that the circle 7 is mapped onto a finite number of

analytic arcs by the extremal function w=/(z) and that these arcs join at

most at the points corresponding to the zeros or poles of 0n(z) or 5„(w). If

several analytic arcs come together at a point, their tangents will lie along

rays that meet at equal angles at that point, the number of such rays de-

pending upon the order of the branch point of (52).

The information that the extremal domains are bounded by analytic

arcs enables us to use the Julia formula directly, since the Poisson integral

can be applied to these cases and the considerations of §2 are all valid. Conse-

quently (28) may now be applied to give

r 1     bwdw
(53) Re bbn = d> 0„(z) — -— •

J y 2wi z2f iz)1

According to (50), however, we see that

Qniz)
(54) -^^- = Sniw)

z2f'iz)2

which tells us that the integrand in (53) is a function of w alone; namely,

(55) Re bbn =-<p Sniw)bwdw.
2-KÍJ r

We shall now deduce another important property of the extremal domain

D; it has no exterior points. This means that the boundary is made up of a

slit composed of a finite number of analytic arcs. To prove this assertion, let

us assume that the domain does have exterior points. Then there is a boundary

arc with interior points on one side and exterior points on the other side. If



432 G. SPRINGER [May

we vary this boundary arc slightly toward the interior of D, we define a

certain bw. We can, however, make this variation small enough so that the

variation — bw will move the arc into the exterior of D without crossing any

other parts of T. Since Sn(w) is not identically zero, we can localize the

arbitrary (but small) shift and be sure that Re bbn is not zero. But whether

it is positive or negative, the shift — bw will give Re bbn the opposite sign,

meaning that bn could not be an extremal. This contradiction proves that D

is a slit domain.

Qn(z) assumes only non-negative values on 7. For, using (12), we may

write (53) in the form

1   f d<¡>
(56) Re bbn =-<b Qn(z)bn — d<i>

2irJ y ds

where (d(p/ds)d<p is always positive. Suppose that Qn(za) is negative for z0

on 7. Then there is a small neighborhood 7' of z0 on which Qn(z) is nega-

tive. We can separate the two edges of the boundary slit T, one of which

corresponds to 7', in such a way that one edge stays fixed and the other edge,

actually corresponding to 7', is shifted into the interior of D. This variation

defines a positive bn since the entire shift is into the interior of D. Since Qn(z)

is negative on the arc 7', (56) says that Re bbn is positive, which shows that

bn did not have maximum real part. Thus Qn(z) is always non-negative on 7.

The extremal domain D is thus the whole plane with the exception of a

slit T composed of a finite number of analytic arcs, the ends of which either

join with other such arcs as forks or terminate as tips, not meeting any other

boundary arcs. At the point z0 of 7 which maps into such a tip, we see that

the angle 7r made by the arcs of 7 meeting at Zo maps into an angle of 27T at

the tip. Thus/'(z) must be zero at each point of 7 mapping into a tip of Y.

From (50), we see that at each such tip, Qn(z) must have a double zero. If

both sides of (50) are multiplied by zn+l, the left side becomes a polynomial

of degree 2» + 2, and hence can have at most « + 1 double zeros. We have

thus proved that T can have at most m+1 free tips.

Since Qn(z) is real and non-negative on 7, we can divide 7 into a finite

number of parts, 7« such that Qn(z) is definitely positive fór z on 7« Equation

(54) can be rewritten as

(57) Sn(w)dw2 = - Qn(e^)(d<b)2.

We now define a new parameter on 7< (or its image I\) by setting

(58) dt2 = Qn(e^)(d4>)2.

This gives us a differential equation that must be satisfied by the extremal

arcs T<; namely

(59) Sn(w(t))(dw/dt)2 + 1 = 0,
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/ being a real parameter on T¿. This type of equation was first obtained by

Schiffer [12] using a special boundary variation.

Let us now consider the special case when re is equal to one; then

(60) Qiiz) = z2 + 2bi + 1/z2,        Sxiw) = 1,

and (50) specializes to

(61) z2 + 2fti + 1/z2 = z2/'(z)2.

Since T must have at least one free tip, we know that /'(z) has at least one

zero on j, say at eia. Then substituting eia into the left side of (61) yields

1
(62) bi =-ie2ia + e~2ia) = - cos 2a.

Consequently [ ¿>i| Sjl, and putting bi = 1 into (61) leaves a perfect square on

the left allowing us to integrate and get

(63) fiz) = z - 1/z,

a mapping of y onto a linear slit of length 4 and center at the origin (Faber

[3], Bieberbach [l]). Thus \bi\ ^1 with equality only in the case when

z = (f>iw) is the inverse of the function

(64) fiz) = z -—, I 61 = 1.
z

We next consider the problem of maximizing the modulus of the third

coefficient Ö3 for the functions in the class S. To do so, we shall first maximize

the expression [ 6? + 2&3|. If we set <j>*iw) =eiß<pie~ißw), we get b*-\-2b*

= eiißib\-\-2bz); thus ß may always be chosen such that the extremal o1 + 2¿>3

is real, and we can consider the equivalent problem of maximizing

Re ib\+2bz). From (36), we obtain

Re bib\ + 2c.3) = 2 Re (M&i + bb3)

= 2 Re ap il— z*l>'t(z) + z2PÍ(z)t>i + 2b2z + 2Q>\ + 2**)

(65) +2Í'7 + 7K(t>

+ 77?;(t)1^-M
= 2 Re ap2 \Q(z)-/(z)2l,

L z2f'iz)2 J
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where z is any point of C and a is any constant with \a\ =1, Q(z) being de-

fined as that rational function in (65) multiplying l/z2/'(z)2. In order for

b\-\-2b3 to be an extremal, (65) implies that

(66) Q(z) = z2/'(z)2/(z)2.

Q(z) is real on y and, as before, Q(z) must be non-negative on y and must

lead to slit domains as extremals. Corresponding to (59), the extremal curve

consists of a finite number of analytic arcs T« each of which satisfies an

equation of the form

/dw\2

(67) Uh2+1 = °
for a suitably chosen real parameter t on T«

The differential equation (67) can be integrated directly to give w2

= 2it-\-c, where c is the constant of integration. Thus for z on y, f(z)2 — c is

purely imaginary, and may be continued to \z\ ^1 by the Schwarz reflection

principle. This leads to the analytic function g(z) with

g(z) = f(z)2 - c Cor | si Sí L
(68)_

g(z) = - /(1/z)2 - c for   | » | < 1.

If we introduce the expansion (1) for/(z) about infinity, we obtain

2
2a2      ai + 2a3

(69) g(z) = z2 + 2s, - c +-+-+ • • • .
z zz

Since g(z) has the singular part z2 at infinity, (68) says that g(z) has the

singular part — 1/z2 at the origin and is otherwise regular. Thus g(z) is a

rational function which has the form

(70) g(z) = z2 + (2s, -«)--•
zl

Comparison of the coefficients in (69) and (70) shows that a2 = 0 and a\-\-2a%

= — 1 for the extremal function. Recalling that z = <p(w) is the inverse of

w=f(z), we find that öi= — &i, a3= —b3 — b\. Therefore for the extremal func-

tion, b\-\-2b3 = \. This means that as <p(w) varies through the class S,

(71) \bl+2b3\ = l     or    \b3\ = — (l + |6i|2).

Since we have already shown that | &i| ^1 with the extremal function (64),

this implies that |&3| ^1 with the same extremal function (64).

Since |è2| is maximum in the inverse of the function (4), precise bounds

are now known for the quantities | Z>i|, u>2|, and \b»\.
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We shall now study a class of extremal functions of the differential equa-

tion (50). Let us denote by Eq the domain consisting of the whole w-plane

with the exception of q (<Z^2) symmetric radial slits each of length (2)2/?

emanating from the origin (one ray will be assumed to lie along the positive

real axis). The function which maps Eq conformally upon the exterior of the

unit circle will be denoted by

(5) (3)

(72) ¿5(w) = w + — + ^- + ■ ■ ■ .
w        w2

The inverse of <pqiw) is given explicitly by

(73) w = /9(w) = z(l + z-")2'".

It will now be proved that if g is a divisor of re + 1, that is, if qk = n-\-l for

some integer k, then/5(z) satisfies (50) for this re.

Let us first evaluate c, . If I" is a large circle \w\ =R, and y' the image of

T' under <ps(w), then

c«)     !  r i  y
— vcv    = —; (p    W4>q<iw)dw = —; (p   fqiz)"dz

2iriJ y>
z"(l + z-q)2vl"dz.

Expanding (l-r-2~a)2"/a by the binomial theorem and using the residue

theorem, we obtain

cr    = — (l/p) C2,/a,* if    qk = v + 1, k = integer,

and c, = 0 when q does not divide v-\-l. In particular, if q divides re+1, then

q does not divide re, and we have cjf-i = 0; then we may neglect the terms in z

and 1/z on the left side of (50).

In general, the Faber polynomial of degree n for the function z = 4>iw) is

the polynomial part of the reth power of the inverse function w=f{z) (Schur

[15]). We shall introduce the notation [g(z)]2 to represent the polynomial

part of g(z) when it is expanded in powers of z in the neighborhood of in-

finity. Hence, we have

*-i

(75) Pn(z) = [/,(«)"]. = Z C2„/,,»z"-'«, kq = n+1,
»=o

and

(76) z2P'niz) = ¿ in - vq)C2n,q.,z*^ = z21- (/„(*)»)! .
»-o Ldz J a

A fact that will be useful later is
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(77) z2P'n(z) = [}2^(/«(2)")]
il)

ncn   .

According to (76), the expression z2P„(z) + (l/z2)P„(l/z) involves only

integral powers of zq and the terms can be paired so that each is of the form

zq'-\-zrqi. Since solving (73) for z" gives

1    r
z" = — [(wq - 2) + (w2q - Aw")1'2],

(78) 2

z-1 = — [(wq — 2) - (w2q - 4w")112],

the terms zqi-\-z~qi are polynomials in w. Thus <pq(w)2P'n(4>q(w))

-\-<pq(w)~2P'n(4>q(w)~1) is a polynomial in w. However, <f>q(w)~2P(<pq(w)~l)

will have only negative powers of w, allowing us to say

(79) <¡>q(w)2P'n(<t>q(w)) + <t>q(w)-2P'n(4>q(w)-1) - [<t>q(w)2P'n(<t>q(w))]w.

From (77), we obtain

'      2™'/  \ r   /  q/2    ,       -9/2. (2n/î)-l     s/2 -s/2   ■■ (4)
— z Pn(z) = |z(z     +z     ) (z     — z     )J2 — c„
n

(8°)
ï/2 -3/2^ (2n/(,)-l     î/2 -3/2 (î) ^-, -*»

= z(z      + Z       ) (z      — Z       ) — cn    — ¿_, AVZ
v=\

where the A, are chosen so as to leave only polynomial terms. If we substitute

4>q(w) for z in (80), the last sum will contribute only negative powers of w;

thus

(81) — [4>q(w)P'n(<i>q(w))]w = [t,q(w)w\\ - iw"qf\ - ¿q>.
n

Since

(82) 4.q(w)/<¡>í(w) = w(\ - Aw-")1'2,

we get

1

n
[<t>q(w)P'n(<i>q(w))l

U><¡ (w)2 J

4>i(u>)2 (5)
Cn

-<i>M2

4>¡(w)2
< 2^ (çi'-UCiK-lW >•—(»+ l)c„    .
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In view of (79), this equation is the same as (50) when expressed in terms of

z, proving that 05(w) is a solution of (50) if q divides re + 1.

Let us denote by S[bu b2, • • • , bn-i] the subclass of 5 consisting only of

those univalent functions having the first re — 1 coefficients in the expansion

(2) about infinity fixed at those values indicated in the brackets. We shall

also let T[ai, a2, • • ■ , a„_i] represent the subclass of T having the first n — 1

coefficients fixed at the values indicated. The next problem to be considered

is the determination of the extreme value of Re (¿>n) as <p varies through the

class 5[c^s), c^, • ■ • , 4-iL n = qk — l for some positive integer k, rather

than for all </> in S.

The coefficients of bn of <j> and a„ of /, the inverse of <f>, are related by the

polynomial relation

(84) an = - bn + U(h, &*,••, ¿n-i),

where M is a polynomial in the re—1 variables b\, ■ • • , ô„_i. Since we have

fixed the first re—1 coefficients as bi = c'f\ i=l, ■ ■ ■ , re —1, Af(&i, • • ■ , è„-i)

is a fixed constant and Re an and Re bn achieve their extreme values simul-

taneously. Also <zi, a2, ■ ■ ■ , a„_i are determined completely by bi, b2, • • ■ ,

èn_i, so the first re — 1 coefficients of / are also fixed.

Using the method of strips, Teichmueller [16] proved the following

theorem: Among all functions / of T[ai, ■ ■ ■ , a„_i], the function w=/(z)

which maps the unit circle onto a slit composed of arcs satisfying the dif-

ferential inequality Piw)dw2>0, Piw)=awn~1-\- ■ • ■ being a polynomial of

degree re — 1, gives the maximum value to Re aa„, and this function is unique.

We have shown that/s(z) satisfies (50), so for z = em, we may set

(85) Piw)idw)2 = Sniw)idw)2 = - Qnieie)id6)2.

The function Q„iei6) may be evaluated using (76) and (74), giving us

2 *_1 re + 1
(86) Qnieie) = — X) in - vq)C2n/q,r cos [qik - v)6]--Csn/,.*.

re ,=o re

As a function of 0, Q„ieie) clearly assumes its maximum value for 6 = 0.

Remembering that qk = n-\-l, we may evaluate this maximum value:

*-i

(87) »0„(1) = 2£ [qik -v)- l]CW2/îl, - qkC2k^,q,k.

We shall now show that «Ç„(1)=0. Let ^4,+i = (i'-f-l)gC2*_2/s,r+i. Then from

the definition of the binomial coefficients, we obtain

(88) Av+i = [qik - v) - l]C2*_2/3,v + iqk - 1)C2*_2/«,,.

Hence

(89) Ar+1 - A, = 2[qik - v) - l]C2*_2/?,,.
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Summing these differences on v from 0 to k — 1, and noticing that .4o = 0, we

get

¡b-l

(90) 2£ [q(k - v) - l]C,*_i/«.r = qkC2k-2,*,k
»=0

for all integers q and k, proving that nQn(\) =0. Then Sn(w)dw= —Qn(eie)dd2

5:0 for w on the boundary of Eq and as before, we have equality for only a

finite number of points. Since Sn(w)=wn~l-\- • • ■ , we can set a=+l in

Teichmueller's theorem, and conclude that the wth coefficient in the expan-

sion of fq(z) about infinity, call it a„\ satisfies the inequality

(91) Re (an) < Re (a?),

where an is the nth coefficient in the expansion of any other function of the

class T[af, af, • • • , ajfli]. The relation (q<i) now assures us that Re c^

will be an absolute minimum among all Re bn, where bn is the wth coefficient

in the expansion of any function in .S[c[s), c2\ ■ ■ • , c^lj.

We have seen that — c„} = (l/n)C2„/q,k, n = qk — \. Let us keep n fixed and

find that q for which — c¡,c) is a maximum. Setting \ = 2n/(n-\-\), we see that

— ¿n = (l/n)Ck\,k- We shall show that C(k, X) = Ck\,k is an increasing function

of k which means that —cf is a decreasing function of q and will assume its

largest value for the smallest possible value of q, hence the least prime divisor

ofw + 1.

In general, we have

C(k + 1, X) » (k +l)\-v

(92) rih ^       = X *■*■'"        r' =    to   ■   i-C(k, X) ^,1 k\ + 1 — v

Since X^l, each r, = 1 for v = 1, 2, ■ • • , k; thus C(k+i, X) = C(k, X).

We have shown that — q? is largest when q is the least prime divisor of

w+1. It has been proved that as <p varies through the class 5, |Z>i| = —cf\

| b2\ = —c2\ and | ¿»31 ̂ — c32), equality holding only when <f>(w) =eia<pq(e~iaw),

q = 2, 3, and 2, respectively. This leads us to the general conjecture that for

functions in the class S, \bn\ ^ — c^ where q is the least prime divisor of ra + 1,

equality holding only when <p(w) =eia4>q(e~iaw).

Rough estimates for \bn\ can be obtained using the Cauchy integral

formula. We have

(93) — nbn = -; <b   wni>'(w)dw = -• <h  f(z)Hz,
2iriJ y' 2iriJ yi

I" and 7' being contours in D and C respectively which are close to T and 7.

Under the normalized mapping/(z), the unit circle goes into a domain which

lies entirely within a circle of radius 2 about the origin (Bieberbach [l]).

Thus we get the estimate
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(94) \bn\£2»/n.

Let us compare this estimate with the above conjecture in the case of odd

coefficients ¿>2n-i- The conjecture states that

ii (2) 1 (2n-2)!
(95) ¿>2n-l    ^  — C2n_l =--C2n-i,n

2»- 1 w!(w - 1)!

Applying Stirling's formula to the factorials in (95) yields asymptotically

(96) - eS-t
e       22"~2

pl/2 re(re1/2)

this is to be compared with (94), which for odd coefficients becomes |&2n-i|

^22"-2/(re —1/2). We note that this rough estimate differs asymptotically

from the conjecture by a factor of re1/2.

Let us now obtain some further information about the extremal functions

in 5 which have maximal | bn\ using the differential equation (50). Since (50)

holds for all values of z, the coefficients of zk must agree on both sides. The

coefficients of the positive powers of z turn out to be formally the same on

both sides, whereas those belonging to negative powers of z yield an infinite

number of relations that must be satisfied by the coefficients of an extremal

function. As an example, we shall compare the coefficients of z_1 on both

sides of (50), which amounts to computing the residues on both sides.

We observe first that by differentiating the relation z = </>(/(z)), we obtain

(97) 1 = - fiz) ¿ vb,fiz)—\
»=-i

Hence

(98) &(•) = z2/(z)«-y'(z) + z2/'(z)2¿ (re - 2 + v)bn-2+vfizY>.
v=l

The residue of the right-hand side of (98) is now given by

(99) — <£ z2fizY~Hz + ¿ (re - 2 + »)¿>„-2+, —- <f z2fiz)--f'iz)dz
2tclJ »_l 2irlJ

which may be transformed to the w-plane giving

i   / A i   r<t>iw)2 i
(100)      -(h <t>iw)2wn~ldw + Z) (m - 2 + v)bn-t+,-<b-dw.

2tÍJ „=i 2-kíJ   <p'iw)   W

Since

<i(w)2 4¿>2

(101) -j/- = w2 + 36, +-+•••,
(¡>'{w) w
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only the terms for v = l and v = 3 in the sum in (100) contribute to the residue.

Thus

»+i
(102) (re - l)5„_i = £ MM + 3(re - l)M„-i + (» + l)Z»„+i

»=i

must be satisfied by the coefficients of any extremal function for maximum

The formula given in (102) can also be obtained by making a special varia-

tion on the class 5 which is a generalization of a variation that was intro-

duced by Marty [lO] in the study of univalent functions in \z\ <1. Once again

let/be a function in the class T which is the inverse of a function <p in S. Then

for any a, \a\ <1, the function

/«(*) =-1" <*.

(103) ci =

fiiz + a)/il + &))      fil/a)

fid-*)   H-\a\2)

fid'1) d2

will also be in T, Ci and c2 having been chosen to give the correct normaliza-

tion.

There are now two possibilities for proceeding: first, we could expand

f*iz) in powers of a; second, we could expand it in powers of z. We note that

as a tends to zero, /0*(z) converges to fiz), and for small values of a, f*iz)

may be considered as a variation from /(z) in the class T. Expanding in

powers of a, and considering only the first variation (neglecting terms of

order \a\2) we obtain

(104) 8/(8) = aif'iz) - 1) + d[fiz)2 - z2f'iz) + 30,] + 0( | a \2).

According to (23), the corresponding variation formula for <piw) is given

by

(105) - 54>(w) = o(l - <t>'iw)) + d[w2<j>'iw) - 4>iw)2 + 3h] + 0( | a \2).

By comparing the coefficients of w on both sides of (105), we arrive at

Re bbn = ä[ 2 U»-. + in + l)bn+i + 3(re - l)6„_i — (re — l)5„_i )
(106) \ ,=1 /

+ 0(| a |2).

If bn is an extremal for Re b*, (106) must always have the same sign, and
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since the argument of â is arbitrary, the coefficient of ä must vanish, again

giving us the relation (102).

On the other hand, if we expand f*(z) in powers of z, we obtain

*        *
* a\       a2

/!(z) = z+- + - +

(107)
Z Z'

ttl
*   ri /"(«-')2    i /'"(â-ri(H2- i)2

.4   /'(a"1)2 "  6    /'(<x-i) J #

Since f*(z) belongs to T, |a*| 2*1, and replacing <z_1 by z in this inequality

yields the following distortion theorem:

(108)
2 C®. _ 3 r(2)2

/'(*) /'(«0s

12

(  i 2- 1)
2

This distortion theorem is precise in the sense that we have equality for the

function /(z)=z+l/z when z>l. Similarly, estimates of the higher coeffi-

cients bn lead to inequalities on certain polynomials in the a*, which can be

expressed in terms of derivatives of f(z). This generates an infinite number of

distortion theorems, one for each coefficient an or bn for which precise esti-

mates are known.

4. Corresponding to each function/(z) =z+ai/z+a2/z2+ • • • in the class

T, we have a point pn = («i, a2, ■ ■ ■ , a„) of 2«-dimensional real euclidean

space. The points pn fill out a domain Vn as/ varies through T; we call Vn

the nth coefficient region of T. The boundary of Vn will be denoted by Bn;

Bn is thus a (2n — l)-dimensional manifold. In this section, certain properties

of those functions corresponding to points pn on Bn will be described.

The domain Vn generated by (oi, a2, ■ ■ ■ , a„) will remain unchanged if

instead of considering the function f(z) in T, we consider the function /o(z)

=f(z)-\-c, where c is a constant. In particular, we may choose c such that/0(z)

^0 for z in C; this new class of functions f0 will be denoted by To- It is well

known that \c\ ^2 (Bieberbach [l]).

We shall now consider the regular points on Bn; that is, boundary points

on part of the surface Bn which may be represented locally by an equation

(109) F (ax, äi, a2, d2, ■ ■ ■ , an, c„) = 0,

where F is a real function with continuous first partial derivatives and F<0

for interior points of Vn. It can be shown that all the points of Bn are regular

except for certain manifolds of dimension less than 2n — 1. A proof of this

fact will not be given here, but can be modeled after that outlined by Schaef-

fer, Schiffer, and Spencer [ll] for the analogous case of mappings of the in-

terior of the unit circle. If z = x-\-iy, it will be convenient to introduce the

following two operators
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d 1  /d d\ d 1  /d d\
(110) — = —-i — ),        — =—(— + î— ).

dz       2 \dx dy/ dz       2 \dx dy/

We shall define

dF _        dF
(111) Fk =-. Fk = — ■

dak ddk

If we now make the variation (47) on functions/0(z) which correspond to

pn on B„, we obtain a new point p* = (a?, a*, • • • , a*) of Vn. The first

order change in F will be

n n

(112) 5F = £ (F*áa* + ?*5ô*) - 2 Re][>*5a*,
*-i *-i

where 5a* is given by (37). Since the constant a in (37) can have arbitrary

argument, while 8F can never be positive, we conclude that for \z\ > 1,

" ( 1 k+1 )

D Fk\— ik + l)ak + T,ik- v)a^A
*=i       \2 ,_i ;

Í 1 *+1 1
(113) + Fk\— ik + 1)5* + £ ik - v)dk-,z->\

\2 „_i )

= -*2/o'Xz)2¿F*4**'W2))-

For the function/0(z) corresponding to the boundary point pn, the expres-

sion X)*=i ik-\-l)Fkak is real. To prove this statement, consider the function

fo*(z) = eufoie~uz). In this case,

(114) at = (»*«*«>• = o* + ¿e(¿ + l)ak + Oie2),

for small values of e. Thus 6F=2 Re î€^t=1 (^ + l)F*a*, and since e can

either be positive or negative, while 8F can never be positive, we conclude

that XXi (¿ + l)i*a* is real.
If we set the left side of (113) equal to (5n(z) and the multiplier of z2/0' (z)2

on the right side of (113) equal to 5„(z), we can carry out the same arguments

given at the beginning of the previous chapter. We are thus able to conclude

that the function /o(z) corresponding to a regular point of Bn maps C onto a

slit domain whose boundary is composed of a finite number of analytic arcs.

The function Ç„(z) is defined in the whole plane; thus we may continue the

right side of (113) into \z\ <1 and (113) holds for all z.

Since/o(z) maps y onto a slit, f0' (z) must have at least two zeros on y cor-

responding to the tips of the slit. Let K be one of these zeros; \K\ =1. Then

Quiz) has a double zero at z = K; that is, On(^)=0and KidQniK)/dK) =0, or
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*+i

(115)

and

(116)

" ( 1 *+1 ")

£ Fh <— (* + l)o* + £ (* - ")a*-.^7
*=i        (2 „=i J

+ F* \— (k + l)a* + E (* - ")âk-,K'\ = 0,
( 2 ,=i ;

n     / t+1 &+1 -i

Z S É "(* - v)ak^hK' - £ K* - v)afc_^*Ä'[- =0,      Z - £-».
r_l  V ,.=1 »=1 /

The parameter i£ may be eliminated from these two equations leaving a par-

tial differential equation for the function F representing the boundary surface

Bn- The method of characteristics will now be used to construct the surface Bn

following the general plan of Schaeffer, Schiffer, and Spencer [ll].

In general, let F(au S%, • • • , a„, ân) satisfy the partial differential equa-

tion

(117) *(ai, oí, • • • , an, an, Fh Fi, • • • , Fn, Fn) = 0.

Then the characteristics are given in terms of a parameter / by the following

system of ordinary differential equations:

dak d<i> dFk 5$

dt dFk dt dak

dF • /r3$

dt

»  /r)$ d4> _ \
2Z(-Fk + —Fk), 1-1,2,-..,«,

tí VóF* OF*     /

the last equation being the strip condition. In our problem, the equation

(115), Q(ak, Fk, K)=0, depends upon the ak and Fk directly and also in-

directly through K. This leads to the following system of equations for the

characteristics :

dak

dt \dFk      dK dFk)' dt \dak      dK daj'
119

dF »    dQ dQ   dK dQ -       dQ   dK _

(ö      S ai7,       ai: of,       of,       ais: aF„

(116), however, says that dQ/dK = 0, leaving us with the system of equations:

dak k+1
(120a) -= (k + l)ak + 2^ (k - p)ak-yK%

dt v„i

¿F* ■=»
(120b) -—= - (k+ l)Fk - 2k £F,+*,K',

ai ,=i

and the strip condition
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(121) dF/dt = 2Qiak,Fk,K).

The function corresponding to the point p on Bn maps y onto a curve T

which is composed of a finite number of analytic arcs, each satisfying the

equation (analogous to (59)):

"        1 (dw \2
(122) £f*-ä»'(«i)( —)= 1,

*=i        k \dr /

where r is a real parameter on r„, and Rk (w) is given in (38). Using the fact

that Rkiw) is the polynomial part of <poiw)k, where <j>0 is the inverse of/o, it

is easy to verify that

(123) —**'(w) = ¿«IV-1
k ,=i

where the a^ are determined by

(124) /0(z)     = 2^ «H-mZ        i a«    = 1, a^+i = — vc.
m—0

We may then write (123) in the form

A /dw\2 " „j
(125) T.A.VT-H-) =1,       ¿,- T^FkaV.

»=i \ dr / k=r

Our aim now is to characterize those functions /0(z, t) which correspond

to points pit) along a given characteristic. To do so, we shall study the de-

pendence of the coefficients A, upon the parameter t of a characteristic. With

this in mind, let us study the coefficient body Vn") generated by («l+2, • * • ,

a[%n+i) for all functions /0(z)-' with/0 in T0. Let FMia,"l2, 4+2, • • • , aw"ln+u

^+n+i)=0 represent a regular portion of the boundary, B^ of Vnv). For

v= — 1, this reduces to the problem considered above with a^l) = am.

The variation formula for /o(z)~' can be obtained from (48) ; that is,

(126)

ap2 j"        2vfoix)~- z + x xvfoix)-'-1^' ix)

2~L/o(z)(/o(*)-/o(z))      8- * z2/o'(z)2

"M*)-"!       âp2 TI + xz   xvfoix)-'-lfoix)        vfoix)-n

+ z2/o'(z)2J ~ T LI - xz "     z2/o' (z)2     ~~ + z2/„'(z)2J

for all z in C Let us define the generalized Faber polynomial in the following

manner:

(127) -——-- =  2^   — i?*   (/)x   .
*(/«(*)  — t)        *-»+■«     k

To obtain the variation formula for  the coefficients a„, expand (126) in
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powers of x and compare coefficients; this procedure leads to

» w     2 r 2" _<»)/.,...
&ak    = ap- Rk    (fo(z))

(128) + —\— il   i'  (v + $«%*   '"" + (A - v)obw)\ 1
z2/o (z)2 I      „„0 J J

+  ¿P2      ,?,^,l2   Z  (" + ri«'+/(l      *' + (* - v)aV\    .
Lz2/o (z)2 (     m=o J J

The variation formula for Fw corresponding to (112) can be constructed,

giving us the differential equation (the same as (113) when v= —1):

Z   ^*" \—(k-v)ak   +  Z    (" + m)«v+„z        f
*=>'+2 ' 2 M=o /

i   p(,,) / 1 ct      -\-(,)  i 'v^1 *    i    \-c,,) -(*-'-"))+ F*   <— (k — v)ak   +2^    O' + WW >
12 M=o ;

(129)

»+ n+l

= z2/o' (z)2 Z   F»W - R¿"}'(fo(z)), F? = dF"/daï\
k=v+2 It

Again setting Qn'\z) equal to the left side of (129) and z2f¿ (z)2Sn"\f0(z))

equal to the right side, we prove as before that Qnv)(z) is non-negative for z

on 7, and that the image T of 7 under mappings/0 that correspond to bound-

ary points p{v) of B¡¡? will be a slit composed of analytic arcs i\, each satisfy-

ing the differential equation

Sn\w(T))(dw/dr)2 +1 = 0,

for some real parameter r.

If we let K be one of the points on 7 which is mapped into the tip of the

slit T, fó (K) =0; and we are led to the differential equation

z1 ft (4- i- V)aV + e"1 (,+mk(;u"'H

+ FT |4 (k - r)«r + Z"1 (> + m)Cz*-^1 = 0
v 2 ^=o ;

where iT is eliminated by the condition K(dQiñ)(K)/dK) =0; that is,

v+n+l   / i-i—1

z K z <s + /«)(* - - - c)C^
;=H-2  V jj=0

(131)
fc-K-i _\

F»'    Z   (" + m)(¿ — r — n)äJ+lfK      *>  = 0.
u-o ;
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The characteristic equations for the differential equation (130) are

dak '
(132) —— = ik- v)aV + 2 X (* - P)¿ZX,

dt ii=i

dFT m H-*H-*
(133) -—«-(*- „)/?¿   - 2k    £    F;+U ,  » - r + 2, v • . » + » + 1.

Of ,,=1

and the strip condition

(134) =2o:,(ä:).
dt

Let us define

(135) a*    = e        a*      for «¿n, a*    = 0 for k < v,

(136) <pV = r(,+l>Vr for k £ v + * + 1,   *i'} = 0 for Ä > * + » + 1.

Then the equations (132) and (133) of the characteristics become

dak (V) a,1 (V) M
(137) -— = (* + l)ak   + 2 £ C* - m)«/LU ,

(138) -^- - - (* + 1)4" - 2É ¿ *£*£*,       i - v + 2, - - - , p + » + 1.
dt ^=i

Thus af and 0tv) satisfy the same characteristic equation for all values of v.

Returning to (125), we see that

(139) A,e = ¿^ oik <Pk    ■
(■■+i)i      ^,   (») .(-i)

k=v

For v = l, 2, • • -, re, however, we may apply (137) and (138) to obtain

¿      n        . n     [ *+l

dt k-
(140)

n n     / *+l

Em it      = 2 ¿«I "{ 2J (* — m)«*-k^*    ä

,1=1 /

Since a^ = 0 for k <v, we can extend the summation over k in (140) from 1 to

re. Reversing the order of summation in (140), we find that

(141)

d Ji.

dt     *:
2J a* 4>k       =  2 2J \ 2J   ik — p)a*-M#*      — 2J k<j>k+„ ak   > K
k=<> ti=l v*=^+i *=i /

= 2 /J \ ¿J   ^a* i*+c  — ¿2 k<t>k+? ak   > K .
^i I»—i *=i /
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Since <pi+]! = 0 for n— ¡x<k^n, and a(_!\ = ap"'= 0 fori/ = l, 2, • • • , n, the two

sums in the brackets in (141) are identical, leaving us with d Zt= •> ak)(Pk 1/dt

= 0. Therefore

(142) A, = c»e-<•'+1>,

where the c, are constants.

If we now set w = e'io in (125), we get

» /¿co\2
(143) ZccC-M —) = 1,

»=i \dr/

which is independent of t. Corresponding to the function/0(z, t) belonging to

the point p(t) of the characteristic, the function

(«i      a2 \
Z + — + — + • • •  )

z       z2 /

maps 7 onto an analytic slit which satisfies equation (143) for all values of t

and passes through the origin.

We shall define the restructure corresponding to a given characteristic

as the complete solution of (143) which passes through the origin. Thus

to =go(z, t) maps 7 onto a portion of the restructure for all values of t. Let us

fix an initial point on Bn corresponding to/o(z, 0); that is, ¿ = 0. We then

continue the characteristic in the direction of increasing /. The slit, which

is the image of y under g0(z, t), forms a subcontinuum T° of the restructure

for this characteristic, and as t increases, the factor e~l indicates that T° will

shrink, covering less of T°.

Returning now to the family T, we recall that/0(z, t) =/(z, t)+c(t), where

c(t) is only a function of t and/(z, t) is in T. If we define g(z, t) =e~'f(z, t), we

see that g(z, t) =go(z, t)—e~'c(t). Thus g(z, t) maps y onto a slit Te which is the

translate of r° through a distance e~lc(t).

This idea of a shrinking slit is similar to that used by Loewner [9] in

obtaining his differential equation for univalent mappings of the circle. We

shall now show that along the characteristic curve on B„, the equations

(120a) and (120b) imply that g(z, t) satisfies the Loewner equation.

First it will be necessary to prove the uniqueness of the function in T cor-

responding to a regular boundary point of F„ by showing that for a given set

of a, and F„ there is a unique function in T satisfying the differential equa-

tion (113) with/o replaced by/ The Faber polynomial Rk(w) can also be de-

fined (Schiffer [14]) as the unique polynomial of degree k in w such that

(144) At(/(2)) = S!*+Ííi+Í^.+ ...,
z z2

It was shown by Schur [15 ] that
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(145) c*¿ = bak+¡ + Pliai, ■ ■ ■ , a*+í-i),

where b is an integer and Pi represents a polynomial in its arguments. Since

• (146) R¿.(w) = — T Rkifiz)), w = fiz),
fiz)  dz

we can write the right side of (113) as

(147) J! \Fkz2fiz)^-Rkifiz)).
*=i   k dz

Introducing the expansion (144) into (147), we obtain

JU   1 I        «i       2a2 \ / c*i       2c*2 \

(148) £Tf'-(z-7--7-"-)r-v^^-'">

In view of (145) and (148), comparison of the coefficients of z~' on the two

sides of (3.5) yields a relation of the form

(149) an+j+1 = P2iau ■ ■ ■ , an+j),

where again P2 is used to represent a polynomial in its arguments. The rela-

tion (149) between the coefficients oí fiz) can be used as a recursion formula

for am, m>n. Thus if the coefficients at, a2, ■ • • , an and the numbers

Fi, F2, ■ • ■ , Fn are given, the function/(z) is completely determined by the

recursion formulas.

Let us now consider the boundary point pit): (ai(¿)> 02(¿)> ' ' ' > a«W) on

the characteristic x corresponding to the function/(z, t). At this point the

form (Fiai + Fiäi-f- • • • -\-Fnan-\-Fndn) assumes a relative maximum for/ in

T, the Fi, Fi, ■ ■ ■ , Fn, Fn giving the (complex) direction numbers of the

normal to Bn at pit). If we now consider the surface Vn+)l (again assumed to

be regular) generated by points (ai, • • ■ , an+ll) for / in T, we can find a point

pit) on the surface Bn+Jt where the direction numbers of the normal

are Fi, Fi, • • • , Fn, Fn, 0, • ■ ■ , 0. This is true since the tangent plane at

a regular point pit) which projects into a boundary point of V„ must be

orthogonal to the subspace of 2(re +p)-dimensional space generated by

<Zi, a2, ■ ■ ■ , an. For otherwise, considering the tangent plane as an ap-

proximation to the surface Bn+)1, we see that pit) would project into a point p

of V„ having a complete neighborhood about it in Vn and hence could not

be a boundary point of Vn.

The function /(z, ¿) corresponding to the point pit) is the same as the

function/(z, t) corresponding to pit). For (ai(¿), a2it), • ■ ■ , a„(¿)) also gives

a relative maximum to the form .Fiai + .Fiai+ • • • + Fn+lían+^JrFn+Iídn+I¡, in

which Fn+, = 0 for v = l, ■ • ■ , p. Then the function/(z, /) satisfies equation

(113) for the same values of a, and F, as does/(z, ¿) ; hence by the uniqueness

proved above, /(z, /) =/(z, t).
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We observe that in (120b), dFk/dt is expressed in terms of Fk+r, v>Q, and

thus are all zero at p(t) for k>n. For k = l, ■ • ■ , n, the equations of the

characteristic on Vn+Il passing through p(t) are exactly the same as those

given in (120a and 120b) for the characteristic x through p(t), since the

dak/dt depend only upon the a, for v^k, k = \, 2, ■ ■ ■ , n. Furthermore (120a)

is also satisfied for k = n-\-\, • • ■ , n-\-p and at p(t), dFk/dt = 0 for k>n. But

the first n equations in (120a and 120b) are exactly the equations satisfied

by the coefficients of f(z, t) as we move along the characteristic x of Vn, so

we see that f(z, t) also corresponds to a single characteristic x on Vn+f¡.

Therefore, the first n-\-\x. coefficients of f(z, t) satisfy (120a) and since p. is

arbitrary, we can say that all the coefficients of f(z, t) satisfy (120a).

Expanding the following two expressions in powers of z, we obtain

dg(z, t)  z + K "  / »+Î \
(150) z —- -= e-'z - «-,Z(>'«.• + 2Z(,' - k)a^kKk)z-\

âz      z — K v=2\ k=i /

dg(z, t) "  / dar\
(151) Jl±l= -e-'z + «-'Z(-^ + — J»"'.

dt P=i \ dt I

If we substitute the value of dav/dt along the characteristic given by (120a),

we see that

,„« dg(z,t) dg(z,t) z + K
(152) -= — z->

dt dz      z - K

where K = K(t) is a point on y which corresponds to a tip of the image r(.

The differential equation (152) is the Loewner differential equation.
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