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By applying the method of arithmetization to some proof of the well

known Löwenheim-Skolem-Gödel theorem, we can prove that for each

ordinary axiom system S (for example, the original Zermelo set theory as

refined by Skolem) there are arithmetic predicates expressible in the notation

of ordinary number theory such that when they are substituted for the pred-

icates (for example, the membership predicate) in the axioms of S, the result-

ing assertions are all provable in the system obtained from ordinary number

theory by adding the arithmetic statement Con(S) (expressing the con-

sistency of S) as a new axiom.

With the adoption of a suitable definition for the notion of translatability,

the theorem can be rephrased as saying that every system S is translatable

into the system obtained from number theory by adding Con(S) as an

axiom. As the theorem reveals the strength of the assertion Con(S) for each

given system S, it can be applied in considerations regarding problems of

relative consistency. For two special systems N and N', it is shown that N'

is translatable into N# (namely, the system obtained from N by adding

Con(N) as an axiom) and that therefore the relative consistency of N' to

N# can be proved in number theory. It is also observed that if N is co-con-

sistent, then iV# is consistent. The same method can be applied, for simi-

larly related systems S and S', to prove the relative consistency of S' to S#,

although in certain cases S' is demonstrably not translatable into S.

Using the same notion of translation, we have also, from Gödel's theorem

on the impossibility of proving Con(S) in S, the conclusion that if Con(S)

is provable in S', then S' is not translatable into S. Since, as it is known,

the consistency of any given system can in a certain sense be proved in a

stronger system, it follows that there exists an infinite sequence of systems

Lo (being the ordinary number theory), Li, L2, • • • which are all of the same

notation as the ordinary number theory and of which each is translatable into

all its successors but none is translatable into any of its predecessors. There

are also predicates Pi, P2, • ■ • such that Pm is definable in L„ when and only

when m is not greater than n. The question whether the arithmetic transla-

tions of the predicates such as Pi, P2, ■ ■ ■ could be recursive predicates

seems to be an open question.

To help us in the studies reported in this paper, Professors Paul Bernays,

W. V. Quine, and J. Barkley Rosser have given generously their time and

made very valuable criticisms as well as suggestions.
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1. The notion of translatability. Let S and S' be any two formal systems

containing quantifiers and truth-functional connectives^).

Definition 1. S is said to be translatable into or has a model in (or ob-

tainable within or contained as a part in) S' if there exists an effective way

of replacing all the predicates of S by predicates of S' such that the resulting

statements in place of the theorems of S all are theorems of S'.

More explicitly, this definition contains at least the following parts:

1.1. The translation of a quantification (namely, a formula beginning

with a quantifier) of S is a quantification in S'.

1.2. The translation of the negation of a formula of S is the negation of

the translation of the formula.

1.3. The translation of the conjunction of two formulas of S is the con-

junction of their translations.

1.4. A special case of 1.2. The translation of the negation of a statement

(that is, a formula containing no free individual variables) of S is the nega-

tion of its translation.

1.5. The translations of the theorems of S all are theorems of S'. Or alterna-

tively,

1.5.1. The translations of the axioms of S are theorems of S'.

1.5.2. If a statement of S is deducible from certain other statements of

S by a rule of inference and the translations of these latter statements of S

are theorems of S', then the translation of the former statement is also a

theorem of S'.

It appears that in most cases where we tend to say that a system S is

translatable into or obtainable within a system S', the conditions in the above

definition are satisfied. For example, this is the case when we say that arith-

metic is obtainable in set theory, or that the simple theory of types is trans-

latable into Zermelo set theory. Nevertheless, for purposes of metamathe-

matical considerations, it seems usually sufficient to use the following simpler

and more comprehensive definition(2).

Definition 2. S is said to be translatable into S' if there exists a (general)

recursive function T mapping the set of numbers representing (via an

arithmetization of the syntax) the statements of S into the set of numbers

representing those of S' such that the set of (the numbers representing)

the theorems of S is mapped into the set of those of S' and the image of the

(') Functions or functors are not mentioned in the definition because it is known that

theoretically they can always be replaced by predicates; see p. 460 of Hubert and Bernays,

Grundlagen der Mathematik, vol. 1, Berlin, 1934.

(2) It is not important that Definition 2, unlike Definition 1, is phrased in terms of an

arithmetized syntax. A reformulation of Definition 1 in similar terms is also possible, although

it would be somewhat lengthy.

Incidentally, according to either definition, the relation between S and S' of being

translatable into each other is obviously an equivalence relation, being reflexive, transitive,

and symmetric.
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negation of a statement is the negation of the image of the statement.

It is easy to see that if S is translatable into S' according to Definition 1,

it is so also according to Definition 2, but not conversely. One example where

S is translatable into S' according to Definition 2 but not according to Defini-

tion 1 is the case where S is the quantification theory (the first-order predicate

calculus) and S' is the theory of truth functions (the propositional calculus) (3).

If S is translatable into S' according to Definition 2, we can only conclude

that 1.4-1.5 (but not necessarily 1.1-1.3) hold. Notwithstanding the differ-

ence between these two definitions, the theorems in this paper are not affected

whether wre use one or the other definition. Therefore, in reading this paper

either definition can be assumed according to one's preference.

When two apparently different systems are translatable into each other,

we often say that they are essentially of equal strength. Thus, in a certain

sense, those properties of a system which remains unchanged under transla-

tions constitute its essence while the other properties are theoretically less

important. If we stick to the first definition, we might also say that it is the

structure of the system that is mathematically important, not its contents.

Definition 3. Two systems S and S' are said to be of equal strength if

they are translatable into each other. S' is said to be stronger than S if S is

translatable into S' but not conversely.

A terminological remark is here in order. Throughout this paper, by num-

ber theory or ordinary number theory is meant the system Z of Hubert and

Bernays(4) which contains, besides quantification theory, the theory of

identity, the Peano axioms, and the recursive equations for addition and

multiplication. The theoretically dispensable ju-operators (the smallest num-

ber such that) can also be added, together with the basic properties of these

operators.

Theorem X. If S is translatable into S' then S is consistent if S' is, and

Con(S) is derivable from Con(S') in number theory.

Proof. If — Con(S), then there is a statement of S such that both it and

its negation are theorems of S. By 1.5, the translations of these two state-

ments are theorems of S'. But by 1.4, the translation of the negation is the

negation of the translation. Hence, — Con(S'). Therefore, if Con(S') then

Con(S). Moreover, the derivation can be carried out in number theory, since

we assume the mapping to be effective.

Definition 4. A system which contains number theory as a part is said

to be a mathematical system. (In particular, the system Z of number theory

is a mathematical system.)

(3) Such a translation is obtainable by omitting the quantifiers and the individual variables

in every formula of the quantification theory. Cf. p. 70 of Hubert and Ackermann, Grundzüge

der theoretischen Logik, 2d ed., Berlin, 1938.

(4) Hubert and Bernays, op. cit., p. 371.
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According to Gödel's theorem on consistency proofs, we have:

1.6. If S is a consistent mathematical system, Con(S) is not provable in

S nor in number theory.

Theorem 2. // S' contains a consistent mathematical system S as a part and

Con(S) is a theorem of S', then S' is stronger than S.

Proof. By hypothesis, S' contains number theory as a part. Therefore, by

Theorem 1, if S' were translatable into S, Con(S') would be derivable in S'

from Con(S). Since Con(S) is by hypothesis provable in S', Con(S') would

then be provable in S'. Hence, by 1.6, S' would be inconsistent. Therefore,

by Theorem 1, if S' were translatable into S, S would also be inconsistent.

But S is consistent by hypothesis. Hence, S' is not translatable into S and,

by Definition 3, S' is stronger than S.

Thus, for example, each set theory which contains the number theory Z as

a part and in which Con(Z) is a theorem is stronger than Z (that is, not trans-

latable into Z).

Let Zs be the system obtained from Z by adding Con(S) as an axiom.

Then we can prove:

Theorem 3. If Zs is consistent, then S is consistent.

Proof. If S is inconsistent, then the arithmetization of the proof of a con-

tradiction in S gives a numerical counter example to Cpn(S). This numerical

counter example is available in Z, so that Zs is inconsistent.

On the other hand, we have:

Theorem 4. // S is consistent and Z is ta-consistent, then Zs is consistent.

Proof. Let Pr(w, n) be the recursive arithmetic predicate expressing that

m is the number of a proof in S for the statement whose number is n. If no

is the number of a statement (for example, 0 = 1) whose negation is provable

in S, then for every fixed number ma, —Pr{mo, nf) is "true" (or verifiable)

because S is consistent. Since Pr is recursive, — Pr(wQ, no) is therefore for

every fixed mo provable in Z. By hypothesis, Z is co-consistent. Therefore,

Z remains consistent if we add {m) — Pr{m, no) as a new axiom. Hence, Zs is

consistent.

If S happens to be a system in which the co-consistency of Z can be proved,

then we seem to be able to infer that if S is consistent, then Zs is consistent.

By applying the method of arithmetization to either Gödel's proof or

Henkin's proof of the strengthened Löwenheim theorem, we can prove the

following theorem :

Theorem 5. If S is consistent, then we can define in the system Zs certain

predicates such that the axioms Ai, A2, ■ ■ • of S all become provable in Zs if

in them we replace all the predicates one by one by these predicates defined in Z$

and let all variables range over natural numbers.
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At first we proved this theorem as a slight extension of a result of Hubert

and Bernays(5) obtained by arithmetizing a variant of Gödel's proof of the

completeness of quantification theory. Both Professor Rosser and the referee

found our proof too complex and suggested arithmetizing instead the much

simpler Henkin proof(6). We quote their suggestions:

What must be done is to write the Henkin proof in terms of definition by

induction. For this, we modify the Henkin proof slightly(7). Starting with

A, we let Ui be symbols not occurring among the symbols of So. We also

enumerate all formulas C0, Ci, • • • , as follows: If n is even, say n = 2m,

then pick the first formula {3x)F{x) deducible from A together with

Co, Ci, • • • , C„_i, and such that ( 3x)F{x) was not formerly picked in de-

fining a Cr, and take C„ to be F{um). If n is odd, say n = 2m + X, take C„ to be

the first formula which is not already a Cr, and which involves only uu

u2, ■ ■ ■ , um together with symbols of So, and such that no contradiction can

be derived from A together with Co, Ci, ■ • • , C„. Then r„ can be taken as

the set of all C„'s, and Henkin's proof easily goes through in number theory.

From this result, the above Theorem 5 follows immediately.

We have not attempted to work out the above suggestions because Dr.

Gisbert Hasenjaeger had already obtained with a similar modification of

Henkin's proof(8) a stronger result which contains Theorem 5 as a part, be-

fore we received the above suggestions. However, these circumstances seem

to make it both justifiable and desirable to omit from this paper our earlier

complex proof of the theorem above. Accordingly, we shall assume Theorem 5,

but present here no detailed proof for it.

By Definition 1, Definition 2, and Theorem 5, we have:

Theorem 6. Every system S is translatable into its corresponding system

Zs. Moreover, there is an effective method by which, given any system S, we can

find a translation which translates it into Zs.

2. Proofs of relative consistency. To illustrate the applications of Theo-

rem 6, we consider two special systems N and N' such that N' is related to N

as an (w+l)th order predicate calculus is to an nth except that variables of

the (ra-f-l)th type are not used in defining classes of lower types. It is proved

that N' is translatable into the system obtained from N by adding Con(N)

as an axiom.

(s) See especially pp. 185-188 and pp. 234-352 of Hubert and Bernays, ibid., vol. 2, 1939.
Compare also Theorem 5 and footnote 3 of Remarks on the comparison of axiom systems, Proc.

Nat. Acad. Sei. U.S.A. vol. 36 (1950) pp. 448-453. Certain definitions and theorems of this paper

have been summarized there, and a few more references have also been given there.

(6) J. Symbolic Logic vol. 14 (1949) pp. 159-166.
(?) See pp. 162-163, ibid.
(8) In a report for Professor Bernays's seminar at Zurich, Dr. Hasenjaeger presented in the

winter of 1950 substantially the same simplification of Henkin's proof as sketched above, al-

though he did not discuss the question of arithmetization then.
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N is a weak system of set theory formulated after the manner of Quine and

belonging to the kind of set theory in which the distinction between elements

(or sets) and (non-element) classes is made so that all classes are classes of

elements. The axioms of N assure us only that the null class is an element and

classes of one or two members are elements. Accordingly N admits a model

containing denumerably many elements plus classes of them. Such a model

seems to make it clear that N is roughly as strong as a second-order predicate

calculus founded on natural numbers.

N may also be characterized as a system obtained from a well-developed

system of Quine(9) by replacing all his elementhood axioms by a single one

stating that pairs are elements. It is formulated within the quantification

theory Q used ordinarily, with a single special predicate written as e.

In N, element variables a, b, c, and so on are introduced by contextual

definitions such as:

2.1. {a)A{a)    for    {x){{3y){x ß y) D A{%)).

2.2. (3a)    for    -{a)-.

And identity is defined in the usual manner:

2.3. x = y   for    {z){z G x = z £ y).

The special axioms of N are given in C1-C3.

Cl. x = yZ){x£.zZ)yE.z).
C2. {Ba)ib){bEa = {b=xVb=y)).
C3. If A is any formula of N in which y is not free, then ( 3y)(a)(aGy

»A)._
It is known that the number theory Z is translatable into N. One way of

making the translation is as follows(10). Identify 0 with the null class and the

successor of a natural number with its unit class. In this way, all natural

numbers are identified with elements of N. Then define the class Nn of nat-

ural numbers as the intersection of all classes x of N such that x contains 0

and, for every n, if x contains n it also contains the successor of n. The prin-

ciple of induction follows immediately: Every class which contains 0 and

contains the successor of n if containing n, contains Nn. Variables m, n,

and so on which take natural numbers as values and the /u-operators p.m, fin,

and so on can be introduced in N by contextual definitions. The following

metatheorems of N are provable.

2.4. If y is not free in A, then ( 3y){m){mÇ£y = A).

2.5. {3m)A{m)Z)A{ßmA{m)).

2.6. («) {A {n) = 5(n)) DtinA (n) = pnB(»).

The system N' is an extension of N, the primitive notations of which being

those of N plus a new kind of variable X,  Y, and so on and a new dyadic

(») Mathematical logic, New York, 1940.

(I0) See J. Symbolic Logic vol. 13 (1948) pp. 129-137.
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predicate r¡. The atomic formulas of N' are xGy, and so on, and xr¡ Y, and so

on from which we build up all the formulas of N' by truth-functional con-

nectives and quantifiers. N' contains the quantification theory for the vari-

ables x, y, and so on, and that for the variables X, Y, and so on. The special

axioms of N' are C1-C3 and the following additional ones(u).

C4. If A is a formula of N'in which Fis not free, then ( 3Y){x){xijY=A).

C5. {x){xGy=xGz)D{yr¡XDzvX).
Let us assume that the syntax of N and that of N' have both been

arithmetized in the usual manner. Since N is a part of N', let us assume that

the arithmetization of the syntax of N coincides with a part of that of N'.

With such arithmetizations, we have two arithmetic statements Con(N)

and Con(N') expressing respectively that N is consistent and that N' is

consistent. Let N# be the system obtained from N by adding Con(N) as a

new axiom. Then we can also obtain an arithmetization of the syntax of N#

from that of N and, therefore, there is an arithmetic statement Con(N#)

expressing that N# is consistent. We want to prove in the number theory Z:

If Con(N#), then Con(N').

This we do in the following manner. By Theorem 6, N is translatable into

the system ZN obtained from number theory by adding Con(N) as a new

axiom. More precisely, we know from Theorem 5 that in Zn theorems can

be proved which are like the axioms of N given in C1-C3 (imagining that all

the defined symbols =, a, b, and so on have been eliminated with the help

of the defintions 2.1-2.3) except for containing an arithmetic predicate G*

(say) of Zn in place of G and variables m, n, and so on instead of the variables

x, y, and so on. Since N contains Z, N# contains Zn. Therefore, these arith-

metic translations of the axioms C1-C3 of N and N' are all provable in N#.

For example, corresponding to Cl, we can prove in N#:

Cl'.  {m){mE*k = m£*j)Z){ke*nZ)j&*n).
Let us use m*, k*, and so on, as abbreviations^2):

2.7. m* for ßn(j)ij&*n—j&*m)> and so on.

Then we have in N#:

2.8. j£*m*=fE*m.
Proof. Since {j)(JE.*m=jEi*m), so ( 3«)(j)(/'G*«=jG*»i). By 2.5 and

2.7, the theorem follows immediately.

Let A be an arbitrary formula of N# built up exclusively from formulas

of the forms n£*w and m*(Ey with the help of quantifiers and truth-func-

tional connectives. By 2.4 and 2.8, we have:

2.9. If y is not free in A, then ( 3y)im){m*Ç.y = A) is a theorem of N#.

Another useful theorem of N# is the following.

2.10. ij)Ue*k=je*m)-D{k*GyDm*Gy).
Proof.     Assume:     (j)(jG*&=jG*w).     Therefore,      iJ){j(E*n=f(E*k)

(u) In N', Cl becomes redundant on account of the presence of C4 and C5.

(12) This differs only slightly from a device which Professors Bernays and Rosser suggested

to us to ensure that we can prove in N# the counterpart of C5.
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— (J)(7'G*m—j'G*w). Hence, by 2.6 and 2.7, k* = m*. Hence, &*GyZ)?«*Gy,
and 2.10 is proved.

To show that the whole system N' is translatable into the system N#,

we use a translation according to which the translation in N# of a statement

A of N' is obtained from A by the following transformations: (1) Any

formula of N' of the form xGy is replaced by a formula of N' of the form

wG*&, and the associated quantifiers {x) and (y) are replaced by the quanti-

fiers (m) and {k); (2) Any formula of N' of the form xrjY is replaced by a

formula of N' of the form m*ÇLy, and the associated quantifiers {x) and (F)

are replaced by {m) and (y) ; (3) Every truth-functional connective remains

unchanged.

It should be easy to see that the translation satisfies all the conditions in

Definition 1 and Definition 2. The only item that calls for some comment

seems to be 1.5, which requires that all theorems of N' be translated into

theorems of N#.

As mentioned above, the translations of C1-C3 are all theorems of N#.

And the translations of C4 and C5 are just 2.9 and 2.10 which have been

proved for N#. Moreover, we can obtain in N# the quantification theory for

the variables x, y, and so on and that for the variables m, n, and so on. Hence,

all theorems of N' are transformed into theorems of N# according to the

translation described above.

Theorem 7. N' is translatable into N#.

Hence, by Theorem 1, we have:

2.11. Con(N') is derivable from Con(N#) in number theory; Con(N') is

derivable from Con(N#) in N'.

Therefore, by 1.6, we have:

2.12. If N' is consistent, then Con(N#) is not a theorem of N'. In other

words, if Con(N#) is a theorem of N', then N' is inconsistent.

An interesting connection between N and N# is embodied in the next

theorem(13).

Theorem 8. If N is co-consistent, then N# is consistent.

Proof. Assume that N# is inconsistent. Then every statement of N#, in-

cluding — Con(N), is provable in N#. Let A be the conjunction of the axioms

of N used in the proof for — Con(N). Then, since Con(N) is the only axiom

of N# which is not also an axiom of N, we have a proof for — Con(N) in

N# using the conjunction (A & Con(N)). Therefore, by the deduction theorem,

we can prove ((A & Con(N))Z) — Con(N)) in the quantification theory of N.

Therefore by truth-functional transformations, (AD — Con(N)) is a theorem

of the quantification theory too. Hence, — Con(N) is a theorem of N.

Therefore, if Pc{n) is the arithmetic predicate expressing that n repre-

(13) This theorem was communicated to us by Professors Rosser and Bernays.
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sents a proof in N for the statement (say) 0 = 1, then ( 3n)Pc{n) is a theorem

of N. If N is inconsistent, then a fortiori it is also co-inconsistent. On the

other hand, if N is consistent then, for every given n, —Pc{n) is true and

therefore provable in N, because it is a statement obtained from a primitive

recursive predicate by substituting a constant numeral in the argument and

every true statement of such a form is provable in number theory. But

( 3n)Pc{n) is also a theorem of N. Therefore, N is co-inconsistent. Combining

the two cases, we have: if N is co-consistent, then N# is consistent.

Therefore, by 2.11, we have:

2.13. If N is co-consistent, then N' is consistent.

The method of proving the relative consistency of N' to N# can also be

applied to other systems. Let S be the part of Zermelo set theory consisting

of the Aussonderungsaxiom, the axiom of extensionality, the axiom of in-

finity, and the axiom of power set; let S' be a simple theory of types with S

as its theory of individuals. Since, according to a result of Quine(14), the

simple theory of types founded on natural numbers is translatable into S,

we can apply the method of proving the relative consistency of N' to N#

and prove:

2.14. If S is co-consistent, then S' is consistent.

Other examples may be given. Consider, for example, the simple theory

of types as formulated by Gödel(15). This system P is founded on natural

numbers and contains, besides the Peano axioms and the axiom of exten-

sionality, only the axiom of comprehension: If n is a positive integer and A is

any formula of P in which y„+1 is not free, then ( Syn+iK^nX^nGyn+i —A) is

an axiom of P. It is easy to see that this can be replaced by the next two prin-

ciples which at first sight appear to be weaker: (1) If A contains no variable

of any type higher than n-\-X, then ( 3yn+i)(x„)(x„Gyn+i — A) ; (2) If A is

any formula of P in which y2 is not free, then ( 3y2)(^i)(^iGy2 —A). Let P' be

the system obtained from P by omitting the principle (2), and let us refer

to it as the monotonie simple theory of types. Then we can speak of the part

Tn' of P' which contains nothing of any type higher than n as the monotonie

predicate calculus of the nth order, in contrast with the corresponding part

T„ of P which forms the nth order predicate calculus. Using the method for

N' and N, we can prove:

Theorem 9. If T2' is co-consistent, then Tí is consistent; if Tí is co-consistent,

then Tí is consistent; if Tí is co-consistent, then Tí is consistent; and so on.

If we call a system regular when we know that it is either inconsistent or

co-consistent but that it cannot be consistent yet co-inconsistent, we obtain

the next theorem.

C4) See J. Symbolic Logic vol. 1 (1936) pp. 45-57. The special systems which Quine con-

siders are somewhat different. However, his method applies to the present case too.

(16) See Monatshefte für Mathematik und Physik vol. 38 (1931) pp. 176-178.
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2.15. If Tí is consistent and T2', Tí, ■ • -are all regular, then T3',

Ti, • • • , as well as P', are all consistent.

Thus, in a certain sense, we can say that the reason why a predicate

calculus (founded on natural numbers) of a higher order is stronger than one

of a lower order merely comes from the presence of the principle (2) which

enables us to form new classes of natural numbers in the predicate calculus

of higher order.

The method does not seem to be applicable to the systems T3, T4, • • • of

predicate calculi in any analogous manner. Indeed, the principle (2) seems

to make much difference. For example, it is not obvious whether T3, might be

translatable into P'.

3. Definability and translatability. It is known(16) that there exists a se-

quence of systems (set theories) Si, S2, • • • such that each contains the num-

ber theory Z as well as all its predecessors, and that in each the consistency*

of all its predecessors can be proved. For example, the systems T2, T3, • • •

just mentioned or certain systems respectively of similar strength can be

taken as the systems Si, S2, • • • respectively. Hence, by Theorem 2, we

have:

3.1. There exists a sequence of systems Si, S2, • • • such that they are all

stronger than Z, and that if they are consistent then for every m and n, Sm

is stronger than S„ when and only when m is greater than n.

As we know, the set theories Si, S2, • • • can be so formulated that in the

axioms of each system merely a single dyadic predicate (the membership

predicate) occurs. Let these predicates be Ei, E2, • • • , and their arithmetic

translations according to Theorem 5 be E*, E*, • • -, respectively.

Definition 5. A predicate E implicitly determined by certain assertions

concerning it is said to be definable or has a model in a system S' if there

exists a system S which includes the assertions about E as theorems and

which is translatable into S'.

For example, the predicate of being a natural number is according to this

definition definable in the system N described above, if we take the Peano

axioms as determining the predicate. By 3.1, we have:

3.2. None of the predicates Ei, E2, • • • is definable in Z. If Si, S2, • • •

are all consistent, then for every m and n, Km is definable in S„ when and

only when m is not greater than n.

When a predicate E is determined by certain postulates, a translation

E* of the predicate is determined by the translations of the postulates. There-

fore, we have also:

3.3. None of the predicates E*, E*, • • • is definable in Z.

Let Zs be, as before, the system obtained from Z by adding Con(S) as a

new axiom. Using the same sequence of systems, we have:

(") Cf. Tarski's assertions on the lower half of p. 110 of J. Symbolic Logic vol. 4 (1939),

as well as those on p. 318, p. 359, and p. 400 of Studia Philosophia vol. 1 (1935).
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3.4. If Z is co-consistent and Si, S2, ■ ■ • are all consistent, then:

(a) All the systems Zz, Zsj, Zs2, • • ■ are consistent and have the same

primitive notation as Z;

(b) Each system in the sequence Z, Zz, Si, ZSl, S2, Zs2, • • • is translatable

into every later system in the sequence;

(c) For all positive integers m and n, if m — X is greater than n, then Sm

is not translatable into Zs„;

(d) If m is not greater than n, then Km is definable in Zs„, if m — X is

greater than n then Em is not definable in Zs„;

(e) If m — X is greater than n, then Zs„ is not translatable into Zs„ and,

therefore, for example, each system in the sequence Z, ZSl, Zs3, Zs6, • ■ ■ is

stronger than all its predecessors.

Proof, (a) By Theorem 4.

(b) By Theorem 5, each S,- is translatable into Zs<. But each S¿ contains

Z and Con(Sj_i) as a theorem. Hence, Zs,_! is translatable into S¿.

(c) Since m — X is greater than n, Zs„ is, by (b), translatable into Sm_i.

Therefore, if S,„ were translatable into Zs„, Sm would be translatable into

Sm-l-

(d) By Definition 5, (b), and (c).

(e) By (b) and (c).

Two questions remain unanswered: Is Zs„ translatable into Sn? Is Zs„+,

translatable into Zs„? We know merely that Zs„ is translatable into S„ for

every n, if and only if, for every n, Zsn+1 is not translatable into Zs„.

From (d) and (e) of 3.4, we have the following corollary(17).

Theorem 10. There exists a sequence of systems Lo( = Z), Li, L2, • • • all

of the same notation such that if they are all consistent, then each is stronger

than all its predecessors and therefore translatable into none of them. There

exists also a sequence of predicates Pi, P2, ■ • • such that Pm is definable in L„

when and only when m is not greater than n.

Using the notion of translation, Gödel's(18) theorem on the incomplete-

ness of systems can also be stated:

3.5. There exists no consistent system S such that there is a translation

of the number theory Z into S according to w-hich, for every statement A of Z,

either A or —A is translated into a theorem of S.

Harvard University,

Cambridge, Mass.

(1?) For example, it is sufficient to take Zt2, Zt4, Zt6, • • • as h¡, L2, L3, • • • where T¡ is

again the ith order predicate calculus.

(ls) This corresponds rather to Rosser's extension of Gödel's theorem. See J. Symbolic

Logic vol. 1 (1936) pp. 87-91.


