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Introduction

We use the term hyperdirichlet series to denote a series of the form

(1) Z Pn(z)e-^

where Pn(z) is a polynomial in the complex variable z(=x-\-iy) of degree

/i„ and the X„ are positive numbers tending monotonically to infinity. Such

a series is said to be a regular hyp er dirichlet series if the condition

(2) lim ßn/\n = 0

holds, and we shall deal mainly with such series in this paper.

Part II is devoted to a study of the convergence properties of these and

related series. In particular, it is shown that the sets of points for which a

regular hyperdirichlet series is convergent and absolutely convergent are in-

teriors of half-planes (which may be the whole plane or the empty set) plus

certain portions of their boundaries and possibly additional sets depending

primarily upon the roots of the Pn(z) and of their partial sums. These "ex-

ceptional sets" are shown to have outer logarithmic capacity zero, to be of

first category with respect to the plane and certain subsets of the plane, and

to have Hausdorff measure zero with respect to any measure function h(t)

for which the integral

/.'

converges. The series is also shown to converge uniformly in any sector(2) sym-

metric with respect to the real axis and contained in the interior of the

"half-plane" of convergence, and to be "J7-convergent" (in a sense described

below) in any such sector contained in the interior of the "half-plane" of

absolute convergence. Examples are given, however, to show that the Abel
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limit theorem for boundary points does not hold in general, and sufficient

conditions for its validity are given for a boundary point of absolute con-

vergence. Finally, a relation between the "abscissas" of convergence and

absolute convergence and a uniqueness theorem are obtained, analogous to

those in the theory of Dirichlet series.

Series of this general nature first appeared systematically as solutions of

linear homogeneous differential equations of infinite order with constant

coefficients. Ritt [16](3) studied these equations for the case in which the X„

are complex, and the only condition on the ¡xn and X„ is

(3) Z —:— < °°.
,1 = 0 «B

Some results were obtained for the case /¿„ = 0, that is, for Dirichlet series

with complex exponents (see also [9; 14; and 17]). A result in the direction

of the present paper was the theorem that the corresponding series converges

uniformly in any closed and bounded domain interior to an area in which it

has uniformly bounded partial sums [16, p. 48]. This follows in our case

from the corollary to Theorem 16. The only other previous results along the

lines of this paper are by Valiron [20, pp. 26-30] (see also [2l]). He allowed

the X„ to be complex, while the /¿„ and X„ had to satisfy the condition

log n
(4) lim —=— = 0

B->»        Xn

in addition to (2). His results will be given in detail later, but in the case of

positive exponents they follow from the results of this paper. The contribution

of the present paper lies essentially in omitting any restriction on the rate of

growth of the X„ so as to give a generalization of Dirichlet series (see also [5]).

Part 1 is concerned with certain questions on polynomials and series and

sequences of analytic functions and their moduli which are necessary for

part II. The notion of transfinite diameter (or logarithmic capacity) is used

together with a result of Carleson [2] on sets of positive outer logarithmic

capacity. An analogue of the classical theorem of Osgood [13, p. 30] on

convergence of sequences of analytic functions is obtained, using the notion

of M-convergence, that is, the type of convergence to which Weierstrass'

Af-test applies. Some preliminary results concerning convergence and sets of

the first category are also included.

I would like to express my appreciation for the encouragement and many

helpful suggestions given me by the late Professor Ritt. I also wish to thank

Professor Strodt, who has read an earlier version of this paper and suggested

several improvements, and Professors Eilenberg, Carleson, and Fekete for

their ideas on the present subject.

(3) Numbers in brackets refer to the bibliography at the end of the paper.
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Part I

1. Boundary points of the set of convergence. A point set 5 contained

in a set D will be said to be of open type in D if, for every subset R of D, the

set Sr\R is, with respect to R, an open set plus a set of the first category.

We start with two simple results which can be proved by standard argu-

ments (see, for example, [8]).

Theorem 1. An Fcis a set of open type.

Theorem 2. Let {Fn(x)} be a sequence of real continuous functions defined in

D and let S be the subset of D for which

lim supT^x) < k,
B—*»

where k is a given finite number or + ». Then S is an F„, and therefore a set of

open type, relative to D.

The following unpublished theorem of Lennart Carleson will be useful

later (see [4] for definitions).

Theorem 3 (Carleson). Let {F„(x)} be a sequence of real Bor el measurable

functions which converges on a bounded plane point set E of capacity k>0.

Then, given any e>0, there exists a closed subset F of E of capacity greater than

k — e on which the sequence converges uniformly.

Note. Theorem 3 is valid for logarithmic capacity and also for any capac-

ity whose potential function is non-negative. We assume the latter in the

following proof, since, for any given set E, the logarithmic case can be re-

duced to it by a magnification of the plane.

Proof. Let p be any distribution of the unit mass on E. By Egoroff's

theorem [18, p. 18] and the normality of p [4, pp. 12 and 48], given any c

satisfying l>c>0, there is a closed subset G of £ on which the sequence

converges uniformly and such that p(G)^l — c. Let 6(e) be the completely

additive and normal set function given by 0(e) =(1 — c)~1u(eC\G), where e

represents any plane set. Then 6 is a distribution of the unit mass on G. Let

V be the l.u.b. of the potential generated by p on E. Then the potential gen-

erated by 6 on G is nowhere greater than 7(1— c)_1, from which the result

follows.

2. M-convergence. We first state a known strengthening of Cauchy's

inequalities for power series [10, p. 487].

Lemma 1. Letf(z) = Zñ-o a»zn be analytic for \z\ ^R, and let

I = - I      | f(Re») | de.
2ir J o
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Then | a„ | _* 7/1?".

We say that a series of functions 5Z"=0 Pn(z) is M-convergent on a set 5

if 2"=o Mn converges, where

Mn = l.u.b.   | Fn(z) |.
s

It is important to know under what conditions M -convergence is implied by

absolute convergence. In this connection, we have the following analogue of

Osgood's theorem on convergent sequences of analytic functions.

Theorem 4. Let ^„„o Fn(z) be a series of functions, each analytic in a

domain D, which converges absolutely at every point of D. Then there is a domain

contained in D on which the series is M-convergent.

Proof. By [13, p. 31 ], there is a subdomain F of D and a number N>Q

such that Zk-o I F*(z) | < N for all n and all z in F. Let 77 be a circle | z — z0|

= i? which is contained in F, and put

Then

It = — f     I Fu*** + *o) | dO.
2ir J o

Zlk=Z — f    I Fk(Re* + 3o) I *
a=o k,=a 2ir J o

J /» 2T B

= — I       Z I F*(Äe* + zo) | dff
2ir J a       k*=o

1   r2"-
— A
2x Jo

hence Zk=o h^N. Let G be the domain \z — z0\ <S, with S<R, and put

< — |      NdO = IV,
2ir.

M„ = l.u.b.  | F„(z) |.
G

Let the expansion of F„(z) around z0 be

GO

^b(z)  =   Z ank(z — Zo)*.

Then

M 00 / S\k

Mn g Z\^k\Sk= Z\ ankRh\ ( — ) .

But |a„fci?*| ^7„ by Lemma 1, hence
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therefore

* /        SA-1   * /        5\_1

5*-*('-*) .?/•<<'-?) ■
which shows that 2Z"-o M„ converges.

3. Polynomials. We start with a relation between the coefficients of a

polynomial expanded around two different points, one of which we may take

to be the origin.

Lemma 2. Let

Then

P(z) = Z«kZk = Zbk(z + z')\

M — max ( | a01,  | ai |, ■ • • , \ an

N = max (| &o|,  I 0i |, • • • , | M

M( | z' | + 1)" è IV è M( | z' | + 1)-".

Proof.

.      ,       IP(«(0)|       I A     /r\ I

I        *!       I I   r-t       \*/ I

^ iV(|z'| + 1)»

which gives the second inequality; the first follows by symmetry.

This leads to an estimate of the maximum modulus of a polynomial on an

arbitrary circle.

Lemma 3. Let P(z) and M be defined as above, then

i i M
max       P(z)    g: min (R", 1).

I «-*'!-» (|z'| + 1)B

Proof. This follows directly from Lemma 2 and Cauchy's inequalities.

We can obtain similar estimates on closed bounded sets of positive trans-

finite diameter (see [15]).

Theorem 5. Let E be a closed set contained in the circle \z\ ^R^l of trans-
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finite diameter d>0. Then, if P(z) and M are defined as above,

max     P(z)    > M ( —
g    '        ■ \3R

with equality only for n=0.

Proof(4). Let P(z)=a(z — ri) ■ ■ ■ (z — rn). Let si, ■ • • , sk be those ry for

which \r}\ ^2R and h, • ■ • , tv, with k+m=n, the remaining ones. By

Cauchy's inequalities, there is a point z' on the circle \z\ =R such that

| P(z') | è M. Then

(z — Si) • • • (z — sk)(z — h) • • • (z - tm)

(z' - si) ■ ■ ■ (z' - sk)(z' -h)--- (z' - tm) '

But, for \z\ ^R, we have, since |/y| >2R,

2\t,-\ > 3 | z\ + | z'| ;

therefore

3\z - tj\ a 31 */1 - 3 | z | > | lj | + | z' | ^ | zr - tj | ,

hence

(z - ¿i) • • • (z - lm)
————•-•-■   > 3'm.

(z' - h) ■ ■ ■ (z' - tm)

Also,

¡(s'-,,)--- (z'-5*)| û (3R)k

and by [19] (see also [15]),

max  | (z — ii) • • • (z — st) | § dk,
E

therefore

max | P(z) ( è [¿/(3R)]*3-'" ^ [d/(3R)]n,
E

since it is clear that d^R. Equality can occur only if maX|Z|=ß |.P(z)| =M,

in which case P(z) = Mz". It is then clear from the proof that equality holds

only if w = 0.

It is possible to extend this theorem to a larger class of functions.

We define the index of a polynomial as the non-negative integer v such

that the modulus of the coefficient of z" is greater than the modulus of

the coefficient of any higher power of z but not less than the modulus

of the coefficient of any power of z. Let Pj(z)  (j = l, • • • , k) be poly-

(4) This proof was suggested by a similar argument of Valiron [20, p. 27].

)

P(z) P(z')
P(z)

P(z')
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nomials of degrees p¡ and indices v¡ respectively. Let M¡ be the coefficient of

z"i in Pj(z), M= Zki-\\ Mi\, w = maxy p}; and P(z) = ¿J=1 |P,(z)|. We call

P(z) an absolute polynomial of degree n and maximum coefficient M. We say

that P(z) is normalized if M=l (if j = l, we also say in this case that Pi(z)

itself is normalized). We then have the following result.

Theorem 6. Let E be a closed set contained in the circle z^R^i of trans-

finite diameter d>0. Let P(z) be an absolute polynomial of degree n and maxi-

mum coefficient M. Then

max P(z) > M (-)
e \6R )

with equality only for w=0.

Proof. It is sufficient to consider the case where M^O for every j. Let

Ro,i(z), ■ ■ ■ , Rq,s„(z) be those Pj(z) of index 0; Ri.i(z), ■ ■ ■ , Ri.s^z) those

Pj(z) of index 1; • • • ; 2?„,i(z), • • • , Rn,sn(z) those P,(z) of index n. Then

each 5m is non-negative and their sum is k. Let do, 0i, ■ • ■ , 0r be those ôm

which are positive, listed in order of increasing m, hence eg«. Put 8m¡t=0p.

Put To(z)=Rmo,1(z)+ • • ■ +Rmo.e0(z); T1(z)**R„ui(z)+ ■ ■ ■ +Rmi.e,iz);

• ■ • ; rr(z)=i?OTr,i(z)+ • • • +Rmr,er(z). Let D„ be the coefficient of zm» in

To(z), • • • , Dr be the coefficient of z""- in Tr(z). Then P(z) ^ | T„(z) | + | Ti(z) \

+ ■ • ■ +\TT(z)\ and M = 7J>0+7J»1+ • • • +7»rg (r + l)DN where 7JV

= max (D0, • • • , Dr). Hence

P(z)       \ Tp(z) [ + ■••+! Tr(z) 1        1 TN(z) \  _

M (r+ \)DN 2rDN

But, by Theorem 5, with equality only for « =0,

max I TN(z) I g 7>.v (-) ,
e \3R /

hence

M / d Y        / d Y
maxP(z) è—(-) = ^   -)

e 2'\3R/ \6R/

with equality only for « =0.

The leading coefficient of an absolute polynomial P(z) is defined as the sum

of the moduli of the leading coefficients of the Pj(z). By a similar argument, it

is possible to prove the following extension of Fekete's result on the maximum

modulus of polynomials (which was used in the proof of Theorem 5), which,

however, will not be used in the present paper.

Theorem 7. Let E and P(z) be defined as in Theorem 6, and let L be the
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leading coefficient of P(z). Then

T        (d        1\T
max P(z) S; L   min I — >    ■— ]

e L        V 2        2 /_

with equality only for n=0.

4. Sequences. A point set in the plane will be called a C-set if its Hausdorff

measure [7] is zero with respect to every measure function h(t) for which the

integral

f'^-dt
Jo      I

converges. In particular, therefore, a C-set has a-dimensional measure zero

for every positive a. A set for which the intersection of no neighborhood of

any point of the set with the set is a C-set will be called a G-set. If a C-set is

of first category with respect to every G-set, it will be called a Ci-set. Thus

a d-set is of first category in the plane, with respect to every continuous

curve and the classical Cantor set [7, p. 172], and so on. It is clear that a

C-set which is of open type in the plane is a Ci-set, and that a subset of a

d-set is also a Ci-set. We shall use the following special case (a =0) of a result

due to L. Carleson [2, p. 15] (see also [12, p. 145 and bibliography]).

Lemma 4. A plane point set of outer logarithmic capacity zero is a C-set.

We now give two results on sequences of absolute polynomials which are

necessary for Part II.

Lemma 5. Let \Pn(z) \ be a sequence of normalized absolute polynomials of

degrees r„>0. Let S be the set of points for which lim»..*, [P„(z) ]1/r» = 0. Then S

is a set of logarithmic capacity zero.

Proof. It is easy to see [8, p. 270] that S is an Fc¡, and therefore its inter-

section with any bounded Borel set has a logarithmic capacity. Let T be such

an intersection, and let c(^0) be its logarithmic capacity. Then there is a

closed subset U of T of logarithmic capacity greater than or equal to c/2

on which the sequence converges uniformly. (If c>0 we use Theorem 3, while

if c = 0 the result is immediate.) Hence, given any e>0, we can find an N

such that, for n>N and all z in U,

Pn(z)   <  lr».

It follows by Theorem 6 that U is of transfinite diameter zero, therefore,

by a result due to Szegö [19] (see also [15, p. 6] and [4, p. 45]), c = 0. Hence

S is of logarithmic capacity zero [2, p. 16].

Lemma 6. Let \Pn(z)} be a sequence of normalized absolute polynomials of
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degrees rn 2ï 0. Let {X„} be a sequence of positive numbers such that

,.     Tn
hm — = 0.
n->«> Xn

Let S' be the set of points for which lim sup«-«, [P„(z)]1/X»<l. Then S' is an F„

of outer logarithmic capacity zero and therefore a Ci-set.

Proof. If rn = 0, hence Pn(z) = 1, for all sufficiently large n, then S' is the

null set. If not, there is a sequence of values of n for which r„>0. It is suffi-

cient to prove the lemma for this subsequence, therefore we may assume

that r„>0 for all n. Let 5 be the set defined in Lemma 5, and let z' be any

point not in S. Then, for a certain subsequence of values of n, [P„(z')]1/r"

>e>0, which implies that [P„(z')]1/X" = [Pn(z')]<1/r"Kr"/x")>er"/x" which ap-

proaches 1 as m becomes infinite. Therefore, for that subsequence,

liminf [P„(z')]1/X»à 1,
n—»»

hence, over all n,

lim sup [P„(z')]1/X» è 1,

which shows that S' is a subset of 5 and thus also a set of logarithmic capacity

zero.

But, by Theorem 2, S' is an Fa. It follows easily from known results that

an F„ of capacity zero is of outer capacity zero (see [3, p. 112], [4, p. 52],

and [2, p. 58]), which fact, together with Lemma 4 and Theorem 1, com-

pletes the proof.

Finally, since it is clear that, for any z, [Pn(z)]1/X"^(|z| + l)rn/Xn, we

have the additional result that, for any z not in S',

limsup[P„(z)]1/x»= 1.
n—»«

Part II

Preliminaries and definitions. We use the phrase set (region) of con-

vergence to mean the set of points (interior points) for which a given series or

sequence converges (see also [8]). For a series, we have similar definitions of

set (region) of absolute convergence and set (region) of boundedness of partial

sums. The term set (region) of termwise boundedness will mean the set of

points (interior points) at each of which the terms of a given series or se-

quence are bounded.

Following the notation of the Introduction, we put An(z) = XXo Pk(z).

Let dn be the degree of .4b(z); then we have

dn á "„ = max (¿uo, Mil • • • ■ Pn)
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and therefore, because of (2) and the monotonicity of the X„,

lim aVX„ = lim v„/\n — 0.
B—»eo n-*ao

Let C„ be the maximum of the moduli of the coefficients of Pn(z) and Bn the

corresponding maximum for An(z). It is assumed that no Pn(z) vanishes

identically, although it may happen that some An(z) is zero. In that case,

we define dn = — 1 and Bn = 0.

Let r„,i, • • • , r„,% be the roots of Pn(z) and sn,i, • • • , -Vrf„ be the roots

of ^4n(z). If d„= — 1, this latter set is defined to be empty.

Let A be the abscissa of absolute convergence and B the abscissa of term-

wise boundedness (allowing the possibilities + oo) for the series

(5) Z C++",
B=0

where the X„ are arbitrary positive numbers. Let E be the set of limit points

of the fi,f including those r¿,y which appear infinitely often. Let G be the

corresponding set for the s,-,y. Let F be the intersection of the sets analogous

to E for all subseries of (1) whose corresponding subseries of (5) have abscissa

of absolute convergence A.

Consider the series, for fixed finite a,

00

(6) Z [Pn(z)ex»a]e-X»*.
B-0

Define the set Ga for (6) as G was defined for (1), therefore Go =G. Let Ha be

the subset of Ga defined as follows: a point z' belongs to 77„ if and only if,

for every e>0,

log Bn"                     log Bn
hm sup-  < hm sup->

J-"° Xn; s->» X„

where the sequence {n¡\ consists of those values of n for each of which

the polynomial Anx\z) = Zk-o P*(z)eXia has no root in or on the circle

\z — z'\ ^e, and where Bna) is the maximum of the moduli of the coefficients

of Ai*\z).
Finally, let F' be defined in a manner similar to F, but with "abscissa of

termwise boundedness" in place of "abscissa of absolute convergence" and

B in place of A. It is clear that both F and F' are subsets of E. It can be

shown by means of examples that there is no simple relation in general be-

tween F and F'.

5. Absolute convergence and termwise boundedness. In the first part

of this section, (1) represents a series with arbitrary positive X„ satisfying

condition (2).
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Theorem 8. If (1) converges absolutely at a point z' not in E, then it is

M-convergent in any closed bounded region of the half-plane 9?(z) >9î(z'), and

more generally in every sector S: \z — z'\ ^K^R(z-z') with K>0.

Proof. Since z' is not in E, there is an e>0 such that |z' — rtj\ >e for

i>N. Then for any z in the sector 5, and for n>N, we have

R„ =
Pn(z)e- -Xnz

= 1 +

Pn(z')e-^>

z — z

(z - rnA) ■ ■ ■ (z - rnillJe- X„j

(/ - rnA) ■ ■ ■ (z' - r„,M„)<rx»*'

z - z'
1 +

''".en

g-X„9î (*-*')

«[

Kdî(z - z')!""        „
1 +--     ,r*"*<<

We can find an A77 such that, for n>N', pn/\n<e/K. If ¿i„=0, then Rn<i. If

not, we can write

K, *[( 1 +
Kft(z - z')

)g-X„¡R(2-*')/»n

which shows that i?n<l for n>N', which completes the proof, as N' de-

pends only upon the sector 5, and since each term of (1) is bounded in 5(5).

Since E, as well as the other similar sets to be used later, may be the

entire plane, Theorem 8 gives no information as to the region of absolute

convergence in the general case. We can obtain this information in a some-

what less specific form.

Theorem 9. The region of absolute convergence of (1) is the half-plane 9î(z)

>A. Also, (1) is M-convergent in every sector S: \z — z'\ ¿Kdi(z — z'), where

3t(z') >A, and therefore represents a function analytic in the half-plane 9î(z) >A.

Let R be that portion of the set of absolute convergence of (1) in the half-plane

R(z) <A. Then R is an F„ and a subset of F of first category in the plane.

Proof. We shall first show that (1) is M-convergent in 5. Let 9î(z') —A

+ 2e and z be any point of 5. Then

Rn   =
Pn(z)e- \n¡ Cnißn + 1) max (1, I z]"')

Çng-X„(A+«)

^ (Mn + 1) [ I z' I + 1 + JJT9t(z - zQ]'»

Let Si be that part of 5 where Kdt(z — z')<\z'\ +1 and 52 the remainder.

(6) This is the reason we take the X„ to be positive. It we had some X„=0, the results

would not be essentially different, but could not be so conveniently expressed.
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Then, in Si,

(Mb+ l)[2|z'| + 2]"»        f[4|z'| +4]"»'x
Rn   <

fL4|z'| +4]"»'M :

gX„«

which is less than 1 for sufficiently large n, while in 52,

(mb+ l)[2J0R(s-*')]"»
J?» ̂

gXnigXnSR(^— 2')

which is also less than 1 for sufficiently large n independent of z, hence (1) is

iVf-convergent in 5.

We now prove that R contains no interior points. Combined with the

above result, this shows that the region of absolute convergence of (1) is the

half-plane di(z) >A. Suppose the contrary. Then R contains a domain which,

by Theorem 4, contains a circle \z — z'\ ^¡2e, with e<l, on which (1) is

M-convergent. We also have 3t(z' + 2e) <A. By Lemma 3,

max      Pn(z)    t: Cn
\z—z I =»*

+-Tz'   + lJ

Since (1) is also M-convergent on the circle |z — z'\ =e, we see that

Z   Cn\-,-¡- e-X„[3!(,'+.)]   <   oc.
b=o       L | z' | + 1J

But

Cnerx„8¡(*'+20(|z'| + iyn

(J   g-X„3e(2'+<)eMn
= e-x"'[(|z'|+ 1)A]"-

which is less than 1 for sufficiently large n. Thus (5) converges absolutely for

z = z' + 2í, which is a contradiction.

Combining these results with Theorem 8, one sees immediately that R is

a subset of E. We shall now show that R is a subset of F. If not, let z' belong

to R but not to F. Then there is a subseries of (1), whose corresponding sub-

series of (5) has abscissa of absolute convergence A, and for which z' does

not belong to the set analogous to E. Therefore, by the above results, the

region of absolute convergence of this subseries is also the half-plane 3î(z)

>A. But, by Theorem 8, the subseries converges absolutely in the half-plane

9?(z)>9î(z'), which is a contradiction. The remainder of the statement fol-

lows by Theorem 2.

The fact that R is a subset of F might lead one to suspect that E could be

replaced by F in Theorem 8. This however is false. It may even happen, as

the following example will show, that the Abel limit theorem in its weakest

form (approach to a boundary point along a single path) will fail for a point
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at which (1) is absolutely convergent, which lies on the boundary of the

region of absolute convergence, and which lies in E but not in F.

Consider the series

s(z) = z p»(*y-"'« = z «»(*)
71=1 B=l

where Pn(z)=ninzn if n is odd and P„(z)=«-2 if n is even. Here pn=n or

0, Xb = m3, so that lim„^M pn/\n=0 and even Zn=i Pn/K< °°. Also, Cn=w4n

or n~2, so that .4=0. On the line di(z) =0, the series converges absolutely at

z = 0 and diverges elsewhere. We see that E consists of the single point 0,

F is empty, and G consists of the point 0.

Let us investigate the behavior of S(z) as z approaches zero along the

positive real axis. We have, for odd »,

00

S(n~3) = Z Pk(z)e-k*ln* > Pb(z)«-1 = nnerl

k=l

which shows that S(z) cannot approach a finite limit as z approaches zero

along the positive real axis, therefore the Abel limit theorem does not hold.

It can also be seen that the series cannot converge uniformly in any con-

nected region of 9î(z) >0 which contains points of arbitrarily small real part.

Theorem 9 allows the possibility that R may contain an open set with

respect to a curve, which is equivalent to saying that R may contain a curve.

This, however, is impossible if the curve is rectifiable, as we shall show with

the aid of the polynomial estimates of part I. We first must prove two

lemmas.

Lemma 7. Let f(x) be a real continuous non-negative function of x for

OrSx^r. Let M = max f(x) on this interval and \f(xi) — f(x2)| ^D\xi— x2| for

0 ^ Xi ̂  x2 ̂  r and some D>0. Then

\    f(x)dx ^ min (r, M/D)[M - min (r, M/D)D/2]
Jo

= Fx ^ min (r, M/D)M/2 = P2.

Proof. By direct calculation.

Lemma 8. Let f(z) be analytic on the curve C of length r including the end

points, if any. Let M = max |/(z)| and \f z)\ ^D on C for some D>0. Then,

following the usual definition of the integral,

j   | f(z) \\dz\ ^ Pi ^ Ft.
J c

Proof. Let 5 represent arc length on C measured from the initial point if
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there is one, or, if not, from some arbitrary point in a fixed direction on C,

and let z = g(s) for O^s^r. Let h(s) =f[g(s)], therefore h(s) is a continuous

function of s for O^s^r. Let si and s2 be any two values of s in OjSsgr and

Zi=g(si) and z2 = g(s2). Then

| | h(s2) | - | h(si) | | g I h(s2) - h(si) | = | /(z2) - f(zi) |

/»*2Z1

= i ÎJ-Î1

where the integral is taken along the curve. Also, ] h(s) \ has M as its maxi-

mum for O^s^r. Thus, by Lemma 7, fo\h(s)\ds^Fi^F2. But from the

definition we see that Jc\f(z) | | dz\ =/¿| Ä(s) | ds from which the result follows.

Theorem 10. The set R does not contain any rectifiable curve.

Proof. Suppose there is a rectifiable curve contained in R. Then as in

Theorem 4 there is a portion C of this curve on which Zn-o I Pn(z)e~x"2| < A7

for all k. Therefore if we set 7„ =fc\ P„(z)e_Xn*| | dz| we have that Z"=n 7„ < «>.

We may assume that C is a closed bounded point set. Let Xi=max 9î(z) and

Xo = min 9î(z) for z on C. By Theorem 5 and Lemma 4(6), there is a constant

k>0 depending only upon C such that max |P«(z)| on C is at least Cnk'in,

therefore max |P„(z)e_xH on C is at least Cnhne~)"xi. But on C we have

d
— P„(z)e-^'
dz

= | - \nPn(z)e-^> + P„'(z)e-X»' |

^ Cn<rx»*°[X„(r*» + • ■ • + 1) + (pnr^1 + • • • + 1)]

< C„e-x-o(XB + l)(r + 1)"» ^ C„<rx"*°(*n + l)(r + 1)"»

where r = max \z\ for z on C. Therefore, by Lemma 8, if L is the length of C,

we have, putting K = 2 log ¿ — log (r + 1),

(LC  e~~Xnzi+Pnlogi (J  g—X„(2a;l—io)+^»X\

7„ ^ min <—-,    —-—— > .
I 2 2(Xn + 1)      )

But, for any e>0 and sufficiently large n,

2C  g-Xn(2a;l—10+e) 2g~X»(I1_x"+i)— hnlogk

LQ  g— Xnll+Mnlog*

and

2(Xb + l)Cne-x»<2^-«+'>

Cjig-Xn(2zi-*o)+>ln.K

<    1

2(X„ + l)e-*<"->*K ̂  1,

(6) It is necessary to know only that a curve has positive transfinite diameter. This follows

from a well known result of Tchebychef (see [15, p. 8]).
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hence

Q  g-X„(2ii-2o+<)

which shows that

00

Z C„e~x"(2;,:i_I0+<) < »

B-0

and therefore A i=2xi — xo. But, for any given e>0, we can choose C so small

that Xi<Xo+e, hence A <2xo + 2e —Xo=Xo + 2e so hat A ^Xo. But this contra-

dicts the fact that C is in R, which completes the proof.

It is convenient to insert here some consequences of Theorems 8, 9, and

10 which will be useful later.

Lemma 9. If the terms of (1) are bounded at a point z' not in E, then they are

collectively bounded in any sector S:   z — z'\ ^Klft(z — z') with K>0.

Proof. Identical with that of Theorem 8, since the latter depends only on

a "comparison test" argument.

We can now state the following analogue of Theorems 9 and 10.

Theorem 11. The region of termwise boundedness of (1) is the half-plane

<St(z)>B(1). The terms of (1) are collectively bounded in any sector S: \z — z'\

ÛKVl(z-z') where di(z')>B.

Let W be that portion of the set of termwise boundedness of (I) in the half-

plane 9î(z) <7J. Then W is an F„ and a subset of F' of first category in the plane

which does not contain any rectifiable curve.

Proof. The statement concerning S is proved exactly as in Theorem 9

with A replaced by B. To prove that ^contains no interior points, we assume

the contrary. Then W contains a domain which, as in Theorem 4, contains

a circle in which the terms of (1 ) are collectively bounded, say the circle | z — z' |

= 2e with €<1. By Lemma 3, max |P„(z)| on the circle \z — z'\ —e is at least

Cn(e/(|z'| +1))"". Therefore, for all n and some M>0, we have

C e*1»
-g-X„9¡U'+í)  < m
( | z' | + 1)"»

It follows from this, as in Theorem 9, that C„e~x"tciR2'+2t)1 <M for sufficiently

large n, which shows that the'terms of (5) are collectively bounded for

z = z' + 2e. But z' + 2e<5, which contradicts the definition of B. This also

proves that the region of termwise boundedness is the half-plane 9î(z) >B.

From these results and from Lemma 9, we see that W is a subset of E;

(7) See the beginning of Part II.
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that W is a subset of F' is seen in the same way as the fact that R is a subset

of F is proved in Theorem 9. The results about first category and Fa follow

from Theorem 2. To show that W contains no rectifiable curve, we assume

the contrary and as in Theorem 4 obtain a portion C of this curve on which

|PB(z)e~XnZ| <M for all n. We then have In<N for all n, where In is defined

as in Theorem 10. Therefore, as in Theorem 10,

Cng-X„(2xi-xo+0   <   /V

for all n (following the notation of Theorem 10), which shows that B^x0,

which is the desired contradiction.

One immediate result of this theorem is that the portion of R in the half-

plane 3i(z) <B is a subset not only of F but also of F'.

Because of these and the preceding results, it is natural to speak of A and

B as the abscissas of absolute convergence and termwise boundedness, respec-

tively, not only of (5) but also of (1).

It is possible, by the use of less direct methods, to say more about the sets

R and W. We do this by considering, in the special case 0<XoíáX15S • • •

—>+ co, the series

(7) Z I Pn(z) | r*-,
B=0

(8) Z ! Pn{z) | e-^,
B-0

and

(9) Z I Pniz) | ex»(—>,
B=0

where a is a real constant and w is a complex variable. For fixed z, (8) is a

Dirichlet series (whose exponents may not be distinct) in w whose abscissa

of convergence(8) (and absolute convergence) will be called D(z). Let Qn(z)

— Zk=o |P*(z)| and D = l.u.b. D(z). Then Qn(z) is an absolute polynomial of

degree(6) vn whose maximum coefficient will be called Dn. Put

M = hm sup-•
B—>M Xn

Lemma 10. If M>0, then D = M and the set of points for which D(z) <M

is a Ci-set of outer logarithmic capacity zero. If D>0, then M>0.

Proof. We use the result(8) [22, p. 7] that the abscissa of convergence of

the Dirichlet series Zn-o ane~XnZ and the number

(8) The usual proof holds in the more general case considered here.
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lim sup (log   Z ak   ) / ^n
»•-»«        \ b^o / 'k*=0

are positive simultaneously and equal if positive. We show first that D(z)

5»if. If D(z)^0, there is nothing to prove. If not, then

log 0;„(z)                    log [ö„(|z| + l)]-
£/(s) = hm sup ^ lim sup-

log7>„                    »-„log (| z| + 1)
S nm sup- + hm sup- = M.

n—>oo An B—*oo X«

This also proves the last statement of the lemma.

Let {n¡\ be a sequence of positive integers such that

hm- = M.

Let 5 be the set of points for which

:.        re„,(z)T/s-
hm sup   - < 1.

>—    L D», J

Then, by Lemma 6, S is a Ci-set of outer logarithmic capacity zero and, for

any z not in S,

log Q„ .(z) - log Dnj
hm sup- = 0

j->" X„,

which implies that

logo»»        ,.     log^B,-
hm sup-  = hm- = M

J->» Xn> J-.00 \nj

and therefore 7)(z) ^ M, hence D(z) =M, which completes the proof.

Lemma 11. The set of points for which D(z) < Dis a Ci-set of outer logarithmic

capacity zero.

Proof. If 7)= — «j there is nothing to prove. If 7>>0, the result follows

by Lemma 10. Assume that — =o <Z>5¡0, and consider the series (9) for

a = l—D. For fixed z, this is a Dirichlet series whose abscissa of (absolute)

convergence is 7)(z) + l —D=D'(z). But l.u.b. D'(z) = 1, hence, by Lemma 10,

the set of points for which 7?'(z) <1 has the stated properties.

Theorem 12. The regions of convergence and boundedness of partial sums of

(7) are both the half-plane 9î(z) >A. Let R' be that portion of the set of bounded-

ness of partial sums of (7) in the half-plane $R(z)<^4. Then R' is an Fc of
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outer logarithmic capacity zero and therefore a Crset.

Proof. For a given z, (7) converges absolutely if D(z) <9î(z) and has un-

bounded partial sums [6, p. 4, footnote] if 7>(z)>3î(z). Hence (7) converges

absolutely in 9î(z)>7>. Also, by Lemma 11, that portion of the set of bounded-

ness of partial sums of (7) in the half-plane 9î(z) <D is a Ci-set of outer

logarithmic capacity zero, and an F, by Theorem 2. Thus the regions of

boundedness of partial sums, convergence, and absolute convergence of (7)

are all the half-plane 9î(z)>7>. Therefore, by Theorem 9, D=A, and thus

R' has the above properties.

Theorem 13. R is an F, of outer logarithmic capacity zero in the case of

arbitrary positive X„.

Proof. Consider the subseries 5 of (7) for which pR>0. Then, by (2),

X„—»+ co for S, therefore, after a rearrangement, Theorem 12 is valid. Hence

R is as stated if the abscissa of absolute convergence of S is A. But if not,

then the abscissa of absolute convergence of the remaining subseries is A,

therefore R is the empty set.

Theorem 14. W is an F„ of outer logarithmic capacity zero in the case of

arbitrary positive X„.

Proof. We use the fact, the proof of which is standard (see [22, p. 3] for

a similar result), that the abscissa of termwise boundedness of the series

Zn-a aHe~*n* with non-negative X„ tending to infinity is equal to

lim sup»-.«, (log |íIb|)/X„. The method is similar to the proofs of Theorems

12 and 13.

6. Convergence and boundedness of partial sums. For the next three

sections, (1) will be assumed to satisfy conditions (2) and 0<X0^Xi^X2

^ • • ■ —» + «o. As above, we introduce the series

00

(10) Z Pn(z)e-^

and

(11) Z P»(z)ex»<«-">.
B-0

Let C(z) be the abscissa of convergence of (10), and let C = l.u.b. C(z). Also,

put(')

log75„
K = lim sup-

X„

Let 77 be the intersection of the 77„ for all real values of a greater than — C

if C is finite, for all real values of a if C= — cc, and let 77 be the null set if
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C= + oo.

Lemma 12. If K>0, then C^K and C(z) =Kfor all z not in 770. If C>0,
then K>0.

Proof. The proofs of C^K and of the last statement are as in Lemma 10.

Suppose that z0 is not in 770. Then, for some 6>0, we have

hm sup-= K,
/-«>       xn,.

where the sequence [n,] consists of those values of n for each of which An(z)

has no root inside or on the circle | z — Zo| = 2e. We may take € < 1. By Lemma 3

-.-       = Bn(i",
| Zo | + 1J

therefore

i i / €lY" dn
min      | An(z) | ^ Bn[—j    = 5„e2
I a— e8l - • \ 3 /

by an argument used in the proof of Theorem 5. Hence |^4„y(zo)| ¡¿Bnjtln>, so

that

\Anj(zo) |"X»;^     d„,./X„,.

Bn

^ ttr    '■

therefore

which implies that

log | Anj(z0) [ - log Bnj
hm inf-2: 0,

j-"° X„,

log I Anj(z0) \ - log Bnj
hm- = 0.
J-*» x„.

But it follows from this that

log I Anj(z0) | log Bnj
lira sup-  = hm sup-= K

i-"» X„ • y->» X„,

and finally

log | An(zo) |
hm sup-5: K

so that C(zo) =7C.
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Lemma 13. C(z) = C for all z not in 77.

Proof. If C= — co or 77 is the entire plane, there is nothing to prove.

Suppose not, and let zo be any point not in 77. Then, for some real a greater

than — C, zo is not in 77a. Consider the series (11) for that value of a, and let(7)

log Bna)

A a = hm sup-•
n->» Xrt

But C+a>0, therefore, by Lemma 12, since the abscissa of convergence of

(11) is C(z)-\-a, we see that Ä"a>0, which implies that 7i„ = C+a since 77a is

not the entire plane. Therefore, by Lemma 12, C(zo)-r-oi = Ka = C+a, hence

C(zo)=C.

Lemma 14. If K>0, then C=K and the set of points for which C(z) <K is a
Ci-set of outer logarithmic capacity zero.

The proof follows the methods of Lemma 10.

Lemma 15. The set of points for which C(z) <Cisa Ci-set of outer logarithmic

capacity zero and a subset of 77.

Proof. The first assertion follows from Lemmas 12 and 14 as Lemma 11

follows from Lemma 10, while the last part is equivalent to Lemma 13.

We can now give the main result on convergence, which is a partial

analogue of Theorems 9 and 13.

Theorem 15. The regions of convergence and boundedness of partial sums of

(1) are both the half-plane 9î(z) > C. Let S be that portion of the set of boundedness

of partial sums of (1) in the half-plane ?ii(z)<C. Then S is an F, of outer

logarithmic capacity zero and therefore a Ci-set and also a subset of H. That

portion of S in the half-plane 9f (z) <B is also a subset of F'.

Proof. The last statement is an immediate consequence of Theorem 11,

while the rest follows from Lemma 15 and Theorem 2 as in Theorem 12.

Corollary. That portion of R (see Theorem 9) in the half-plane dl(z) <C

is a subset of 77.

We observe, for use in §7, that Cgmax (K, 0) and K^max (C, 0). The

number C will be called the "abscissa of convergence" of (1).

7. Uniform convergence. It is clear that (1) cannot be uniformly con-

vergent in a half-plane unless pn = 0 for sufficiently large n, therefore we

shall investigate uniformity only in sectors of the half-plane dt(z)>C. We

use the following identity, which is obtained by partial summation.

k k

(12) Z Pn(z)e-^ =  Z An(z)(e-*»° - e'^*) + Ak(z)e-^»*.
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The following lemma will be useful. This is a standard tool for proving uni-

formity in sectors for Dirichlet series [6, p. 3].

Lemma 16. Let x=9î(z)^0. Then

,    \A
g—>>nZ   _   g—X7l+12       <   J_L  (g—X«z   —   g—Xn-t-ijA

X

if X„ and X„+i are real with X„ ̂  XB+i-

Let K be defined as in the preceding section, and put N = max (K, 0).

We then have the following lemmas, always using x for 9î(z) and x0 for 9î(zo).

Lemma 17. If x0>N, then XXo U»(z0)(e-x"20-iT"x»+i20) | < «>.

Proof(9). Put Xo=Ar+2e. There exists an «i such that, for n>ni,

log Bn
—- < N + e,    hence    Bn < <,*»("+<>;

Xn

therefore, for some n2 and all »>w2,

| ^b(zo) I < e*»w+«>( | 201 + 1)«*» < eX»(Jv+2«).

Hence, for n>n2, and using the result 1—e_I<x for x>0,

| A„(zo)(e~*nZI> — e-x»+i*o) | < ex»(tf+2.) | g-x»20 — e-x»+i201

I Zo'

Xo

zol

x0

gX„(iv+2i)(g-x,lx0 _ g-x„+ix0)     (by Lemma 16)

g—Xnifj   _   g—(X„+l—Xn)xo]

Zn
<-e-x»«min [(X„+i — \„)x0, lj

x0

1 zo | (xp + 1)
<-e x-"min [(Xn+J — X„), 1J.

Xo

Let Ö0 = X0, ön = Xo + min (Xi — X0, 1)+ • • • +min (X„ —X,,-!, 1) for n>0. Then

0B+1— 0„ = min (X„+i —X„,i) and Ö„^X„. Thus

k h

Z «'"x", min (Xn+1 - Xn, 1)|¡] e-B-'(6n+i - 6n)
B«=0 B=0

I

k

= £ «*«-«»+» «(0„+i - On)

(9) We may assume without loss of generality that X„+i>X» and B„>0 for every n.
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K

úe'Z e-9"+1<(0„+i - On)

< e'Z \ e~w'dW = e' I
n=o J e„ J e

J e„

9»+l

'¿If

< e

which is a finite number independent of k, and therefore proves the lemma.

Lemma 18. If x0>N, then the series

(13) ZAn(z)(e-x»z - <>-*»+")

is M-convergent in every sector S: \z — zo\ ¿K'dl(z — zo).

Proof(»). In S, \z\ èK"!K(z) -K'm(zo) + \ z0\, so that

| z |/x < K' + | zo |/x £K'+ | zo |/xo = M.

By Lemma 17, (13) is absolutely convergent at every point of the half-plane

dl(z)>N. By Theorem 4, we can find a circle D: \z — Zi\ =e, with e<l, com-

pletely contained in the strip

x0 + N ■        2xo + N
< 8î(z) <-;-= Xi

2 3

on which (13) is Af-convergent. But, by Lemma 3,

max     An(z)
D

^ B.A-.—¡-)    = B„«
\ Ui   + 1/

while, at any point on D, | e~XnZ — e~Xn+lz\ ^(e~x»* — e~x»+11). But, for fixed

n, e^"* — e~*n+lx is a decreasing function of x for x^l/X„, hence, for n so

large that Xn(x0 + iV)^2, we have, on D,

o— X»2   _    a—X»+12       >    fg—XnX2   —   g—Xn+1^2^ •

therefore

In S we have

E ^i"(«
<fn , -X„ij — X„+1z2

)   <   oo.

An(z)

B*fr

Bn(\z\ + l)d"      YMx+\-\d»

BA'

rMx+ ná"
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Let Si be that portion of S in which x < 2x2. Then we have in Su by Lemma

16,

-Xn«  —   a—Xn+i*

ß—\nX2 —  g—Xft+lX2

< M
a— XnX   _   a—Xn+ix

g—X„X2  —   g—Xn+lXg

1   _   g—(Xn+1—X»)x

= Me~ X»'I—x2^

<    3/g-Xn(x-xs)

2   _   g— (Xn+1—Xn)x2

J   _   g— 2(X„+l—Xn)xj

J   _   g— (Xn+1—Xn)x2

hence, since x2<x0,

An(z)(e~x"' — e-x»+i«)
22» =

< 2Me-x»(I-I2>;

2Mx2-f  1\*

Z?„ef»(e_x»12 — er**+lxt)
<f-J   [2Mex''(I2-I»)]

which approaches zero as n becomes infinite.

Let S2 be the remainder of 5. Then in S2

-Xn2 -Xn+12

\nX2  —   g—X»+1X2

-Xn+ix

< M
f>—\nx2   —   p—^n+lX2

= M

g-«»x2    _    g-

(g-X»x/2 _|_  g-X„+ix/2\(g-X„x/2  _   g-X„+lx/2)

e~/,—X»X2   _   p~Xn+lX2

< 2Me-x»x/2

for n so large that X„x2^ 1, in which case, defining R„ as above,

-Mx+ IT*"rikfx+ n°
2Me~XnXli.

But the right member is decreasing for x^2a*„/X„, therefore, for sufficiently

large n,

F2MX2 + If»
Rn <-2Me"x"^,

which approaches zero as n becomes infinite, hence (13) is if-convergent in 5.

Lemma 19. If xo>N, then (1) is uniformly convergent in every sector

S: |z-z„|:giL"SÎ(z-Zo).

Proof. Using Lemma 18 and equation (12), it remains to prove only that

limn,» An(z)e~Xn+lz exists uniformly in S. Put x0 = iV+2e. Then, for n>ni, as

in Lemma 17, 5„<ex»w+t). Therefore, for z in S and n>nx,
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| An(z)e->"+lz\ < ex»(JV+<)(lfx + 1)<V-*»* = e"x"f(Mx + !)**■*•<*-*•).

Let Si be that portion of 5 in which x<2x0. Then in Si and for n>ni,

| An(z)e-^+lz\ < <rx'"(2Mxo + l)rf»

which approaches zero as n becomes infinite.

Let 52 be the remainder of S. Then in 52, for n>ni, since xè2x0,

| ^B(z)e-x"+12| < e-^(Mx+ l)<*«e->**/2.

As in Lemma 18, if n is sufficiently large, we have, for z in S2,

| .4„(z)e-x»+IZ| < e-x»e(2Mx0 + l)*^»1«

which also approaches zero as n becomes infinite, therefore we have uniform

approach to zero in 5.

It is now possible to prove the main result on uniform convergence.

Theorem 16. The series (1) is uniformly convergent in every sector S: \z — z0\

^K"iR(z — zo) for which x0>C, and therefore represents a function analytic in

the half-plane 9t(z) > C.

Proof. Consider the series of type (1),

(14) Z Pn(z + zo - De-^+'o-1'.
n<*=0

The abscissa of convergence of (14) is Co = C+l—x0<l. Let Ko and N0 be,

for (14), the numbers corresponding to K and N. Since Koún\ax (Co, 0), we

see that -iTo<l, and therefore N0<1. This shows, by Lemma 19, that (14) is

uniformly convergent in the sector S: \z—1| ¿K'?H(z— 1). But z+zo—1

traces out the sector 5 as z traces out the sector S', therefore (1) is uniformly

convergent in S.

Corollary. The series (1) converges uniformly in any closed bounded set

interior to an area at each point of which (1) has bounded partial sums.

Theorems 15 and 16 together give a complete analogue, for convergence

and uniform convergence of (1), to Theorems 9 and 13 for absolute con-

vergence and il7-convergence. It is natural to ask whether or not there is an

analogue to Theorem 8 which would allow us to extend the sectors of uniform

convergence to certain points on the line 9î(z) = C where (1) converges. I have

not been able to obtain such a result but, in this connection, the following

negative example is of interest.

It was shown in §5 that the Abel limit theorem may fail for a boundary

point of absolute convergence. The following example will show that the

same behavior is possible for a point of conditional convergence on the line

<St(z)=C. But in this case the function represented by (1) is actually an
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integral function, so that the failure of the Abel theorem for one path implies

its failure for any path in the half-plane ^(z) = C with the same terminal

point. This point, however, is seen to belong to the "exceptional set" 77.

Consider the series

2z        2(z - 1)        2z        2(z - 1)
S(z) = — + —-+-+ —- + • • •  .

I2* 22* 322 42*

We have A =C—\/2, conditional convergence for the point z=l/2, and

divergence elsewhere on the line 9?(z)=l/2. For 9î(z)>l/2, we can write

S(z) = 2z(-1-+-+ • ■ •  J - 2(-+-+ • • ■  )
\l2*       22z       32* ) \22z       42* )

= 2zf(2z) - 2!"2t(2z) = (2z - e<l-2^°e2)f(2z).

Since the right-hand member is an integral function, it gives the analytic

continuation of S(z) into the half-plane dt(z) Si 1/2. Hence

lim   S(z) =   lim   [2z - 1 - (1 - 2s) log 2 - • • • ]f(2z)
Z—1/2+ 2-.1/2

=   lim   [(« - 1/2)(2 + 2 log 2) + • • • ]f(2s) = 1 + log 2
2-.1/2

since Ç(2z) has a pole of order 1 and residue 1/2 at z = l/2. But 5(1/2), by

which we mean the sum of the above series at z = l/2, is log 2.

To see that the point 1/2 belongs to 77, and not merely 770, requires some

calculation, but it is perfectly straightforward.

8. Relation between abscissas of convergence and absolute convergence.

It is now easy to generalize a standard theorem on Dirichlet series.

Theorem 17. 7/£> = lim supn^„ (log »)/X„ is finite, then Q^A — C^A —B

■¿¡.D if B is finite, otherwise A =C = B.

Proof. It is clear that A â C^B. But (see [22, p. 6] although the result is

not stated in this form), A —B^D if B is finite, otherwise A =B, from which

the conclusion follows.

We shall now state the results of Valiron referred to in the introduction.

Assuming conditions (2) and (4), he showed that the regions of absolute con-

vergence and convergence of (1) both coincide with the region of convergence

of (5), and that (1) converges uniformly in any closed bounded set interior

to this region. (This region is convex [l6, p. 47] ; see also [9].) He also showed

that if the X„ and pn satisfy the additional condition

then the set of points at which (1) converges and which lie at a positive
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distance from the region of convergence has linear measure zero. If the Xn are

also assumed positive, these results clearly follow from Theorems 9,14, and 17.

9. Uniqueness. It is now possible to obtain a uniqueness theorem which

includes that for Dirichlet series [22, p. 8].

Lemma 20. A regular hyperdirichlet series for which not all coefficients are

zero has at most a finite number of zeros in every sector S: \ z — zo| ^Kdt(z — zo)

for which 9î(zo) > C.

Proof. We may suppose that P0(z)^0. But

oo pa:

Z Pn(z)e-^z = erx°*   P0(z) + Z P„(z)e"(X»-x»)2
»—0 L n=l

The series on the right is also a regular hyperdirichlet series, since Xi>Xo,

and has the same abscissa of convergence as (1), therefore it converges uni-

formly in 5. But it follows from Theorem 16 that the sum of a regular

hyperdirichlet series approaches zero uniformly as 9î(z)—>co in S. Therefore

the expression in brackets is different from zero for all z with sufficiently

large real part, which completes the proof. We also see that (1) has at most

a finite number of a-places for any fixed value of a.

Theorem 18. If two regular hyperdirichlet series converge to the same sum in

a domain D, then the corresponding terms (omitting those with zero coefficients)

are identical.

Proof. Immediate by the above lemma.

10. Irregular hyperdirichlet series. In conclusion, we shall show that

condition (2) is necessary for the type of results obtained in this paper.

Theorem 19. Let {X„j be any sequence of positive numbers tending to in-

finity and {pn} any sequence of non-negative integers such that

Mb
hm sup — > 0.

«-*00       X„

Then there is a series (1) whose regions of convergence and absolute convergence

exist and are neither the entire plane nor half-planes.

Proof. There exists a sequence 5 of positive integers for which, for some

e>0, pn>e\n>n for all n in 5. Consider the series of type (1)

(15) Z Anz^e-^'
B=0

where A„ = 1 for all n in S, and, for other n,

An — [w2 max | z""e_x»* | + l]-1.
Id-«

■
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The subseries of (15) for n not in 5 is J7-convergent on any bounded set,

while the remaining subseries, and therefore (15), is absolutely convergent

at every point of the interior of the right half of the unit circle. But, for all

n in S,

| z/i»g-X„2 |   > | 2<g-2 |x„  >   1

if |z| >1 and |s«e~2| >1, both of which hold in a portion of the half-plane

9î(z)>0 which includes points above and below the unit circle. Therefore

(15) diverges in this portion and the proof is complete.

If {X„} does not tend to infinity, this result is not true in general. In fact,

it can easily be seen from their proofs that Theorems 8, 9, 10, and 11 remain

valid if the condition "pn<K for all n" is substituted for (2).
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