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1. Introduction. In the plane of the complex variable z, let there be given

two regions G and B which are bounded and such that GCZB. The regions

may be simply- or multiply-connected, but will be considered to satisfy cer-

tain additional conditions which will be formulated precisely in a subsequent

paragraph. We shall designate by L2(G) the set of functions which are single-

valued and regular in G and which possess a finite norm:

(1.1) 11/11 g = jj Ifl'dA < oo.

By L2(B), we shall designate the similarly defined class of functions over B.

In the present paper, the following process of approximation is considered.

Let a function /£L2(G) and a number M be given. We are interested in

approximating/on G by a function f*(£L2(B) whose 5-norm does not exceed

M:

(1.2) Wrh^M
and such that

(1.3) ||/ — f*\\a = minimum.

A closely related problem was first proposed by Walsh, and has been

considered in a series of papers by Walsh [11; 12](2), and by Walsh and

Nilson [8; 13]. In these papers, the problem is discussed using an Lv norm

defined by a line integral over the contours which bound the region. The

Tchebycheff norm, corresponding to p= °o, has also been considered. The

principal aim of these writers was to establish asymptotic expressions for the

degree of convergence of the best approximating functions as M—* oo, and

it was shown that this degree is governed by the relation between the region

of regularity of / and the level lines of a harmonic measure of the boundary
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of B with respect to the difference region B — G.

In the present paper, we shall investigate an aspect of the problem which

is more structural in nature. That is to say, we shall be interested in gen-

erating functions of best approximation, in discussing their totality, and in

relating them to the domain functions which arise in the boundary value

problem. The system of doubly orthogonal functions for the domains G and B

introduced by Bergman [1, 2, 3] plays a fundamental role in our develop-

ment. These are a set of functions {<j>n(z)} (w = 0, 1, : • • ) which are of class

L2(B), and are simultaneously orthogonal over G and B:

(1.4) i £<l>H(z)(<l>m(z))-dA =» 5mn;

I    I    (¡>n(z)((t>m(z))-dA   =   km8mn,    km>   1,

where(<¡>m(z))~ denotes the complex conjugate of 0m(z).The connection is made

using the Fredholm theory of integral equations. The latter theory will enable

us to obtain an explicit representation of functions of best approximation

by showing that they may be generated by a resolvent kernel which is closely

related to both the kernel functions of the region G and of the region B. It

will appear, moreover, that the convergence of an/ (ÇzL2(B)) of its functions

of best approximation as Af—> » may be given an interpretation as a process

of generalized Borel summation.

It should be recalled that the kernel function of a region D has been de-

fined (Bergman [3]) as

oo

(1.5) KD(Z,   W)   -   T, Pn(z)(pn(w))-
n-0

where [pn(z)} is any closed orthonormal set over D:

(1.6) ff pm(z)(pn(z))-dA = Sm„.

If D is simply-connected and has a boundary d which is such that all the

points which do not lie in D-\-d form a single region whose boundary is

exactly d, then (Farrell [5]) a closed orthonormal set may be found by

orthonormalizing the powers 1, », z2, • • • . For many multiply-connected

regions, such a set may be found by orthonormalizing appropriately selected

powers (z — a,k)n (» = 0, ±1, +2, • • • ; k = l, ■ • • , m). For the purposes of

the present paper, we shall therefore consider the kernel functions of the

regions dealt with as "known" functions. Actually, in what follows, we require

only a knowledge of the kernel function of the larger domain, KB(z, w). If,

in the case of simply-connected regions, a preliminary conformai map of B
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onto   the   unit   circle   is   made,   then   we   have   very   simply   Kb(z,   w)

= (1/tt)(1-3w)-2.

Our principal theorem, proved in §4, can be stated as follows.

Theorem. Let k*(z, w; X) designate the resolvent kernel of the integral

equation

(1.7) f(t) = g(z) +-ff Kb(z, w)g{w)dAw.

Iff(z)eL2(G), then

(1.8) f(z; X) = f f k*(z, w; \)f(w)dAw

is, for each positive X, a function of class L2(B) of best approximation in Gtof(z).

Despite the fact that the doubly orthogonal functions <f>n(z) play a funda-

mental role in the theory, it is to be emphasized that the final results are in-

dependent of them. This is of particular importance in view of the relative

inaccessibility of the doubly orthogonal functions corresponding to two

arbitrary regions G and B.

2. An extremal problem in Hubert space. In the present section, we deal

with the Hubert space I2 of sequences ^4 = {a„} of complex numbers for

which

(2.1) IMH2   =  EI«n|2<   CO.
n=0

Let there be given a fixed sequence of positive constants kn for which

(2.2) ¿^-<*.
Fi-0    k„

By the hyperellipse £=£(&„; M) we shall mean the set of points A whose

coordinates satisfy the inequality

00

(2.3) ZKKâM2.
n-0

By the surface of the hyperellipse £(&„; M) we shall mean the set of points

A for which equality in (2.3) holds. In the space I2, we consider the problem

of minimizing the distance from a given point A* to a given hyperellipse.

It will appear subsequently that the characteristic properties of minimal

distances in Euclidean «-spaces will carry over to this more general situation.

The set £ is both convex and compact. To show the former, let A = {an\

and B= {&„} both belong to £. Consider now the point P = (xA-\-{\ — a)B,

0<(T<1. By Minkowski's inequality we have
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[=0 -11/2

£|<m„+ (1 -<x)6„|2¿J
n-o J

[oo —11/2 I-     oo -11/2

E|ö»I**»    + (i -• *)   El*-1**-
n=0 J L n-0 J

< ffM + (1  - <r)M =  M.

Therefore P££. To show that £ is compact, we may make use of the follow-

ing well known necessary and sufficient condition for compactness in an lp

space: a subset 5 of lp is compact if and only if (a) there exist constants

wîo, nti, ■ ■ ■ such that for all yl£S we have

(2.4) \an{A)\Smn (» = 0, 1, • • • )

and (b) the series

00

(2.5) T,\an(A)\"

converges uniformly for A £5. Reverting now to p = 2 and S = £ we see firstly

from (2.3) that for all ,4 ££(&„; M) we have XX0 \an(A)\ 2kn^M2, so that

a fortiori | an(A) \ 2k„ ¿ M2 and hence

(2.6) | an(A) | á M/kT (n = 0, 1, • • ■ ).

Thus condition (a) is satisfied. Secondly, by (2.6), the series En-o j a„(^4) |2

is uniformly dominated by En-o M2/kn< », in virtue of (2.1). Thus (b) is

satisfied, and £ is therefore compact.

Because of the compactness of £, it follows from general topological

considerations that, given any A * £/2, there will exist a point A G £, such that

11-4*— .411 is a minimum, that is, ||-4* — A\\ =g.l.b./4'e£ ||4* — A'\\. Further-
more, it is a consequence of the convexity of £ that the point A, and hence

also the minimizing vector A*— A, are uniquely determined. For, suppose

that there are two distinct points A and A' such that |[^4*— A\\ =

= /w = minimum.   The   point   B = (A-\-A')/2   is   in    £.   Also,

= (l/A)\\(A*-A) + (A*-A')\\2.Nowior arbitrary X, Y&2 we have

■\\A*-A'

A*-A'
A*-B

\X+Y'2+(V2)
2 = 2||X||2 + 2||F||2,    so    that   \\A*-B\\2= (1/2)||4*-

|2-(1/4)|| (4*-4)-(4 *-4')||2 = m2-(1/4)|| J-4'||2<w2.Thus,

the assumption that both A and A' are minimal is contradicted.

We may therefore write A (A*; M) and A(4*; M) to designate unambigu-

ously the minimal point and minimal distance from A* to £(kn; M). For a

given point 4*= {a*}, the series E<T-o la*|2&» mav either converge or

diverge to plus infinity. In the former case, .4 *££(&„; M) for M sufficiently

large, and we shall have A(4*, M)=0 for M sufficiently large. However,

even in the latter case (of divergence), we have, as we shall immediately

prove,
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(2.7) lim A(.4*, M) = 0.

It thus appears that any family of hyperellipses £(£„; M¡) for which

lim supy^oo Mj= oo must be dense in the space I2. To prove (2.7), we must

show that to a given e>0, there exists an Mt such that ||-4* — A(A*, M)\\ 5¡e

for all M^Mt. Since A*(El12, we may determine an n = nt such that

Z»"+i k*|2=se2. With this », let M€ = [£?-o |0j*| %-j1'2. If, now, P = P(e) is
the point with coordinates {a*, a*, • • • , a*(, 0, 0, 0, • • • }, then we have

Pe£(¿„; M) for tf^tf, Finally, ||i4*-4(il*; jkf)|| ̂ ||¿*-P|| =e.

It is a consequence of the denseness of the family £(kn; M¡) that if

.4 *(££(&„; M), then the minimizing point A (A*, M) must lie on the surface

of £. For, suppose that A-{an] and XiT=o Ia"12K = Mx<M. If A*
(££(&„; ikf), then by the previous result (2.7) we may find an M2 sufficiently

large so that A(A*, Mz)<A(A*, M). Consider now the point A' = {a„' }

= (l-<r)A(A*, M)+crA(A*, Mi), where 0<a<(M-M1)/(M2-M1) <1.

Since ¿n-o | a» \*kn-gi(\-o-)Mi+<TMi<M, wehzve A'E£(kn; M). But also,

\\A*-A'\\=(1-ct)A(A*, M)+ctA(A*, M2)<A(A*, M), so that we have

obtained a contradiction, for by assumption, A is the minimum point from

A* to £(*»; AQ.
We turn now to the question of obtaining explicit representations for the

quantities A(A*; M) and A(A*; M). Such representations are possible to ob-

tain by means of a limiting process from the case of finite-dimensional spaces.

By way of a preliminary result, we establish the following lemma which gives

the solution for the finite-dimensional case.

Lemma. Let M>0, andn, a fixed positive integer, be given. Let also the point

A*= {a0*, a*, ■ • ■ , an*} be assumed to lie exterior to £(k0, fa, ■ • • , kn; M).

Then the extremal problem

n

(2.8) 221 Qj — a,-12 = minimum

under the condition

(2.9) ¿| «i|**i3S Ma

is solved by the quantities

(2.10) at = «*/(! + Mi) (/ = 0, 1, • • • , n)

where X is the positive number determined by

(2.11) ¿\a*\2ki/(l + \kj)2 = M2.
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Proof. Let us first note that by our previous reasoning, the minimal

point will lie on the surface of £, that is, equality must hold in (2.9). We

note further that if the left side of (2.11) be designated by (?(X), then QÇK) is a

continuous, monotonically decreasing function of X, tending to 0 as X—* ».

Since 4* is exterior to £, E?-o \a*\2ki = Q(0)>M2, so that (2.11) has a

unique positive solution. If we now write a¿ = a¿+íaB+¿+i; a^=af-{-ia*+i+1,

kj =kj (J = 0, 1, • • • , «); k'n+j+i = kj O' = 0, 1, • • • ,n), then our problem is
reduced to the (real) problem of minimizing

(2.12) E («*-«*)'
1=0

under the conditions

(2.13) £ («í)2¿í= M2.

Introducing a Lagrange multiplier X, we have 2(ay — a*) =2X£/a, = 0

(j = 0, 1, • • • , 2«+ 1) so that

a i = a*/(l + XÉy) (i = 0, 1, •'• • , In + 1)

and hence

(2.14) a, = a*/(I + Xif) (; = 0, 1, • • • , n).

From the very structure of the problem, it follows that sgn öj = sgn af

(j = 0, 1, • • • , m). Therefore 1+X£y>0, so thatX>max ( — 1/kj). Since Q'(X)

= - E?-o 21 a*12/fe?/(l -l-Xyfe,)3, it follows that Q'(X) <0 for all X>max (-1/*/).
It is therefore clear thatX must be positive. Finally, (2.11) follows from (2.9)

and (2.10).

Theorem 1. Let A*= {a*} £/2, A*$£(kn; M). If {aJ}=4(4*) M),then

we must have

(2.15) ai - «*/(l + \kf) (i = 0, 1, •••)

where X is the unique positive root of

(2.16) Q(\) = ¿ | a* \*k,-/(l + \ki)2 = M2.

Proof. The function QÇK) is clearly analytic in the right half of the com-

plex X-plane,decreasingto 0 monotonically as X—>+ °° • Since4 * £ £(kn ; M), we

have Q(0)>M2 so that (2.16) possesses a unique positive solution. We may

observe further that as M—> oo, X =X(M)—»0.

For each positive integer n, let 4„ designate the point of I2 whose co-

ordinates are given by
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(2.17) An =  {a*/(l + X„*o), ■ • ■ , Zj(\ + \nkn), O, O, O, • • •  }

where the quantity Xn has been determined as in the preceding lemma. It

may easily be verified that as w—» °o , X„ increases monotonically to X. Let A'

designate the point {aj*/(l+\kj)}. We have lim„<00 ||-4' — An\\ =0. For,

\\An - A'f = (X - Xn)2 ¿ | êf|*a*V(l + *k¡)\l + Mí)'

+ Z I «*17(i + x*,)
j=n+l

CO

g   (X  -   X»)  /Xn   E I   »/ |7*> +  "(I) (» -*  »).

By our previous discussion, we know that the minimum problem has a

unique solution 4 = jay}. Let Bn designate the point of I2 whose coordinates

are given by

Bn = [a0, au ■ ■ ■ , an, 0, 0, 0, • • •  }.

Now, \\A*-Bn\\2= £;=o |a,*-a,lH-'Z¿»+1 k*|2, hence \imn^\\A*-Bn\\2
= A2{A*, M). Now, A^||^4*-4n|| and, by our lemma, ||^4* —^4„||

^||^4* —P„||, whence

A g \\A* - A'\\ + {\\A* - An\\ - \\A* - A'\\ \ Ú \\A* - Bn\\.

Since the bracket is in absolute value less than ||j4' — A„\\, it tends to 0, leav-

ing ||v4*—yl'll =A. By the uniqueness of the minimal point, we must have

A'=A, and therefore (2.15) holds.

Corollary.

oo

(2.18) A (A*; M) = x'^l «* f*7(l + X*,)*.

It is clear moreover that A2 considered as a function of the complex vari-

able X is analytic for Re X^0. It is of considerable interest to obtain a geo-

metric interpretation of the solution (2.15). In the finite-dimensional case,

the minimal vector is normal to the surface of the hyperellipse. The equa-

tions (2.15) imply that this is also true for the space I2. Let the point A

= {ai} lie on the surface of £(&,; M), and let Y= {y,}, Y^0, be a point of I2,

and such that

00

(2.19) £*<«<?." = 0.
i'=0

The line
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(2.20) p(<r) = A + o-Y = {pi\, a complex,

will be a tangent to £(&,; M). For P(0) lies on £, while if «tf^O we have by

(2.19)

00 00 00

E I Pi Hi = E I «* I2*." + I » |2E I Vi \2ki > M2.
i—0 >=0 i—4

Thus,i»££.

Corollary. Z"Ae minimal vector A* — A is orthogonal to any tangent vector

issuing from A, that is, to any vector of the form oY, where Y is subject to (2.19).

More explicitly, (2.19) implies

oo

(2.21) E («Î-««)>. = 0.
i=0

Proof. A*—A={a?/(\+\ki)—aff}, aY={ayi\ where y¿ satisfy

Ef-o a?kiyi/{\+\ki)=Q. Thus, (4*-4, ffF)=íEr.o [*f*</(l+X*¿
-a.y»] =-a\ Eí-o ai**,-yf/(l+XÉi) =0.

A geometric interpretation of the multiplier X may be obtained as follows.

From (2.16) there is obtained

oo

- \dM2/d\ = 2X£ | a* |2/fey/(l + X/fe,-)
;=o

while from (2.18),

dA/d\ = - 2X2¿ | a* |2¿-/(1 + Ujf + 2X¿ | a* fk)/(l + \k¡f
¿=■0 j-0

00

= 2X£|a*|2¿-/(l + X*,)*.
i=o

Thus we find

(2.22) X = - (A/M)dA/dM.

3. The transformation 7\ Let the region B lying in the complex z-plane

possess the kernel function KB(z, w). In addition, let there be given a region

G for which GQB. In preparation for what follows, we shall introduce a

transformation T to be applied to functions /£L2(G) and given by

(3.1) 27(a) - JJ KB{z, w)f(w)dA „.

In view of the condition G(ZB, the kernel KB(z, w) is regular over G. The

operator T acts as a stretching in the sense that the transforms Tf belong



112 PHILIP DAVIS [January

to L2(B). For, let {pn(z)} be a set of functions which are closed and ortho-

normal over B. Then by (1.5) we may write

Tf(z) =  f f ¿ pn(z)(pn(w))-f(w)dAw
J   •» G n=0

so that

Tf(z) = Tlanpn(z)    where    an =   I   I  f{w){pn{w))~dAx
n=0 J   J «

By the Schwarz inequality we have

(3.2) !«-r^ii/nôWo
and therefore

(3.3) £|«»|2á||/||¿ f f KB(w, w)dA„ < ».
n—o J J a

It follows by the Riesz-Fischer Theorem for the class L2(B) (cf. Bergman

[3, p. 5]) that Tf(z)<=L2(B).
In particular, let w be fixed in G. Then T acting on Kq{z, w) yields the

kernel function of B:

(3.4) TKG(z, w) = KB(z, w).

For, TK0(z, w)=ffGKB(z, t)KG(t, w)dAt, and hence (3.4) follows by the

reproducing property of the kernel Ko over G. If the boundary of B is suffi-

ciently smooth, then the operator T will stretch / beyond the confines of

the region B. More precisely, we have the following result.

Theorem 2. Let the region B be bounded by closed analytic curves. Then

there will exist a region B* such that BCZB* and such that all transforms Tf of

functions fÇiL2{G) are regular in B*.

Proof. Introduce gB{z, w) =gB{x, y; u, v), z = x-\-iy, w = u-\-iv, the Green's

function of the region B. It is known (cf. Schiffer [9], Bergman [3, p. 58])

that

2   d2gB(z, w)
(3.5) KB(z, w) =-

x dzdw

where

d        I/o d\ d        1 / d d\
(3.6) —.-— (-i— ),        — = — (— + i— )

dz        2 \dx dy/ dz       2 \dx dy/

and we may therefore write, as an alternate form of (3.1),
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2   r r   d2gB(z, w)
(3.7) Tf{z) = -- -V--f{w)dAw.

■K J J Q        ozqjv

Let w be a fixed point of G. Inasmuch as the boundary of B is analytic,

gB(z, w) is a harmonic function of x, y in B, and hence d2gB{z, w)/dzdw is

analytic for z£i?. To each boundary point z& of B there is a circle \z — Zt\

<p, p=p{zb, w), in which KB{z, w) is analytic, and hence, by the compact-

ness of G, for each boundary point z& there is a positive p=p{zb) such that

KB(z, w) is regular in \z — z&| <p for all wÇiG. We may cover the boundary

with a finite number of such circles. If these are designated by C,-

(¿=1,2, • ■ -, m), and if B* = B+ E?=i d, we shall have KB(z, w) regular in

B* for all w£.G. Therefore, by (3.1), 27(z) must be regular for zÇzB*.

It should be noted that the character of the boundary of G plays no role

in this result qualitatively, but of course serves to determine the best possible

B*. If, for instance, B is the unit circle, we have

(3.8) KB(z, w) = (1/t) (1 - zw)~2

so that the transformation T takes the particularly simple form

(3.9) Tf(z) -iffir J J c

f(w)dAa

o  (1 — zw)2

From this follows that if G is simply-connected and contains the origin, then

the transforms Tf will all be regular in G', the region containing the origin

and bounded by the reflection in B of the boundary of G.

The iterates of T are defined by

(3.10) r<"7(z) =  f f KB(z, w)T^-»f{w)dAw      (n = 1, 2,

T° = I.

They may be written in the alternate form

(3.11) r("7(z) = JJ* KB\z, w)f{w)dAw

where the iterated kernels have been defined by

KB (z, w) = KB(z, w)\

(3.12) T,(")/        ... Ç Ç   „   ,      -. „(n-D,

),

-fiKB  (z, w) = KB{z, t)KB    (t, w)dAt      (» = 2, 3, • • • ).

It should be observed that for /£L2(G), the iterated transforms T(n)f(z)

(m^I) are all of class L2(B), and if B is bounded by analytic curves, will

be regular in a larger region B*.
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4. An integral equation of Fredholm type. Let the regions G and B be

given such that G(ZB, and let their respective kernel functions be Kq(z, w)

and KB(z, w). We construct the following linear combination of the kernels

Kg and KB-

(4.1) K(z, w; X) = Ko{z, w) - \KB(z, w)

where X is a complex variable. It is clear that K is regular for all z, wÇ_G and

for all X. We next form the integral equation of Fredholm type

(4.2) g(z) = JJ K(z,w;\)f(w)dAw, f G L2(G).

This may be written in the more familiar form

«CO = f(t) -*(f KBiz, w)fiw)dAw
(4.3) J J o

= (/ - XT) fit) (// = /).

We shall be interested in (4.3) both from the Fredholm and Hilbert-Schmidt

points of view. A formal solution of (4.3) is given by the Neumann series

(4.4) fit) = (/ - xd-'iW = ¿ x»r<»>*(«)

and this solution will be valid for values of X which are sufficiently small in

absolute value. We may rewrite (4.4) in the form

(4.5) fit) = git) + *ff *(«. *i X)f(w)<M.

where

00

(4.6) kit, w; X) = £ X^K^it, w).
n-l

The Fredholm resolvent is (for each fixed z, w£G) known to be a mero-

morphic function of X, and may be expressed as the ratio of two entire

functions of X in the following manner.

(4.7) kit, w; X) = Dit, w; X)/Z>(X)

where Diz, w; X) and -D(X) have the following power series representations,

each converging for | X| < oo :

"    (-l)»XM.(i, w)
(4.8) Dit, w;\) = £ ^—-^—-,
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"    (-l)"c„X"
(4.9) D(X) = Ei—-

„=o »!

The functions 4 „(z, w) and the constants cn maybe expressed by recursion as

follows

(4.10a) A0(z, w) = KB(z, w),

(4.10b) An(z, w) = CnKB(z, w) - n J   f 4»_i(a, t)KB{t, w)dAt,

(4.10c) Co = 1;        cn+i =  j j  An(z,z)dAt.

Closed expressions can be given for these quantities in terms of certain de-

terminants. It is clear from (4.10a) and (4.10b) that each function 4„ is

regular for z, wÇElB. With w fixed in B, and to each closed subdomain of the

regularity domain of KB(z, w), we may surely find an m such that | KB(z, w) \

^m holds for all z in that subdomain. The Fredholm theory then tells us

that the functions 4„ will satisfy the inequality

(4.11) | An(z, w) I g »"""(» + 1)<"+I>'2g»

where g=ffadA. Thus, for all X, the series (4.8) will converge uniformly

and absolutely in every closed subregion B'(ZB, and will therefore be regular

for z, w£5.

The functions An as well as the constants cn depend merely upon the do-

mains G and B, and are obtained by repeated integration of the kernel func-

tion of the larger domain over the smaller domain. Each An is a linear com-

bination of the iterated kernels KB, KB\ ■ ■ ■ , KB}. The constants cn are

further related by the recursion formula

n

(4.12) cn+1 = £ (-l)n-knla^k+1ck/kl;        ca = 1,
*=o

where

(4.13) am =   f f KT\z,z)dAz.

Referring to (4.5), we may write the solution of (4.3) in the form

/(z) = g(z) + — fj D(z, w; \)g(w)dAw

(4.14) ( }        G
x    "   (-i)»X"  r r

- g(z) + rr—r 2- -;-I  I  An(z, w)g{w)dAw.
D(\) „=0        n\       J J a

This solution is valid for all values of X providing only that Z?(X)?i0. These
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latter values are, of course, the eigenvalues of the homogeneous integral

equation, and it is to this that we now turn. We consider, therefore, the

equation

(4.15) fit) = X ff Ksit, w)fiw)dAw = \Tfiz).

In this connection, the following theorem due to S. Bergman [3, p. 14] is of

fundamental importance.

Theorem 3. Let the region B be bounded and let GC.B. Then there exists a

system of functions {<An(z)} (« = 0, 1, • • • ) which are of class L2iB), and are

such that

(4.16) <t>miz)i<t>nit))-dA = knômn, k»> 1,ff *»(*)(*.
(4.17) ff ct>mit)i<j>niz))~dA = 5mn im, n = 0, 1, • ■ • ).

The system [4>niz) \ is closed with respect to the class L2iB), and the constants

kn satisfy the inequality

(4.18) T,y<<».
n=0   *n

The above system of functions has been termed by Bergman a doubly

orthogonal set for the regions G and B. We may obviously assume that

kn'efa'efa-^ ■ • ■ . In view of (4.16), the functions

(4.19) <hiz) =<t>„iz)/kT (» = 0, 1, •••)

form a closed orthonormal set of functions for the region B so that by (1.5)

we have the following expression for the kernel function of B:

(4.20) KB{t, w) = ^<t>niz)i<t>niw))-/kn
n=0

convergent uniformly and absolutely for z, w^B'CZB. We may therefore

write the homogeneous equation (4.15) in the form

(4.21) fit) - X¿ ^P- f f i4,niw))-fiw)dA.
n=0        kn     J  J G

If we now make the selection /(z) =</>y(z); \ — kj ij = 0, 1, • • • ), then in view

of (4.17), equation (4.21) will be satisfied identically. It thus appears that

the doubly orthogonal functions {</>n(z)} and the constants kn are respectively

eigenfunctions and the corresponding eigenvalues of (4.15).



1952] DOUBLY ORTHOGONAL FUNCTIONS 117

The doubly orthogonal system {<£„(z)} need not be closed with respect to

L2(G), and in the general case will fail to be so. However, there is a wide class

of regions G, B for which we shall have closure over L2(G). This will be the

case (cf. Bergman [3, p. 17]) whenever B and G are each bounded by a finite

number of distinct Jordan curves and the inner region G is such that it

separates no point of B — G from the boundary of B. In some cases, the re-

quirement of a Jordan boundary can be weakened to the type of boundary

studied by Farrell [5].

In the work which follows, we shall assume that the doubly orthogonal

set is complete with respect to L2(G). In this case, we can assert that the

system {<£„(z)} constitutes the set of eigenfunctions for (4.15). In addition,

we shall have

00

(4.22) K0(z, w) = E *.(«)(*.(»))-
n=0

convergent uniformly and absolutely in every G'QG. Returning to the non-

homogeneous equation (4.2) we have

(4.23) K(z, w; X) = ¿(l - -£-)*.(*)(*„(»))-.

If, now, anf(z)ÇE:L2(G) is given, it has a Fourier development

00 00

(4.24) /(a) = £ an<t>n(z) ; £ | an |2 < oo
n=0 n=0

convergent uniformly and absolutely for every G'CZG, so that (4.2) becomes

(4.25) g(z) = ¿(l-^-)^n(z)
n=0 \ f£n/

and we have therefore

(4.26) /(*) = g(z) + X ff k(z, w; X)g(w)dAw

where

(4.27) k{z, w; X) = ¿^ -:-r— •
n=0 kn — \

Now for \9¿kn (m = 0, 1, • • • ), we have |l/(fc„-X)| ÚP-/K (m = 0, 1, • • • )

for some positive constant p., so that in view of (4.18), (4.20) the series

(4.27) converges uniformly and absolutely for each fixed w£73, and z in

B'CZB, and represents a function of z which is of class L2(B). Similarly in w.

In view of the uniqueness of the resolvent kernel, we may identify the ex-
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pression (4.27) and that given by the Fredholm development (4.7).

From (3.12), (4.17), and (4.20) there is obtained

(a  98ï vwi     -\      V ^(z)(4>,W)-(4.28) KB  (z, w) = 2L, - (« = 1, 2, • • • )
í-q k-}

while from (3.12), (4.17), and (4.20) we have

"   a^Az)
(4.29) T^fit) = E («=1, 2, •••).

i=o      k*]

From (4.13), (4.17), and (4.28) there is obtained

(4.30) an='¿¿7".
i=o

In addition to the resolvent kernel ¿(z, w; X), we shall find it convenient

to deal with the closely related kernel given by

A   <t>niz)i<t>niw))-
(4.31) k*iz, w; X) - X-^(z, w; -X"1) = £

1 + XK

For each z, wÇEB, k*iz, w; X) is an analytic function whose only singu-

larities are poles at X= — ikn)~l, and which therefore induce an additional

essential singularity of the second kind at X = 0. Since we have kn>\, the

singularities of k*iz, w; X) considered as a function of X are therefore con-

fined to the segment — 1 > Re X ̂  0.

For fixed X?í,0, ^ -k'1 and w£B, k*iz, w;\) isin.L2(B). For, from (4.31)

we have

v r^ííi^Liw ^-i/2k*iz, w; X) = 2J-:— \<t>nit)kn    .
n=0 L      1  + Xk„      J

Now,

,1/2
K    i<¡>n{w)Y

1  +  \kn

4>niw) 2

< | x |-2 £ = I x |-2ü:b(w, a) < «.
n=0 "-r¿

From (4.31), (4.7), (4.9), and (4.10), we have a corresponding Fredholm

development

(4.32) **(*, *; X) = 2     *»  /      / Z

The modified kernel &*(z, w; X) may be regarded as the resolvent kernel

for the integral equation
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/(«) = f(«) + X_1/J ^2> '<%(w)¿-4»

(4.33)

=  f f K*(z, w; \)g(w)dAw;        K* = KG + X"1^

providing the solution is written in the form

(4.34) g(z) - /(z) - JJ **(*, •; \)f{w)dAw.

The kernels i£ and k* both contain the kernel functions Kq and if^.

For we have immediately from (4.1)

(4.35) K(z, w;0) = KG{z, w),

(4.36) lim — K(z, w;\)=— KB(z, w),
X-»oo    X

while from (4.31), (4.20), and (4.22)

(4.37) k*(z, w;0) = KG(z, w),

(4.38) lim \k*(z, w; X) = KB(z, w).

As regards the proof of (4.38), we have

<*>„(z) (<*>„( w)r
KB(z, w) - \k*{z, w; X) = £

n=0       kn{\   +   \kn)      .

so that by the Schwarz inequality

lr /    rt      ^     -  xM»<f  |0n(2)|2 f !0"(w)l2I AB(z, w) - £*(z, w; X) |2 ^ 2^ -2-j
K       n=0 (1 + X¿n)2

0»(W)|2
= 7Cb(z, z) I X I"2 £

g | X |_2ÄTb(z, z)Kb(w, w).

With z, a; fixed in B, we now let X—» oo, and obtain (4.38).

5. An extremal problem for analytic functions. In the present section we

consider the problem of approximation raised in the introduction. We shall

assume that there have been given two regions G and B, bounded, and with

G<ZB. We shall assume further that the set {<£„(z)} of doubly orthogonal

functions is complete for L2(G), or, less generally, that the regions G and B

satisfy the sufficient geometric conditions given in §4 which insure this

completeness.

Let there be given a function /£L2(G) and a positive number M. We

wish to approximate/ by functions/üf which are of class L2(B) and of .B-norm
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not exceeding M in such a way that ||/— fM\\ g = minimum. Introduce the set

{<f>niz)}. Then we have

(5.1) /(z) = Z a„<j>nit) ;        an = (/, <t>n)a
n-0

and similarly we may write for /m(z)

(5.2) fMit) = Xo»   <t>niz);       an     = kn    if,<j>nkn    )b-

Now

(5-3) \\fM\\l=±\¿M)\2kn

while we have

(5.4) \\f~fM\t=t\an-¿M)\\

We now make the additional hypothesis (and without it our problem is

solved trivially) that the given function/(z) cannot be continued analytically

so as to be regular in B and of 5-norm not exceeding M. This is to say, we

are requiring that X^-o |a»| 2kn>M2. Thus, in view of (5.3) and (5.4), our

problem has been reduced to the minimal problem for the space I2 already

considered in §2. We state our next theorem.

Theorem 4. Under the above assumptions as to the regions G and B, the

extremal problem for analytic functions considered here possesses one and only

one solution. In terms of the doubly orthogonal functions <pniz), this solution is

given explicitly by

(5.5) fMit) = /(,; X(10) = t
„=o    1 + X£„

where X is the positive root of the equation

(5-6) ll/(Z:X)||;=¿-i^i-==M2.
y=0   (1 + Xfey)2

The measure of the approximation of fM to f over G is given by

(5.7) A2(/;M) = ii/-/4Ux2i:i^.
y_0   (1 + Xfey)2

As M—»oo, X—>0 through positive values, and we have
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(5.8) lim A2(/; A/(X)) = 0,
x-*o

and this implies that

(5.9) lim/(z;X) =/(z)
x-»o

uniformly in any closed subregion G'QG.

Proof. We notice at first that/(z; X) = £r.0 ankn,2<l>*{z)/{l+\kn). Now

£;=0 MfAl+X^MxhEr.o k|2=|x|-2||/||20<«>, so that/(z;X)
GL\B). (5.5) follows from L2.15), (5.6) from (2.16), (5.7) from (2.18). (5.8)
follows from (2.7), while (5.9) follows from (5.8) by a standard theorem. (Cf.,

for example, Walsh [10, p. 109].) A direct proof of this fact using the repre-

sentation (5.5) may be given in the following way. We have

/(«) -f(z;\)\ =
™    \ankn<¡)n(z)

1 + X¿n

JV =o

á X £ | ankncj>n(z) | + £ | an<j>n(z) |.

n=0 2V+1

Given a subregion G'CZG and e>0. In view of the absolute and uniform

convergence of ^an<j>n{z) in G', we can, for N sufficiently large, make

£#+i |ßn0n(z)| <e/2 for all z(EG'. Using this N, the sum £^ |a„¿„$„(z)|

has an upper bound m for z£G'. If we now setXo = e/2w, then for all 0<X<Xo

we shall have |/(z) -/(z; X) | <e, zÇ_G'.

To each positive value of X and to each /(z) £L2(G) there corresponds a

family of functions of best approximation related to / through (5.5) and

whose 5-norm may be computed by (5.6). It is therefore convenient to regard

X as the independent parameter in the approximation process. In what fol-

lows we shall suppress M in favor of X, considering always/(z; X) instead of

/m(z).

The functions of best approximation/(z; X) satisfy the following orthog-

onality relation:

Corollary. Let g{z) be any function of class L2(B) for which

(5.10) fff(z;\)(g(z))-dA=0;

then we have

(5.11) JJ [/(z) - /(z; \)](g(z))-dA = 0.

This follows from (5.5), (2.19), and (2.21).

The solution of the extremal problem given in the preceding section
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involves the set </>„(z). By means of the resolvent kernel k*iz, w; X) it is

possible to obtain a representation of the extremal function which is in

"directly computable" quantities and is independent of either the doubly

orthogonal set or the corresponding eigenvalues kn.

By way of a preliminary, we introduce the second iterate of the resolvent

kernel k* by means of

(5.12) ¿*<2>(z, w; X) =  f f k*iz, t;\)k*it, w;\)dAt.

It is to be noted that in (5.12) the composition has been carried out over B.

From (4.31) it appears that ß*(2) will have the expansion

*      kn<¡>niz)i<t>niw))-
(5.13) ¿*<2>(z, w;\) = Z

(1 + X¿n)2

It is clear that for fixed X^O, ?¿ — ̂ xand for w(EB, the kernel k*i2) considered

as a function of z is of class L2iB). It may alternately be obtained from k*

by means of a differentiation:

d
(5.14) k*miz, w; X) =-k*iz,w;\).

Theorem 5. Let /(z)G¿2(G). Then for each positive X the function

(5.15) fit; X) = ff k*iz, w; \)fiw)dA w

is of class L2iB) and is a function of best approximation to /(z). Its B-norm is

given by

||/(z; \)\\l = ffjf_k*m(z< &i DiJiz))-fiw)dA,dAw
(5.16)

//,.//,

d
— k*iz, w; \)ifiz))-fiw)dA-dA,

a d\

while the measure of its approximation to f over G is given by

(5.17) ||/(8) - fit; X)||«. = J J   J J   H(z< ®; \)ifit))-fiw)dA¿Au

where the kernel II is defined by

(5.18) Hit, w; X) = Ko{z, w) - k*iz, w; X) - XF<2)(z, w; X).

Proof. From (4.31) and (5.5) we arrive at (5.15) by termwise integration.

Similarly, (5.16) is derived from (5.13) and (5.6). From (5.18), (4.22), (4.31),
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and (5.12) we have H(z, w; X) = £"=0 ~k2kl<j>n(z)4>n(w))~/(I +\kn)2. Hence, in

view of (5.7), we arrive at (5.17) by termwise integration.

Corollary. The difference g(z) =/(z) —/(z; X) satisfies the integral equation

(5.19) /(,) = g{z) + \~l ff KB(z, w)g(w)dAw.

This follows from (5.15), (4.34), and (4.33).

Corollary. // the functions A (z, w) and the constants cn are defined by

(4.10), then we have

00   X-"  c C /   °°   c X_n+1\
(5.20) f(z; X) = £ —- AH(z, w)f{w)dAw +     £ ■=—-).

n=o   « ! J J a \ n=o      n !    /

Proof. In view of (5.15) and (4.32) we have

/(, »-ff(±±^- «W. - ( i r^~\
J J Q \ n-0 n\ / \ ,l=0        « !      /

With w confined to G and fixed z confined to B'Ç_B the inner series above

will converge uniformly in G (cf. the remarks following (4.10c)). We may

therefore integrate termwise to arrive at (5.20).

The series (5.20) is valid for all X^0, ^ —&„~\ holding uniformly in z for

z in B'QB, and provides a representation for the minimal functions directly

in terms of integrals of known functions. Similar representations for the

quantities ||/(z; X)||| and ||/(z) — /(z; X)||(j may obviously be obtained from

(4.32) through (5.16) and (5.17).
As X—>0 through positive values (corresponding to M—»<»), we have

f(z; X)—>/(z) uniformly in every G'CZG. Thus, referring to (5.20) we have

(5.21) lim     £ -        ff An(z, w)f{w)dA ¿ "•+ ( £ --1 ) = /(»).
x->+ »    »_o     n\    J J o \ n=0     M'   /

As we have observed in §4, the functions 4n(z, w) are certain linear combina-

tions of KB(z, w), • ■ • , K$(z, w), and hence the transformed functions

(5.22) 4<»>/(a) =  f f An(z, w)f{w)dAm

are surely of class L2(B), and if the boundary of B is analytic will be regular

in a larger region.

This approach to an/£L2(G) by means of its functions of best approxima-

tion and given by (5.21) possesses an interesting interpretation as a process of

summation by integral means of the transformed functions 4(n7(z). The

process of summation by integral means is a generalization of Borel's method
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of summation and may be defined as follows. (Cf., for example, Hardy [7, p.

79].)
Let there be given an entire function

00

(5.23) £(X) = EM"

which is not a polynomial and has the further property that

(5.24) pn s£ 0 in = 0, 1, • • • ).

If we have

OO

(5.25) lim  X) P»s^n + £(X) = s,
X-»«o    n=0

then we shall say that the series 23 "-o Sn is summable (£) to the value s:

00

(5.26) (£)Ii, = i.
n=0

Any E method of summation is regular, that is, it sums to the appropriate

value any convergent series. If pn = inl)~1, the method becomes Borel's

method of summation.

If we make the selection pn = cn/n\, then from (4.9), -E(X) = £>( — X). Since

^2n-o Kx< °°> we know that -D(X) has the product expansion (cf., for ex-

ample, Goursat [6, p. 457])

(5.27) £>(X) =
n=0 \ kj

so that ECK) — Hr»o (l+X/£„). This implies that

(5.28) Pn=   E    (M<. • • • Krl > o.
»1<Î2<- - -<in

We can also arrive at (5.28) through (4.12), noting that am — 2Z"=0 k~m. In

the summation process described above, select sn = nAin~1)fiz)/cn

(ra = 0, 1, • • • ). Therefore from (5.25) and (5.21) we may write

"    nA^-^fiz)
(5.29) /(*) = (£)£ -— '

Each /G¿2(G) may thus be regarded as the (£) sum of functions of class

L2iB). The process (£) is generated by the entire function £(X) =.£>(—X).

It depends merely upon the two regions G, B and is independent of the func-

tion/chosen. We have proved the following theorem.

Theorem 6. Let G and B be two regions satisfying the conditions described
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previously. Then it is possible to set up a regular method of summation by

integral means, that method depending only upon the regions G, B, such that

every function of class £2(G) may be represented through (5.29) as the (£) sum

of functions of class L2iB). This process of summation is identical with the ap-

proach to/£Z,2(G) of its functions of best approximation as M—*<x.

Theorem 6 can be regarded as a kind of generalization of the Borel and

Mittag-Leffler theorems on the summability of the Maclaurin expansion of

regular functions.

If we make the particular selection./(z) =KgÍz, w), w fixed in G, then by

(5.22) we have ^4Cn)/(z) =Aiz, w), so that there is obtained

"   nAn-iiz, w)
(5.30) Ke(z, w) = (£) D- •

n=0 0n

On the other hand, if the selection/(z) — Ksiz, w) is made, then using (4.10b),

(5.22), and (5.26),

A  I Anit, w))
(5.31) KB{t, w) = (£)E^b(z, *>)-^—4-} •

n=0   I C„ )

6. Functions of best approximation. We shall say that a function

/G£2(-B) is a function of best approximation (in the sense of our extremal

problem) if there exists an/*£Z,2(G) and a constant M such that under the

condition ||g||fl^Af, the expression ||/* —g||o is minimized by g=f. In the

present section we investigate some properties of the class of functions of best

approximation.

Let /(z) ££2(G) and possess the Fourier expansion /(z) = 23™=0 an4>niz) ;

J2n*-o |a»|2< °°. We find easily from (3.1) and (4.20) that

"   an<t>niz)

(6.1) r/w-Z-2^-
n=0 k„

More generally we have

A an<t>niz)
(6.2) T^fit) = D -^ (i=l, 2,.-.).

Using (6.2), we may extend the definition of thej'th iterate of T to values of

j which  are  not  positive  integers.   Reciprocally,  given   a  function   hit)

= 23"-o an<l>niz), it will be a T{i) transform of an/££2(G) if and only if

CO

(6.3) ]T ¡ an\ kn  < oo.

The class of P<0) transforms is £2(G). The class of 2"<1/2) transforms is
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L2{B). For assume that h(z) — £„°_o fln<An(z) with £„% |i„|2^„< «>. Then

h(z) = £"=o ankn,2<j>*{z), so that in view of the Riesz-Fischer Theorem, h(z)

(EL2(B). The class of T transforms coincides with the class of functions of

best approximation, as we shall now show.

Theorem 7. A function f{z)Ç_L2{B) is a function of best approximation if

and only if, for some g£L2(G),

(6.4) f(z) = Tg(z).

Proof. If/(z) is of best approximation to /*(z) = £n°=o a*4>n{z), then, by

Theorem 4, it must be of the form /(z) =/*(z; X) = £"=0 a*4>n(z)/(l+\kn)

for some positive X. Now,

i   * i2,2
00 ,7        \       h °°

£ —-!- è X-2 £ | an |    <  00 .

n=o (1 + Xk„)2 „_o

Hence by our remarks above, / must be a T transform. Conversely, a given

Tg, g£Z,2(G), is of the form £*_0 an<t>„(z)/kn, £"=0 \an\2<'x. If we set

aú =(an/k„) (l+Xfe«), then|o„'| a|ön| (1+X) so that £r=o \añ\2<^. But

Tg= £^=0 a¿4>n(z)/(l+\k„) and is therefore a best approximation to the

function £,T=o a¿</>„(z).

Corollary. The function f(z) = £,7-0 a,4>n(z) is a function of best ap-

proximation if and only if

oo

(6.5) £! an\2kl < ».
M = 0 .

In a paragraph which follows we shall give a criterion which is inde-

pendent of the doubly orthogonal functions.

The second half of the preceding theorem may be reworded as follows.

Let a function gÇ.L2(G) be given. Then Tg is a best approximation to the one-

parameter family of functions L(g; X) given by

(6.6) L(g; X) = Tg + \g (X fc 0).

Furthermore, the measure of the approximation over G is given by

(6.7) A = \y0.

We next consider some particular functions of best approximations. Let

w be fixed in B. By (6.6) and (3.4), the kernel function KB(z, w) is a best

approximation to \Kg(z, w)-\-Kb{z, w) =\K*(z, w; X-1)- This statement is

equivalent to the identity

(6.8) X f f K*(z, l; \-l)k*(t, w; \)dAt = KB(z, w).
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More generally, it is easy to show that KB\z, w) is the best approximation

to Kfiz,w)-\-KK(i~l)iz,w)in = \, 2, ■ ■ ■ ),X^0. Here Kf is to be interpreted

as Kg-

On the other hand, let w be fixed in G. Then by the reproducing property

oí Ko over G we have

//.** '■
(6.9) I  I   k*iz, t; \)Koit, w)dA, = k*iz, w; X)

and, therefore, the resolvent kernel k* is, for XïïO, a best approximation to

Kaiz, w).

The Fredholm theory is rich in identities. Many of these can, by means of

Theorem 5, be given interpretations as theorems on best approximation.

Consider, for example, one of Fredholm 's basic identities

ff k*iz, t; Xi)**(/, w; Kt)dAt
a

= (Xi - X2)-1{X1^*(z, w; Xi) - \nk*it, w; X2)} (X! 3* X»)

and which in the Hermitian case at hand is readily verified through (4.31).

This tells us that best approximations to the resolvent kernel k* are, for

differing values of the parameter X, appropriate combinations of k*.

If we set fit) =<t>jiz) ij = 0, I, • • • ) ifi (5.5), there is obtained

(6.10) 4>Az; X) =    *'fz)      = M¿(z).
1 + Xkj

Thus, each doubly orthogonal function when multiplied by a suitable con-

stant becomes its own best approximating function.

By combining Theorems 2 and 7, we arrive at the following result.

Theorem 8. Let the region B be bounded by a finite number of closed analytic

curves. Then there exists a region B* with BQB* such that each function of

best approximation is regular in B*. A region B* may be found which depends

solely upon G and B, and is independent of the particular function of class £2(G)

which is being approximated.

We remark, therefore, that if B has an analytic boundary, then regard-

less of the region G, no function of best approximation can possess a singu-

larity on the boundary of B.

Corollary. For an outer region B with an analytic boundary, the doubly

orthogonal functions are regular in B*.

The following identity is easily derived from (6.1) and (5.5):

(6.11) Tfiz) - fiz;X) = Tfiz;X).
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Let us designate the operation which produces/(z; X) from/(z) by G\, that is,

(6.12) 6\/(z) =   ff k*(z, w; \)f(w)dAw.

Thus the operator Gx converts / into a best approximation to /. We may

now rewrite (6.11) in the following symbolic form

(6.13) r-XGx=rGx,

whence

(6.14) Gx = T/(T + XJ) ;        T = XGx/(/ - Gx).

If the first fraction of (6.14) is expanded in ascending powers of T, there is

obtained the Neumann series

(6.15) Gx=£
B = 0 X"+1

where TMf(z) is given by (6.2). The series (6.15) will be valid for values of X

which are sufficiently large, but by introducing an appropriate method of

summability such as Mittag-Lefñer's, it becomes valid, under appropriate

interpretation for all X>0. We shall indicate briefly how this can be accom-

plished.

Consider the resolvent kernel k(z, w; \)=D(z, w; X)/Z)(X). The entire

function .D(X) possesses zeros only at the points X = &< (t = 0, 1, • • • ). Thus,

for z, w fixed in B, k(z, w; X) considered as a function of the complex variable

X is regular in the star-region R obtained by deleting the segment 5: (Im X

= 0; Re X=ïk0>1) from the complex X-plane. Mittag-Lefñer's method of

summation will sum the series expansion of k, i.e., the series (4.6) for all X

in R. We therefore have

B-l <B)    ,

-      X     Kb    z, w)
(6.16) lim   £ = k{z, fl;X), X £ R.

«-.o b=i r(i + 5(» - i))

Comparing this with (4.31), we obtain

-   (-D^sTiz,*)
(6.17) k*(z,w;\) = lim  £

j-o „_! XT(1 + 8(n - 1))

It may be shown that for z, wElB'CZB, the limit in (6.16) and hence in (6.17)

holds uniformly, so that from (5.5) and (6.17) there is obtained

(6.18)    f(z; X) = lim   £ (~1}" ' f f KB"\z, w)f(w)dAw
«-♦o  „=.i   r(l + 5{n — l))Xn J J a
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or symbolically,
00

(6.19) Gx = (M)E(-1)"_1^"A"

where (M) stands for the Mittag-Leffler sum of the series which follows.

Furthermore, from (5.9) we obtain the representation

OO

(6.20) fit) = lim (M)X;(-l)'-1X»rí")/(z); / £ Z.2(G).

In particular, if /(z) =KGiz, w), w fixed in G, we have TMf=KBl\z, w), so

that

co

(6.21) Koiz, w) = lim (Jf)Z (-1)"" X^'i*. w).
X—»oo n=i

We return now to (6.14). As special limiting values there may be ob-

tained (cf. (4.35), (4.36), and (4.38))

(6.22) limGx = 0; lim Gx = I,
X->» X->0

(6.23) lim XGx = T.

Inversion formulae for the operator T may be found as follows. It is

easily shown that for /£L2(G) we have

(6.24) ff k*iz, w; X)Tfiw)dAw = Gxfit) = /(z; X).

Introducing as operator B\ by

(6.25) ff k*iz, w; X)giw)dAw = Bxg; g G ¿2(5),

then we have from (6.24)

(6.26) 5xr = Gx

so that from (6.22) there is obtained

(6.27) lim BXT = I.
X-.0

Thus finally

(6.28) T-1 = lim £x.
X-.0

In terms of integrations over the inner region G, the following alternate in-

version is also obtainable
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(6.29) T-'fiz) = lim   ff ¿*<2>(z, w; \)f{w)dAw.
X-»o   J J G

As a further application of these ideas, we now give a necessary and suffi-

cient condition that a function which is originally defined over G and of class

L2{G) be continuable analytically to B and be of class L2{B) there. (In this

connection, see Bergman [3, p. 18] where a criterion involving infinite

Hermitian forms related to the doubly orthogonal functions has been given.)

We have already seen that the necessary and sufficient conditions for this is

that/ be a Tai2) transform, i.e., if/(z)= £b_0 ub0b(z), then we must have

£b°=o I an\ 2kn< °° • In Theorem 9, we give a criterion which is related to the

process of best approximation and is independent of the doubly orthogonal

functions.

Theorem 9. The function f(z) of class L2{G) can be continued analytically

to be of class L2(B) and with B-norm equal to M< » if and only if

(6.30) lim ||/(z; X)||s = AT2
x->o

or, what is equivalent, if and only if

(6.31) lim   ff   ff k*^(z, w; \){f{z))~f{w)dAzdAw = M2.
x-»o J J G" " a

Proof. The equivalence of conditions (6.30) and (6.31) follows from (5.16).

Using (5.13), we find that (6.31) is equivalent to the condition

00        \ n   \2h
^—\ "B      Kb

(6.32) lim  £ --!- = M2,
x-o  „=o  (1 + Xk-b)2

We shall now prove that (6.32) is equivalent to £"_0 <ïb| 2k'„ = .M"2, a con-

dition which is obviously necessary and sufficient for ||/||.b = M. We there-

fore assume, at first, that £™_0 \an\ 2kn = M2. Consider

A,      , ^     \an\hn "    \an\2kn(2\kn + \kl)
¿_, I °b |   k„  —    ¿j  -  =    ¿-i  - = S{\).
b=o b=o (1 + Xk„)2       n=o (1 + Xk-„)2

Let €>0 be given. Determine N so large that £jv+i | an\ 2kn<e/2. Now S(X)

^£n=o (2'\kn+\2kn)\al\2kn/(í+\kn)2+'ZÑ+i \an\2kn. Now determine X0

so small that 1 -l/(l+X/fe„)2<e/{2 ££.„ \an\ 2k„] for m = 0, 1, • • ■ , N and

for O^XgXo. Then 5(X)g« for O^X^X0. Therefore (6.32) follows. Con-

versely, assume that (6.32) holds. For each N we have
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Therefore, allowingX—>0 in the above equation, we obtain Zn-o \an\ 2kn^M2,

and   allowing   A7—» oo,   we   obtain    X«=o    \an\2k„^M2.   However,   since

XXo \an\2kn> ZT-o \an\2kn/il+Kkn)2, by letting X—>0 there is obtained

E»-o |«n|2^„âM2. Thus, Z»"-o H2¿„ = Af2.
As remarked previously, a function / is a function of best approximation

if and only if it is a F transform. By treating (5.13) and (6.5) similarly, we

can obtain the following criterion which is independent of the doubly or-

thogonal functions.

Theorem 10. /(z) is a function of best approximation if and only if

(6.33) lim   f f   f f ¿*<2>(z, w; X)(fiz))~fiw)dAJAw < ».
X—»0    J   J B J   J G

Theorems 9 and 10 possess interpretations in terms of a process of sum-

mation by integral means which are analogous to Theorem 6. From (5.14)

and (4.32) we may obtain the following representation of &*<2)(z, w; X) as

the ratio of two entire functions of X:

CO /CO

(6.34) ¿*<2>(s, w; X) = £ DPiz, w)X~p/X2J2 ePX-"

where

JL c„-mAmiz, w)
(6.35) DPiz, w) = Ê (2m - p + 1)

m\(p — m)\

and where

(6.36) iv -
„-o mlip — tn)\

the constants cp having been previously defined in (4.10c). In view of the

remarks following (4.10c) and the fact that 2"=-o cn\~n/n\ is an entire func-

tion of X-1, it follows that for all X, the numerator of (6.34) converges uni-

formly and absolutely for z, w confined to B'CZB. We can therefore write

ff ff k*^iz, w; X)ifit))-fiw)dAzdAw
(6.37) °        Q

CO i-»    /» /%    e% / CO

= Y,*n ¡  \     I      Dniz, w)ifiz)yfiw)dAzdAw/X2,Z enX~»

so that the criterion (6.31) becomes

(6.38) lim  2>"+2 I Dniz, w)(fit))-f(w)dAJA*/ E^" = M\
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If, in the process of summability described by (5.25), we now set p„ = en

(m = 0, 1, • ■ • ), pnsn=ffGff0Dn_2(z, &)(f(z))-f(w)dA/IA* («-2, 3, • • • ),
sn = 0 (m = 0, 1), then (6.38) takes the form

(6.39) (e)£ e~l f f   f f Dn.2(z, w)(f(z))-f(w)dAzdAw = M2.
B=0 V     J  GJ    J  G

The symbol (e) refers to a process of summability by integral means using

the entire function e(X) = £"=0 enXn as the averaging function. We have there-

fore established the following result: let G and B satisfy the usual conditions;

then it is possible to specify a process of summation by integral means such

that a function of class L2(G) is continuable analytically to B and with

5-norm M if and only if (6.39) holds. The process (e) as well as the sequence

of kernels Dn{z, w) depend solely upon the two regions G, B. This process is

identical to the convergence to M of the 75-norms of functions of best ap-

proximation to/(z).

There are some special cases of Theorem 5 which provide interesting

interpretations of the resolvent kernels k* and k-*<2). Suppose initially that the

region G is simply-connected. Let w be a fixed point lying in G. If <f>(z, w)

denoted by the function which maps G conformally onto the unit circle in

such a way that the point w goes into the origin, then it is known (cf. Berg-

man [3]) that

d Kg(z, w)
(6.40) — 4>{z, w) = —--•

dz Kq(w, w)

Referring now to (6.9) and (4.37), we obtain

d k*(z, w; X)"Öj

We have therefore proved the following theorem.

C C d k*(z, w; )
(6.41) k*(z, t; X) — <t>(t, w)dA, = —-

J J g dt k*(w, w;

Theorem 11. For w fixed in G, the normalized resolvent kernel

k*(z, to; \)/k*{w, w; 0) is the function of best approximation to the derivative

of the mapping function of G.

If G is not simply-connected, then from (6.9), (5.15), and (3.5), we may

say similarly that k*(z, w; X) are the functions of best approximation to

( — 2/7r)(d2gc(z, w)/dzdw).

With w fixed in G, let us make the selection f(z) =d<f>(z, w)/dz in Theorem

9. The following theorem results.

Theorem 12. The function d(f>(z, w)/dz can be continued analytically so as

to be of B-norm M if and only if

(6.42) lim k*<-2)(w, w; X) = M2[K0(w, w)]2.
X-H>
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Proof. We have

if   / I' k*m(z' i; V(Ke(z' •))""*•('. w)dAzdAt = k*™(w, w; X) [Ka(w, w)\2

by the reproducing property of Kg over G. The theorem now follows from

(6.40) and (6.31).

We note further that d$(z, w)/dz is of class L2iB) if and only if

(6.43) lim ¿*(2>(w, w; X) < oo.
X—0

This is equivalent to

(6.44) T~1K0_iw, w) < ».

If, in particular, the region G has a nonanalytic boundary, then the limit

(6.43) will be infinite for all B such that G(ZB. Extension of these remarks to

the case of a multiply-connected G may be made through (3.5).

7. Some special cases. In the present section, we give some examples

where the doubly orthogonal functions are easily obtained. Let G be the circle

\z\ <ru and B the concentric circle \z\ <r2, r^yr-i. The doubly orthogonal set

for this pair of regions is given by

'rc+lV'2
d>„(z) = I-      z /)

(7.1)

K = (r2Ai)2"+2.

We have immediately

nit)   -   Í—1)1

(7.2) k*iz, w; X) ~ — 2
7T „„o   r2"+2 + Xr2»+2

and that if/(z) has the representation

(7.3) fit) = ¿ anz",

then the functions of best approximation/(z; X) are given by(3)

2n+2

A          ann      Z"
(7.4 fit; X) = £-

In this case there is obtained further

I I 2   2n+2

(7.5a) ||/!f, = -E-^-->
„_o      n + 1

(3) Cf. Walsh and Nilson [13, p. 250], recalling that in this paper line integrals were used.
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i l 2  2n+2

(7.5b) ||/(z;X)||l = M2 = .t
r»  (»+ 1)(1 + X(rï/r1)»»+s)î

i i 2 4n+4

n ii 2 2 A \ an\ r2
(7.5c      /-/(z;X) c = ttX X -!-!-

" " „=o (* + l)r2»+2(l + (ro/r,)2"*2)2

From (6.1) we have

(7.6) TU)fiz) = in/rtf ¿ anirï/rlYz" = in/uffir^z/n)

and from (6.18) we obtain the representation

(7.7) f(t; X) = lim  ¿ (~1}" ' in/r^finz/r?).
«-.o  „_„    T(l + bin - 1))X»

It will be observed that if/(z) is regular in | z\ <r, then/(z; X) will be regular

in \z\ <r(r2/ri)2.

As a second example, and one which is not simply-connected, let OOi

<r2<r3<r4< oo. As G, take the annulus r2<|z| <r3, and as B, the annulus

rx< \z\ <rA. In this case, the doubly orthogonal functions are as follows.

r        » + 1        11/2<'•»»> <■■■<') - U;,+, _ ,,„,,]  •• (»-«.I,-.-),

<-8w      *^w-[^j',:'^)]'"'-   c-**••■).

The characteristic constants are given by

/„   „   s , ,   271+2 2*1+2,   ,,   2n+2 2n+2,

(7.9a) fan = (r4 +   - r, + )/(r,      - n     ) (» = 0, 1, • • • ),
/»   «i \ i /  -2«+2 -2n+2 -2n+2 -2n+2
(7.9b) fan-x^irx        -n      )/(r,        - r,      ) (» = 1, 2, • • • ),

(7.9c) fa = log (r«/ri)/log (Vr,).

If/(z) possesses the Laurent expansion

(7.10) /(a) =   ¿ »a-
n=—co

then the functions of best approximation have the form

A antn =^ a„zn

n=0        1   ~T   A/?2„ n=_l     1  ■+"   AÄ2n-l

Of this case, we shall merely observe that fan~irjr¿)2n+2, &2n-i~(f2/ri)2"_2>
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and this implies that if/(z) is regular in the annulus a< \z\ <a'; a^r2, a'¿tr3,

then all functions of best approximation will be regular in the annulus

a(n/r2)2<\z\ <a'{ri/r'i)2.

These special cases for which explicit solutions have been found are ex-

tendable by means of conformai mapping. Let a region G lying in the z-plane

be mapped conformally onto a region G* lying in the w-plane by means of

w = 3(z). Designate the inverse mapping function by z = 6(w). It is easily

shown that f(z)£L2(G) if and only if f*(w)-=f(d(w))d'(w)£L2(G*), and

||/(z)|| g = ||/*(w)|| o>. Furthermore, suppose that G(ZB is given, and the whole

configuration is mapped conformally onto G*, B*. If </>n(z) is the set of doubly

orthogonal functions for G, B, then,

(7.12) </>*(w) = ct>n(d(w))d'(w) (n = 0, 1, • • • )

will be doubly orthogonal for G*, B*. Both sets of regions possess the same

characteristic numbers:

(7.13) kn= k*n (» = 0, 1, • • • ).

It appears, then, that the whole theory of best approximation is conformally

invariant, and indeed from (5.5), (7.12), and (7.13) we obtain

(7.14) /0,B(z; X) = f*',B<w; X), w = 3(z).

The simplest configuration is obtained when G* and B* are images of two

concentric circles \z\ <ru \z\ <r2, 0Oi<r2< °°. In this case we have

<KM = ((»+DA)1/,(*(»))V(»)/rr+,J

k* - (r2/ri)2«+2.

In the general simply-connected case, we can, at least, map B onto the unit

circle so that the transformation T is expressed very simply through (3.9).

8. Generalizations. In this final section, we shall discuss briefly some

generalizations which can be made. In §4, we introduced the basic assump-

tion that the system 4>H{z) be complete over L2(G). Our reason for this is

that we wished to approximate functions of L2(G) by those of class L2(B).

Assuming completeness, the former class is comprised of those functions/(z)

— £n=o an<i>n{z) with EjT-o |öb|2<°°. In case of the incompleteness of

{<£b(z) } over L2(G), these latter functions form a subset L2¡(G). If we agree to

operate only within L2{G), that is, if we deal with the problem of approximat-

ing functions of class L](G) by functions of class L2(B), then our previous

results will remain intact. If an incomplete kernel function of G is defined by

(8.1) Koiz, w) = £*»r>)O»(«0)~.
B-0
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then the class L](G) is comprised of those and only those functions which have

a representation of the form

(8.2) /(z) =   f f k'o{z, w)h{w)dAw;        h(w)EL2(G).

This class may be characterized independently of the system {<f>„(z)} as fol-

lows:/£L2(G) if and only if

(8.3) /(z) = lim   ff k*(z, w;\)h{w)dAw
X—K)    J   J o

for some &(w)£L2(G).

The following modification of the original problem may also be contem-

plated. Instead of discussing complex-valued functions which are analytic in

G, we may discuss real-valued functions which are harmonic in G, or, more

generally, functions u(x, y) which satisfy a partial differential equation of

elliptic type

d2u      d2u _
(8.4) -_+___ q(x, y)u = 0, q{x, y) è 0 in G.

ox1      dy2

If a scalar product is defined by

C Ç Fdu dv      du dv 1
(8.5) E(u, v) =   I   I-1-\- quv   dxdy,

J J ol-dx dx      dy dy J

the space of solutions u for which E(u, u) < oo is a Hubert space possessing

a reproducing kernel KG(x, y; £, 77) (see Bergman and Schiffer [4]). For two

regions GCZB, the integral equation

(8.6) <¡>{x, y) = \E[KB(x, y; f, ,), </>(£, t,)]

possesses eigenvalues <j>n(x, y) which are doubly orthogonal over G and B

with respect to the metric (8.5). Much of the present theory will carry over

to this more general situation.
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