GENERALIZATION OF RUNGE’S THEOREM TO
APPROXIMATION BY ANALYTIC FUNCTIONS(})

BY
ANNETTE SINCLAIR

1. Introduction. According to Runge’s Theorem [4](?), any function
M(3) which is analytic in a given region R can be expanded in a sequence of
rational functions that converges to M(z) uniformly on any closed subregion
interior to R.

Walsh [6, Chap. I; 7; 8] has generalized Runge’s Theorem to obtain
necessary and sufficient conditions for uniform approximation on an arbitrary
closed set C. He supposes points 2, preassigned in a finite number of com-
ponents of the complement of C and proves the following theorem:

A necessary and sufficient condition that every function M(z) analytic on C
can be uniformly approximated on C by a rational function whose poles lie in
the points zi is that at least one point 2y, lie in each of the regions into which C
separates the plane.

In the present paper it is proved that any function analytic on a “Q-set”
S can be approximated on that set by a function which is analytic in the ex-
tended plane except possibly at points of a preassigned “B*(S)-set.”

Before defining “Q-set” and “B*(S)-set” we define sequential limit point.
A point which is a limit point of some set of points chosen one from each
component of any given set S is called a sequential limit point of S (S-s.l.
point) (3).

A set consisting of (1) the set B of the s.l. points of a given set S and
(2) precisely one point of each component Ix(S) of C(S) such that Ii(S)
NB = will be called a B*(S)-set.

A set S whose components are closed and whose s.l. points are in C(S)
(the complement of .S) will be called a Q-set. We note that a Q-set has at most
a denumerable number of components.

ExaMPLE 1. Let S be the set whose components S;, S, « - - are circles
(including their interiors) of radii one-fourth with centers at z=1, 2, - - - .
This is a Q-set. The point at infinity is the only S-s.l. point, also the only
B*(S)-set.

ExAMPLE 2. Let S be a set whose components S;, S, - - - are closed
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circular rings of radii one-fourth with centers at =1, 2, - - - . This is a Q-set
and the set of S-s.l. points consists of just the point at infinity. The set
whose points are the point at infinity and the centers of the circles is a
B*(S)-set.

Now let us suppose S to be an arbitrary Q-set and B* a B*(S)-set. It is
proved in this paper that, if M(2) is analytic on such a set .S and is such that
log M(z) can be chosen as single-valued and continuous on .S, the approximat-
ing function L(2) can be required to be both analytic and nonvanishing in
C(B*). If M(2) is analytic on S and if no restriction is placed on the vanish-
ing of L(2), then L(z) can be chosen so as to be analytic in C(B*) and mero-
morphic except possibly at S-s.l. points.

The approximation obtained is not only uniform on S but is such that
the closeness of approximation can be preassigned independently for each
component of S.

We consider two simple examples. Let S be a set as described in Example
1. Define M(z) =4 on S;. Then for any sequence of positive constants {3;}
there exists an integral nonvanishing function L(z) such that—for every +—

| L(z) — i| <& when z € S..

For our second example we take S to be a set as described in Example 2
previously given and let B* be the B*(S)-set there defined. We choose as
M(z) any function analytic on each ring. (M (2) may be defined by a different
analytic function on each S:) Then, for any {8}, there exists a mero-
morphic function L(2) such that—for every 7—

| L(z) — M(3) I < & when z € S..

Furthermore, L(z) can be chosen so that its poles lie at the centers of the
rings.

2. Preliminary topology. Throughout this paper the extended plane is to
be understood.

An infinite subset {S.,} of components of a set S will be called nested if it
can be arranged in an order Sy, S, - - - such that §,; separates S,; from
S,, whenever j <7 <k. An equivalent definition is that, when properly ordered,
Sn; separates S,, from the set of s.l. points of this sequence when j>k(%).

An interior s.l. point of a set is an s.l. point of a nested subsequence of
components.

A ring is a closed region bounded by two mutually nonintersecting
Jordan curves.

Let us choose a fixed point P as a base point. Then, if a given closed set
FDP, a point of C(F) will be said to be inside of F if it belongs to the com-
ponent of C(F) to which P belongs, outside of F if it belongs to some other
component. If no base point is specified, it is to be understood that the origin

(4) The definitions of nested, interior s.l. point, and ring are essentially those given by
Ketchum [1, pp. 212, 214].
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is taken as the base point.

The following theorems are given for reference.

(A) If E is any set and K 1s a connected set such that KNE# & and
KNC(E)# &, then KNF(E)# & [3, p. 64] (where F(E) denotes the bound-
ary of E).

(B) Let B be the set of s.l. points of a Q-set S. Then, if I(B) is any component
of C(B), no two points of I1(B) are separated by more than a finite number of
components of S.

Proof. If this were not true, some two points p and ¢ of I(B) would be
separated by an infinity of components. But then every Jordan arc joining
. p and ¢ must meet B. However, since p, & I(B), a region, they can be joined
by an arc in I(B).

(C) If Sis a Q-set and B is its set of s.l. points, any component 1(S) of C(S)
such that I(S)N\B =& 1s a region of finite connectivity and F{I(S) } CS.

Proof. F(S)CS\UB. Hence, F{I(S)} CSUB. Since I(SY"\B= & and
SNB=g, BC{C(S)—I(S)}. Then F{I(S)}NB#g would imply that a
point of some other component of C(S) is a limit point of I(S). This is im-
possible. Therefore, F{I(S)}CS.

A fixed point p of I(S) belongs to some component of C(S\UB)—say
I(S, B). Since S\UB is a closed set, F{I(S, B)} C(S\UB) and I(S, B) is a
region. We show that I(S, B) =I(S). Clearly I(S, B) CI(S). If I(S)LI(S, B),
(A) would imply that F{I(S, B)}NI(S)#&. But since I(S)N\(SUB)=&
we conclude that I(S) =I(S, B), which is a region.

It remains to be proved that I(S) has finite connectivity. From the fact
that F{I(S) } CS, it follows that F{I(S)} is contained in only a finite num-
ber of Si’s. For otherwise, since F{I(S); is a closed set, F {I (S) }f\B?f,@’
and F{I(S)}{S. According to a theorem given by Newman [3, p. 118]
each component of C{I(S) } contains just one component of F{I(S) 1. Hence,
no S; contains more than one component of F{I(S)}. We conclude that
F {I (S)} has only a finite number of components and that I(S) is of finite
connectivity.

(D) If two points are separated by a closed set F, they are separated by a
component of F [3, p. 117].

In the proof of Theorem 3 we shall use the following topological theorem.
We are given a Q-set S and B*, a B*(S)-set. The object is to construct a se-
quence of closed sets { F,-} , FiC Fi4,, in such a way that we can apply Runge’s
Theorem successively to approximate on closed sets obtained by taking the
union of F; and a finite number of certain components of S. In order that we
can require that the approximating rational functions have their poles in B*,
we require that condition (e) below be satisfied. Except for this condition,
the construction in Theorem 1 would be much simpler.

THEOREM 1. Suppose S is a Q-set having an infinite number of components
Si. Let B denote the set of S-s.l. points and B* an arbitrary B*(S)-set. Then
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there exists a sequence of closed sets {Fi} which have the following properties:
(a) F.CC(B);
(b) F, is interior to F,.1 and has only a finite number of components;
(C) If StﬂFn#Qy StCFn;
(d) Any closed set CC C(B) is interior to some F;;
(e) If I,(Fn, S) is any component of C(F,\JS), I,(Fn, SYN\B*# .
- In particular, if B does not divide the plane, F, can be required to be con-
nected.

Proof. For each component I;(B) of C(B) a certain sequence of closed
connected sets { K;;} will be defined. Then the sets of the sequence { F:} will
be taken as the union of a finite number of sets, each chosen from a different
sequence {K;}.

According to a theorem proved by Ketchum [1, p. 214], there exists in
{I;(B)—S} a set R whose components R;are rings such that: (a) The R-s.l.
points, the R-interior s.l. points, and F{I;(B)} are identical sets; (b) If
F{I j(B)} has more than one component, then for every ring R; there are
points of F{I;(B)} in both components of C(R;).

Choose a point P; of {I;(B)— (SUR)} as a base point. Let O(R,) denote
the region outside R,. Omit every R, except those with the property that
some point b* of B* in O(R,)NI;(B) is not separated from R, by any
component of S.

Let R* be the set whose components are just (1) those rings which have
not been omitted and (2) those components of S in I;(B) which separate
the plane. We note that any R*-s.l. point belongs to F{I;(B)}. We let a
component of R* which is separated from P; by m—1 but not by m other
components of R* be denoted by R:¥. Every component of R* is included
in the collection {R;®}.

We define a sequence of sets {E;,}—z'=1, 2, - + - — by defining E;; as
the set of points inside all the R}®’s. Then we define a sequence {K;}—
i=1, 2, - - - —by letting K;;=E;;U:(R}®). Finally we set

F, = Ky,

...............

(If there are only a finite number N of regions I;(B), the symbols K,_;1 ;
for j> N are to be omitted.)

Before proceeding to prove that the sequence { F;} satisfies the required
conditions, we prove the following property:

PROPERTY A. Any point b of F{I j(B)} is separated from P; by an infinite
number of components of R*.

Proof. According to the definition of R, b is an s.l. point of some nested
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subsequence of rings {R.,,}. It is easy to show that—for some k— R, sepa-
rates P; from b when t> k.

For any R,; which was omitted in the construction of R* substitute an
S; which separates this R,, from b. Omit any R,,’s between the R,; omitted
and this S;. Thus a subsequence of R};®’s is obtained each of which separates
P; from b.

It is next proved that any K.; is a closed connected set. Then, since F,
is the union of a finite number of these disjunct sets, F, is closed and has
only a finite number of components.

We first show that, for m fixed, there are only a finite number of RA"’s.
An infinity of R;}")’s would have an s.l. point b. But bEF{Ij(B)}, hence is
not an s.l. point of components separated from P; by only m other com-
ponents. It can now easily be verified that K,; is closed. Clearly K,; is
connected.

To prove that (a)-(c) are satisfied it is sufficient to verify the cor-
responding properties for the K;;'s when I;(B) is substituted for C(B).

Proof of (a). This follows from (A), Property (A), and the definition of
K..;. :

Proof of (b). To prove that K,; is interior to Knu41,; it is sufficient to
show that—for any 2—R}? CE,.,1;, which is a region.

If REPQ Emy1.j every Jordan arc joining P; and some point of RA? meets
F{Em1,;} CULRE®, ). But then RXY would be separated from P; by at least
m other components, contrary to the definition of an R,

Proof of (c). Clearly, if a point pE (Si\Emj), StC EmjC Km;. If—for some
¢—pERPNS,), RED is just S..

Proof of (d). First we show that for any point p of any I;(B) there exists
m such that pE E,;, which is a region.

If—for every m—p is outside some R}®, p must be separated from P; by
an infinite number of components. But since R* is a Q-set whose s.l. points
are in B, (B) implies this is impossible. We conclude that there exists m
such that pEE,,;. .

To show that (d) is satisfied it is sufficient to prove that any closed set
in C(B) is contained in U}_,(E;_;y1.¢) for some 7. Assume the contrary. Then
there exists a closed set CCC(B) and a sequence of points {p;} in C such
that p;EUL (Ei—¢11,:). A limit point p of this sequence belongs to C, there-
fore to some I;(B). It was just proved that—for some m—pE En;. Hence, p
is interior to U,E;_;y1,; when ¢=m+j—1. By definition of p; there exists N
such that, for 2= N, p;€EU,(Ex_¢41.¢). This leads to a contradiction and com-
pletes the proof of (d).

Proof of (e). Let p be an arbitrary point of I.(F,, S). Then p belongs to
some component—say I,(S)—of C(S).

Case i. I,(S)CI.(F,, S).

I,(F,, S)N\B*> —since, by definition of B*, I,(S)N\B*#= J.
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Caseii. I,(S)LI,(Fa, S).

First we note that F,\US is a Q-set whose s.l. points are in B. Hence, if
I,(Fa, SYN\B =& —according to (C)—F{I,(F., S)}C(F.US). Then

F{L(F. S)} CS s (R Ur (RS0 Ui+ - - U (RLY).

Since I,(S)E I.(Fa, S), (A) implies that F{I,(F., S)}NI.(S)#J. But
SNI,(S)=F. Therefore, we have to consider only the case where at least
one of these R,",‘(_",)H 4's is a ring—say R—which was not omitted.

For some j, R;CI;(B). We note that I,.(F,, S) lies outside R;. From the
criteria for the non-omission of a ring we have that some point b* of B* in
O(R)NI;(B) is not separated from R, by any S;. Clearly there exists a
point ¢ of {I,(F,,, S)f\Ij(B)} not separated from R, by any S; and so not
separated from b* by any S;.

If b*& I,(F., S), every Jordan arc joining ¢ and b* meets F{I,(F., S)}.
Then (D) would imply that some component of F{I.(F., S)} separates b*
and ¢. For some &, R, is an R}%¥, , ;. Since b*, ¢€O0(R;), no other R}, can
separate b* and g. Since b*, ¢&1,;(B), no R;®—mj—can separate b* and
¢- We conclude that any component of F{I,(F., S)} which separates b* and
g must be contained in some S;. But then ¢ and * would be separated by this
S;. This gives a contradiction and completes the proof that b*&I,.(F,, S).

CoROLLARY. The sequence {F ¢} of the theorem can be chosen so that every F;
contains at least one component of S.

Proof. According to (d) any preassigned component Sy is interior to some
F,, of the sequence { F;}. We now take F,, as Fi, F,41 as Fs, and so on.

The conclusions expressed in the following lemma are included in some
topological results obtained by Walsh [6, pp. 7-10].

LEMMA. Let R be an arbitrary region—not the entire plane. Then there exists
a sequence of regions {Rk} with the following properties:

(a) Rn CR;

(b) EnCRn+l;

(c) Any closed set CCR 1s interior to some Ry;

(d) The connectivity of R, is not greater than that of R.

The next theorem is applied in the proof of Theorem 7. We let G denote an
open set whose components are Gy, Gz, - + - . By an Fg-set we shall mean a set
FCG such that—for every +—the subset F;=FNG; is a closed set.

THEOREM 2. Let G be an open set—not the entire plane—and let B* be any
B*(G)-set. Suppose F is a given Fg-set. Then there exists a sequence of Q-sets
SO S® .. S . such that—for every j—

(a) FCSVCG;

(b) SO g5 interior to SG+Y;
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(c) For any closed set CCG there exists N such that C is interior to SO
for j>N;
(d) B* contains a B*(S@)-set, and every S@W-s.l. point is a G-s.l. point.

Proof. The lemma implies that for each component G; of G there exists a
sequence of regions R®, RY, - . - having the properties listed in the lemma.
Since—Dby definition of F—F; is a closed set, it follows from (c) of the lemma
that we may suppose these R{"’s chosen so that F;CR®?, for every k.

Next let us define sets S®, S@ . . . thus:

Now for every j, FCS®, which is a Q-set, and S@CG. Clearly S@ is
interior to StV Thus conditions (a) and (b) are satisfied.

If (c) were not true there must exist a closed set CCG and a sequence of
points {pk} such that p,&C but prES®. A limit point p of this sequence
belongs to C, therefore to some G;. It follows from (c) of the lemma that—
for some j—p is interior to S®. But this leads us toa contradiction and we
conclude that (c) is satisfied.

We have yet to verify (d). Clearly any S¥-s.l. point is a G-s.l. point and
so belongs to B*. Hence, to prove that B¥*, which was defined as a B*(G)-set,
contains a B*(S®W)-set, it is sufficient to show that I,(S@)NB*# & foran
arbitrary component I,(S®) of C(S®).

It is evident from (d) of the lemma and the definition of S that
there is a component—say I,(G)—of C(G) such that I.(G)NI,(SW)= .
Since—if I;(S@) contains an S@-s.l. point—I,(SP)N\B*# ¢F, the only case
that remains to be considered is that where I;(S%) contains no S@-s.l.
point. In this case (C) implies that F{I;(S®) } CS%, and hence F{I(S?)}
CG. Now, if I,(G) CIx(S®), (A) implies that F{I;(S?)}NI,(G) . But
this would give a contradiction to the conclusion that F{I;(S?)}CG. We
conclude that I,(G) CI.(SW).

Then, since I.(G)NB*# &, I[.(SP)NB*3 &. This completes the proof
that in no case is I;(SP)NB*= .

3. Approximation theorems. Throughout this paper it is to be understood
that the functions are single-valued. A function is said to be analytic on a set
if it is analytic in a neighborhood of every point of the set. We note that a
function analytic on a Q-set S may be defined by a different analytic function
on each component of S.
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THEOREM 3. Let S be a Q-set, B the set of S-s.l. points, and B* any B*(S)-
set. Suppose M(z) is any function analytic on S. Then, for any sequence {3}
of positive constants, there exists a function L(z) analytic in C(B*) and mero-
morphic in C(B) such that—for every i—

| M) — L) | <o
when z is any point of the component S;.

Proof. If S is the null set or the whole extended plane, the conclusion is
trivial. If S has only a finite number of components, S is a closed set and the
desired result follows directly from Runge’s Theorem.

Otherwise, there exists a sequence of closed sets {F:} as described in
Theorem 1. Let us choose such a sequence as specified in the corollary. We
note that “F,C C(B)” implies F, intersects only a finite number of S,’s.

Denote the components of S contained in Fy by Sy, Ss, + -+, Sm, and
those in Fu\C(Fn—1) by Sm, 41, * * * » Sm,. Change the subscripts for 8;’s of
the given {8:} so that each §; corresponds to its original S;. Then let §™ de-
note the minimum of &, 8, * + +, 0m,.

M(2) is analytic on the closed set U™, S; and every component of C(U1,S;)
contains a point of B*. Then Runge’s Theorem as generalized by Walsh
implies there exists a rational function r,(z) whose poles lie in B* such that

5 my
| M(z) — n(z) | < > when z € U S..
i1

For any integer k>1 there exists an open set Gy, containing Fj—; and
disjunct from some open set O, DUk ™-1S,,, _ ., in which { M(z) = %lri(a)}
is analytic. Let us define

Mk(Z) =0 in Gk_l

k—1
= {M(z) - Zri(z)} in Oy.

i=1
Now M (z) is analytic on the closed set Fi_1UJ*7™-(Sm,_,+,) and a point of
B* lies in each region into which this set separates the plane—by (e) of
Theorem 1. Hence, according to Walsh’s generalization of Runge'’s
Theorem, there exists a rational function r.(z) whose poles lie in B*
NC{ FyUmT™=1S,,, 4o} such that

| Mi(z) — ri(z) | < 80)/2¢

for z any point of Fir_ or of Sm,_,+e—q=1,2, - - -, (mp—m1).

Let D be any region in C(B) such that DCC(B). According to (d) of
Theorem 1—for some integer t—D is interior to Fy_;. Then, for all j=¢, 7;(z)
is analytic on D and

0
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lri(z)| < 8v/2i when z € D.

Since D 5., 8(9/2i converges, p . r;(z) converges uniformly in D—hence is
analytic in D. Except possibly for a finite number of poles in (B*—B),
L(z) = D¢ r;(3) is analytic in D. Since D was chosen as any closed region in
C(B), L(2) is analytic in C(B) except possibly for poles in (B*— B).

We wish to prove that—for any n—

| M(3) — L(3) | < 6. when z € S,.
For some k, my_; <n <m;. We have that
& 50 .
'M(Z)—j-zlfi(z) <—2k—§-é—k when z € S..
Now
k 0
46 - 26)| 5 | M) - X )| + T [ n6)
. j=1 =k 1
b i < h S
<é7+j=k+1;= " when z € S,.

CoROLLARY 1. If M(2) is any function analytic on a Q-set S which has no
s.l. point in the finite plane, then—for any {8;}—there exists a meromorphic
Sfunction L(z) such that, for every 1,

l M(z) — L(2) | < & when z € S..

If points are preassigned, one in each of the bounded components of C(S), L(z)
can be chosen so that its poles lie in these points.

In particular, if S does not divide the plane and does not contain the point at
infinity, L(2) can be required to be an integral function.

COROLLARY 2. Let G(2) >0 be any function bounded away from zero on each
component of a Q-set S. Let B be the set of S-s.l. points and B* any B*(S)-set.
Then, if M(2) is any function which is analytic on S, there exists a function L(z)
meromorphic in C(B) such that

| M) — L(3) | < G(z) when z € S.
Furthermore, L(z) can be chosen so that its poles lie in (B*— B).

Proof. This follows directly from the theorem when §; is chosen as G.L.B.
G(2) on the component S;. '

The next theorem shows that in order that every function analytic on a
given Q-set can be even uniformly approximated on that set it is actually
necessary to allow the approximating function a possible singularity in each
component of C(S).
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LEMMA. Let R be a region of finite connectivity such that R is not the entire
extended plane. Let M(z) be a function analytic on F(R). Then, if there exists a
sequence of functions { f,.(z)} analytic on R which converges uniformly to M(2)
on F(R), M(2) can be continued analytically from F(R) to all of R.

Proof(®). Let R’ denote the region obtained by suppressing all components
of F(R) which are isolated points. Now RCR’, R'=R, and F(R')CF(R).
Since R has finite connectivity so does R’.

By hypothesis, there exists a sequence of functions { f,.(z)} analytic on
R’ which converges uniformly to M(z) on F(R’). By a well known theorem,
such a sequence converges uniformly on R’ to some function M*(z) which
is analytic in R’ and continuous in R’. On F(R’), M*(z) = M(z). The function
f(2) = M*(z) — M(2) is single-valued and analytic interior to R’ in the neigh-
borhood of F(R’) and lim,.rw& f(z) =0 for z interior to R’. It follows from a
theorem given by Walsh [6, p. 23] that f(z) vanishes identically interior to R’
in the neighborhood of F(R').

Thus M*(z) gives an analytic extension of M(z) from F(R’) to all of R/,
hence from F(R) to all of R.

THEOREM 4. Let S be a Q-set (which consists of more than one point), B
the set of S-s.l. points, and E a set in C(S) such that BCE. Then a necessary
and sufficient condition that every function which is analytic on S can be uni-
formly approximated on S by some function analytic in C(E) is that every com-
ponent of C(S) contain a point of E.

Proof. The sufficiency of the condition follows directly from Theorem 3
when the sequence ¢, ¢, - - - is taken for { Bi} of the theorem. We proceed to
the proof of the necessity.

For the sake of argument, let us suppose that there is a component—say
I(S)—of C(S) such that I,(SYNE=F. Since BCE, I:(SYN\B=. Then
(C) implies that F{I;,(S) } C.S and that I(S) is a region of finite connectivity.

Case 1. T,(S) is the entire plane.

The hypothesis implies that, for any preassigned function M(z) as de-
scribed, there exists a sequence of functions analytic in the entire plane, that
is, a sequence of constants, which converges uniformly to M(z) on S. This
is impossible for an arbitrary function M(z).

Case 11. T,(S) is not the entire plane.

Let us choose M(z) =1/(z—p), where pEI;(S). It follows from the hy-
pothesis that—for every positive integer » and for any e>0—there exists
a function f,(2) analytic in C(E) such that

| M(2) = fa(2)| < ¢/n
on S, hence on F{Ik(S)}.

(°) This proof is essentially the same as that of a similar statement by Walsh [6, p. 25].
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Now for the function M(3), which is analytic on F {I +(S) }—where I(S)
is a region of finite connectivity—we have the sequence of functions {f.(z)}
analytic on 7,(S) which converges uniformly to M(z) on F { I(S) } Then the
lemma implies that M(z) can be extended analytically from F{I k(S)} to all
of I;(S). But this is impossible since M(z) =1/(z—p) has a pole at p, a point
of I(S). This completes the proof of the theorem.

The approximating function of the next theorem is required to be not

only analytic but also nonvanishing in the complement of a preassigned

B*(S)-set.

THEOREM 5. Let S be a Q-set and B* a B*(S)-set. Suppose M(z) is any
function which is analytic and nonvanishing on S and such that log M(z) can
be chosen as single-valued and continuous on S. Then, for any {e,-} , there exists a
Sfunction f(z) nonvanishing and analytic in C(B*) such that—for every i—

| M@E) — ()] < e« when z € Si.

Proof. For each 7 choose 8; so that when 2&.S; and l'w—log M (z)! <6y
then |er— M(z)| <e.. '

According to Theorem 3—when log M(z) is chosen as the function to be
approximated—there exists a function L(z) analytic in C(B*) such that, for
every 17,

| log M(z) — L(2) l < é; when z € S..
Then, for every 1,
| M(z) — e£@ | < & when z € S..
Clearly eX(? is analytic and nonvanishing in C(B*). Hence, ¢%(¥ may be
taken as the required function f(z).

COROLLARY. Suppose M(z) is analytic and nonvanishing on a Q-set S
which does not separate the plane. Then—for any {e;}—there exists a function
f(2) which is nonvanishing and analytic except possibly at S-s.l. points (provided
S has an infinite number of components) such that, for every 1,

, M(z) — f(2) | < € when z € S..

In particular, if S has no finite s.l. point and does not contain the point at in-
finity, f(z) can be required to be a nonvanishing integral function. If S has
only a finite number of components, we allow f(2) a singularity at an arbitrary
preassigned point of C(S).

It is easy to show that the singularities of an approximating function satis-
fying the conditions required in Theorem 5 cannot in general be restricted to
at most poles at points of B* which are not S-s.1. points.

THEOREM 6. Let S be a closed set and let B* be any set of points chosen one
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from each component of C(S). Suppose M(z) is any function such that log M(2)
can be chosen as single-valued and analytic on S. Then M(z) can be uniformly
approximated on S by a function f(3) which is analytic and nonvanishing in the
entire plane except at a finite number of points of B*.

Proof. Given >0, choose >0 so that when 2E.S and |w—log M(z)| <3,
then |ev— M(z)| <e.

According to Walsh’s theorem on approximation on a closed set [6, p. 15]
—when log M (z) is chosen as the function to be approximated—there exists a
rational function r(z) whose poles lie in B* such that

| log M(2) — r(2) | < 8, z € S.
Then
| M(z) — er®| < when z € S

and e(® satisfies the conditions required of f(z).

In the next theorem our approximation results are expressed in terms
of expansion of a function analytic in an open set G in a sequence of functions
analytic (or analytic and nonvanishing) except possibly at preassigned points
of C(G). Our definitions of an Fg-set and of F; were previously given for
Theorem 2.

THEOREM 7. Let G be an open set, B the set of G-s.l. points, and B* any
B*(G)-set. Suppose M(z) is any function analytic in G. Then there exists a
sequence of functions {f;(z) } meromorphic in C(B) and analytic in C(B*) which
converges to M(2) in G, uniformly on any closed set interior to G(®). If F is a
preassigned F g-set, { fi(2)} can be chosen so that—when zE& Fi—

| M) - i) | <&’
for any preassigned {}. .

If log M(2) can be chosen as single-valued and continuous in G the functions

fi(2) can be required to be analytic and nonvanishing in C(B*)(7).

Proof. If G is the null set or the whole extended plane, the conclusions
are trivial. These cases are henceforth disregarded.

In order to avoid the consideration of special cases, if an Fg-set is not
preassigned we choose one arbitrarily—which may be the null set.

For fixed 4, we may suppose each ¢’ <1/j.

Let us choose a sequence of Q-sets S, S@, . . . satisfying the conditions

(%) When no further restriction is made, the f;(z) can be required to be rational functions
with their poles in B* [6, p. 16].

(") In this case the f;(z) are not required to be meromorphic in C(B).

The proof of this statement is similar to that of the first part of the theorem. Necessary
modifications in the proof are indicated in parentheses.
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listed in Theorem 2.

We note that M(2) is analytic on each S, Then according to Theorem 3
(Theorem 5)—when applied successively—there exist functions f;(z) analytic
in C(B*) and meromorphic in C(B) (nonvanishing and analytic in C(B*))
such that, for every 1,

............................

By applying (c) of Theorem 2 we see that by taking {eﬁ”} =1,1, - - - and,
in general, {€”} =1/, 1/4, - - -, a sequence {fi(z)} can be obtained which
converges uniformly to M(z) on any closed set interior to G. Since we sup-
posed that each e’ <1/7, the original {f;(z) } obtained converges uniformly to

M(2) on any closed set CCG.

COROLLARY. If the components of the open set G are simply connected and
bounded, if G has no finite s.l. point, and if M(z) has no zero in G, the functions
of the sequence { fj(z)} in the theorem can be chosen as integral nonvanishing
functions.

We next obtain what might be called a Weierstrass factor-approximation-
theorem. We let J denote an isolated set and suppose a positive integer as-
signed each point of J. According to the Weierstrass-factor-theorem [2],
there exists a function g(z) analytic except at limit points of J which has zeros
of the prescribed orders at precisely the prescribed points.

Let us suppose that M(z) is any function which is analytic in a neighbor-
hood of each point of J and which has zeros of the prescribed orders at points
of J. (Of course, M(z) may be defined by as many different analytic functions
as there are points in the set J.) Then, according to Theorem 9, there exists
a function k(z) analytic except at limit points of J which not only satisfies the
conditions required in the Weierstrass theorem but which also approximates
M(2) arbitrarily closely in a neighborhood of each point of J, where the close-
ness of approximation may be preassigned independently for each point of J.

THEOREM 8. Let S be a Q-set which does not separate the plane. If S has an
infinite number of components, we let B denote the set of S-s.l. points; if S has
only a finite number of components, we let B consist of an arbitrary point of C(S).
Suppose M(z) is analytic on S and not identically zero on any component S;.
Then, for any {e,-}, there exists a function h(z) such that

(a) h(2) is nonvanishing in C(S\UB) and s analytic in C(B);

(b) The zeros of h(z) coincide with the zeros of M (z) on S and are of the same
orders;
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(c) For every 1,
| M(2) — h(z)| < e when 3 € S..

Proof. The set J={z| M(3) =0; 2ES} is an isolated set. Hence, Weier-
strass’s factor-theorem [2] implies the existence of a function g(z) analytic
in C(B) which has zeros at precisely the points of J of the same orders as the
zeros of M(2).

We let M;=L.U.B. g(2) on S..

The function F(z) =M(z)/g(2) is analytic and nonvanishing on S. Then
by the corollary of Theorem 5 there exists a function f(z) nonvanishing and
analytic in C(B) such that, for every 7,

| F(z) — f(3) l < e&/M; when z € S..
Now
| M(2) — f(z)g(a) | = l {% - f(z)} -4(2)
M(z
[L - 16|
when 2&E S;.

The function f(2) - g(2) satisfies the conditions required of the function £(2).
The following lemma is easily verified. Modifications in the statement for
a4 similar lemma are indicated in parentheses.

LEMMA. Let M(2) be any function which is meromorphic (analytic and not
identically zero) in a neighborhood of each point of a given isolated set J. Then
there exists a neighborhood N; for each point j of J such that

(a) NNO\N;j=d for i#j;

(b) N=UN, is a Q-set which does not separate the plane and whose set of
s.l. points is just the set of limit points of J.

(c) M(z) is meromorphic (analytic) on N and is analytic (nonvanishing) on
N except possibly at points of J.

Such a set of neighborhoods for the points of an isolated set J and a given
function M(z) will be called an M.J.-collection of neighborhoods.

The following theorem, which is an extension of the Weierstrass-factor-
theorem, follows directly from Theorem 8 when the Q-set .S of the theorem is
chosen as UN;.

THEOREM 9. Let J be any isolated set. Assign to each point of J a positive
integer as order. Let M(z) be any function which is analytic in a neighborhood
of each point of J and which has zeros of the prescribed orders at these points.
Then, for any M.J.-collection of neighborhoods {N;} and for any {e;} there
exists a function h(z) analytic except at limit points of J (or—in case J has only
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a finite number of points—analytic except at a preassigned point of C(UN;))
such that

(a) h(z) has zeros to the prescribed orders at the points of J and is nonvanish-
ing elsewhere;

(b) For every 1,

| M(2) — h(z)| < & when z € N;.

We note that such a function k(2) necessarily has an essential singularity
at each limit point of J.

Next we obtain an extension of the Mittag-Leffler partial-fractions
theorem [2] analogous to our extension of the Weierstrass factor-theorem.
We prove the existence of a function which not only has poles with assigned
principal parts at prescribed points but which also satisfies a preassigned ap-
proximation condition arbitrarily closely in a neighborhood of each pre-
scribed point.

TureorREM 10. We define sets S and B as itn Theorem 8. Let M(z) be any
function which is meromorphic on S. Then, for any {e.-}, there exists a function
N(z) such that

(a) N(z) is analytic in C(B) except at poles of M(z) on S;

(b) The poles of N(z) coincide with those of M(z) on S and have the same
principal parts;

(c) For every ¢

M@z — NG) | <e when z € S,
except at poles of M(z) on S..

Proof. The set of points at which M (z) has poles on S is an isolated set.
Hence, Mittag-Leffler’s partial-fractions theorem [2] implies the existence
of a function g(z) analytic in C(B) which has poles at precisely the same
points as M(2) on S with the same principal parts.

The function F(z) = M(z) —g(2) is analytic on S. Hence, Theorem 3 im-
plies the existence of a function L(z) analytic in C(B) such that—when
28—

|F(z) — L(z)| < &
or
| M(z) — [g(2) + L(2)]] < e..

We take g(z) +L(z) for the required function N(z).

The following theorem, which is an extension of the Mittag-Leffler partial-
fractions theorem, follows directly from Theorem 10 when the Q-set S of the
theorem is chosen as UN;.

THEOREM 11. Let J be any isolated set. Assign to each point of J a principal
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part. Let M(2) be any function which is meromorphic in a neighborhood of each
point of J and which has a pole at each point of J with the assigned principal
part. Then, for any M.J.-collection of neighborhoods {N .~} and for any {e;},
there exists a function N(z) meromorphic except at limit points of J (or—in case
J has only a finite number of points—meromorphic except at a preassigned
point of C(UN,) such that

(a) N(2) has poles at precisely the points of J with the prescribed principal
parts;

(b) For every 1,

| MG3) — NG| <e when z € N,
except at points of J.

We note that such a function N(z) necessarily has an essential singu-
larity at each limit point of J.

4. On the order of the approximating function. One might expect that,
when the “rate of growth” of the function M(2) to be approximated on S in
the corollary of Theorem § is properly restricted, the approximating function
could be required to be of finite order. We next determine a necessary restric-
tion on M(z) when S is unbounded.

THEOREM 12. Let M(z2) be analytic and nonvanishing on an unbounded Q-set
S which does not separate the plane. Suppose that, for any given {e,»}, there
exists an integral nonvanishing function f(2) of finite order such that—for every
—
| M@E) — /()] < e " when z € S..
Then M(2) is necessarily an integral nonvanishing function of finite order.

Proof. For any >0 and for any 7 we can choose €; so that when I w— M(z) I
<e; and z2&S;, then llog w—log M(z)l < 4. By hypothesis there exists an
integral nonvanishing function f(2) of finite order such that, when z&.S;,

|f(z) - M(Z)| <€

holds for every i. We may, according to Hadamard’s Theorem [5, p. 250],
write f(2) =eZL(? where L(2) is some polynomial. Since—for every +—

|et® — M() | < & when z € S,
it follows from the choice of ¢; that ‘
| L(z) — log M(z) | < & when z € S..

Now the function log M(2) has been uniformly approximated on the un-
bounded set .S by the polynomial L(z). Walsh [6, p. 25] has observed that a
function which can be uniformly approximated on an unbounded point set
by a polynomial is itself a polynomial. Hence, we conclude that log M(2) is a
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polynomial. Then M(z) (=e't @) is an integral nonvanishing function of
finite order.
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