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1. Introduction. According to Runge's Theorem [4](2), any function

M(z) which is analytic in a given region R can be expanded in a sequence of

rational functions that converges to M(z) uniformly on any closed subregion

interior to R.

Walsh [6, Chap. I; 7; 8] has generalized Runge's Theorem to obtain

necessary and sufficient conditions for uniform approximation on an arbitrary

closed set C. He supposes points zk preassigned in a finite number of com-

ponents of the complement of C and proves the following theorem:

4 necessary and sufficient condition that every function M'z) analytic on C

can be uniformly approximated on C by a rational function whose poles lie in

the points zk is that at least one point zk lie in each of the regions into which C

separates the plane.

In the present paper it is proved that any function analytic on a "Q-set"

S can be approximated on that set by a function which is analytic in the ex-

tended plane except possibly at points of a preassigned "B*(S)-set."

Before defining "Q-set" and "J5*(5)-set" we define sequential limit point.

A point which is a limit point of some set of points chosen one from each

component of any given set 5 is called a sequential limit point of S (5-s.l.

point) (s).

A set consisting of (1) the set B of the s.l. points of a given set 5 and

(2) precisely one point of each component Ik{S) of C(S) such that Ik(S)

r\B=0 will be called a B*(S)-set.
A set S whose components are closed and whose s.l. points are in C(S)

(the complement of S) will be called a Q-set. We note that a Q-set has at most

a denumerable number of components.

Example 1. Let S be the set whose components Si, S2, ■ ■ ■ are circles

(including their interiors) of radii one-fourth with centers at z = l, 2, • • • .

This is a Q-set. The point at infinity is the only 5-s.l. point, also the only

73* (S)-set.

Example 2. Let 5 be a set whose components Si, S2, ■ ■ ■ are closed
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circular rings of radii one-fourth with centers at z = 1, 2, • • ■ . This is a Ç-set

and the set of 5-s.l. points consists of just the point at infinity. The set

whose points are the point at infinity and the centers of the circles is a

B* (5) -set.

Now let us suppose S to be an arbitrary Q-set and B* a B*iS)-set. It is

proved in this paper that, if M (s) is analytic on such a set S and is such that

log Miz) can be chosen as single-valued and continuous on S, the approximat-

ing function Liz) can be required to be both analytic and nonvanishing in

C(B*). If Miz) is analytic on S and if no restriction is placed on the vanish-

ing of Liz), then Liz) can be chosen so as to be analytic in C(5*) and mero-

morphic except possibly at 5-s.l. points.

The approximation obtained is not only uniform on 5 but is such that

the closeness of approximation can be preassigned independently for each

component of S.

We consider two simple examples. Let 5 be a set as described in Example

1. Define Miz)=i on Si. Then for any sequence of positive constants {o¿|

there exists an integral nonvanishing function Liz) such that—for every *—

| Liz) — i | < bi when z G Si.

For our second example we take 5 to be a set as described in Example 2

previously given and let B* be the i3*(S)-set there defined. We choose as

Miz) any function analytic on each ring. (M(s) may be defined by a different

analytic function on each 5,-.) Then, for any {5,}, there exists a mero-

morphic function Liz) such that—for every i—

| Liz) - Miz) | < bi when z G Si.

Furthermore, L(z) can be chosen so that its poles lie at the centers of the

rings.

2. Preliminary topology. Throughout this paper the extended plane is to

be understood.

An infinite subset {Sni} of components of a set S will be called nested if it

can be arranged in an order Snv S„it ■ ■ ■ such that Sn< separates Snj from

Snk whenever/ <i<k. An equivalent definition is that, when properly ordered,

Snj separates Snh from the set of s.I. points of this sequence when />&(4).

An interior s.I. point of a set is an s.I. point of a nested subsequence of

components.

A ring is a closed region bounded by two mutually nonintersecting

Jordan curves.

Let us choose a fixed point P as a base point. Then, if a given closed set

F^\)P, a point of C(F) will be said to be inside of F if it belongs to the com-

ponent of CiF) to which P belongs, outside of F if it belongs to some other

component. If no base point is specified, it is to be understood that the origin

(4) The definitions of nested, interior s.I. point, and ring are essentially those given by

Ketchum [l, pp. 212, 214].
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is taken as the base point.

The following theorems are given for reference.

(A) If E is any set and K is a connected set such that Ki\E?±0 and

Kr\C(E)^0, then KC\F(E)y¿0 [3, p. 64] (where F(E) denotes the bound-
ary of E).

(B) Let B be the set of s.l. points of a Q-set S. Then, if 1(B) is any component

of C(B), no two points of 1(B) are separated by more than a finite number of

components of S.

Proof. If this were not true, some two points p and q of 1(B) would be

separated by an infinity of components. But then every Jordan arc joining

p and q must meet B. However, since p, qÇil(B), a region, they can be joined

by an arc in 1(B).

(C) If S is a Q-set and B is its set of s.l. points, any component I(S) of C(S)

such that I(S)(~\B=0 is a region of finite connectivity and F\l(S)} C.S.

Proof. F(S)CSVB. Hence, F{l(S)} CSKJB. Since I(S)HB= 0 and
SC\B=0, BC{C(S)-I(S)}. Then F{l(S) \C\B^0 would imply that a
point of some other component of C(S) is a limit point of I(S). This is im-

possible. Therefore, /^{/(S)} C-S.

A fixed point p of 7(5) belongs to some component of C(SyJB)—say

I(S, B). Since SKJB is a closed set, F{l(S, B)}C(S^JB) and I(S, B) is a
region. We show that I(S, B)=I(S). Clearly I(S, B)CI(S). If I(S)dI(S, B),
(A) would imply that F{l(S, B))iM(S)^0. But since I(S)C\(S\JB) =0
we conclude that I(S) —I(S, B), which is a region.

It remains to be proved that I(S) has finite connectivity. From the fact

that F{I(S) } CIS, it follows that F{l(S)} is contained in only a finite num-

ber of Si's. For otherwise, since i7{/(£)} is a closed set, F{l(S) }í~\Bt¿0

and F{/(S)} (£S. According to a theorem given by Newman [3, p. 118]

each component of C{l(S)} contains just one component of F{l(S) j. Hence,

no Si contains more than one component of F{/(S)}. We conclude that

F{l(S)} has only a finite number of components and that I(S) is of finite

connectivity.

(D) // two points are separated by a closed set F, they are separated by a

component of F [3, p. 117].

In the proof of Theorem 3 we shall use the following topological theorem.

We are given a Q-set 5 and B*, a B*(S)-set. The object is to construct a se-

quence of closed sets j F,}, F.Cfi+i, in such a way that we can apply Runge's

Theorem successively to approximate on closed sets obtained by taking the

union of Fi and a finite number of certain components of S. In order that we

can require that the approximating rational functions have their poles in B*,

we require that condition (e) below be satisfied. Except for this condition,

the construction in Theorem 1 would be much simpler.

Theorem 1. Suppose S is a Q-set having an infinite number of components

Si. Let B denote the set of S-s.l. points and B* an arbitrary B*(S)-set. Then
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there exists a sequence of closed sets { F i} which have the following properties :

(a) FnCCiB);

(b) Fn is interior to Fn+i and has only a finite number of components ;

(c) IfStC\Fn^0, StCFn',
(d) Any closed set CQCiB) is interior to some F<;

(e) IflriFn, S) is any component of C(F„U5), Ir(Fn, S)C\B*¿¿0.

In particular, if B does not divide the plane, F„ can be required to be con-

nected.

Proof. For each component IjiB) of C(5) a certain sequence of closed

connected sets {K,,} will be defined. Then the sets of the sequence {Fi} will

be taken as the union of a finite number of sets, each chosen from a different

sequence {Ki,}.

According to a theorem proved by Ketchum [l, p. 214], there exists in

{IjiB)— S) a set R whose components i?¿are rings such that: (a) The i?-s.l.

points, the i?-interior s.I. points, and F{ljiB)\ are identical sets; (b) If

F{ljiB)\ has more than one component, then for every ring i?< there are

points of FI IjiB) ) in both components of CiRi).

Choose a point P¡ of {IjiB) — iS^JR)} as a base point. Let 0(i?„) denote

the region outside Rn- Omit every Rn except those with the property that

some point b* of B* in OiRn)(~\IjiB) is not separated from Rn by any

component of S.

Let R* be the set whose components are just (1) those rings which have

not been omitted and (2) those components of 5 in IjiB) which separate

the plane. We note that any i?*-s.l. point belongs to F{ljiB)}. We let a

component of R* which is separated from Pj by m — 1 but not by m other

components of R* be denoted by -rv^j*'- Every component of R* is included

in the collection {R*,ik)}.

We define a sequence of sets {Eij\—i = \, 2, ■ ■ ■ — by defining jEy as

the set of points inside all the i?yW's. Then we define a sequence \Ki¡\ —

í' = 1, 2, • • • —by letting Kij=Eij{JkiR*jw). Finally we set

Fi = Ku,

F„ = Kni KJ K„-i,2 U ■ ' ■ VJ ̂ iti,

(If there are only a finite number N of regions IjiB), the symbols Kn-j+u

for /> N are to be omitted.)

Before proceeding to prove that the sequence {Fi} satisfies the required

conditions, we prove the following property:

Property A. Any point b of F{l¡iB) \ is separated from Pj by an infinite

number of components of R*.

Proof. According to the definition of R, b is an s.I. point of some nested
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subsequence of rings {i?n<}. It is easy to show that—for some k—Rni sepa-

rates Pj from b when t>k.

For any Rni which was omitted in the construction of R* substitute an

Si which separates this Rni from b. Omit any Rni's between the Rni omitted

and this Si. Thus a subsequence of Rj^'s is obtained each of which separates

Pj from b.

It is next proved that any Km¡ is a closed connected set. Then, since F„

is the union of a finite number of these disjunct sets, Fn is closed and has

only a finite number of components.

We first show that, for m fixed, there are only a finite number of R^k)'s.

An infinity of Rffi's would have an s.l. point b. But b(ZF{lj(B)}, hence is

not an s.l. point of components separated from Pj by only m other com-

ponents. It can now easily be verified that Kmj is closed. Clearly Km¡ is

connected.

To prove that (a)-(c) are satisfied it is sufficient to verify the cor-

responding properties for the Ki¡s when I¡(B) is substituted for C(B).

Proof of (a). This follows from (A), Property (A), and the definition of

Proof of (b). To prove that Kmj is interior to Km+u it is sufficient to

show that—for any k—Rffi CEm+ij, which is a region.

If R^Ç\_Em+i,j every Jordan arc joining P¡ and some point of R^f meets

F{Em+ij} CUk(RZ+iJ). But then R*P would be separated from Pj by at least

m other components, contrary to the definition of an Rffi ■

Proof of (c). Clearly, if a point pE(Str\Emi), StCEmj<ZKmj. If—for some

q-pe(R*?r\St), R*> is just 5,.
Proof of (d). First we show that for any point p of any I¡(B) there exists

m such that pEE,nj, which is a region.

If—for every m—p is outside some Rffi, p must be separated from Pj by

an infinite number of components. But since R* is a Q-set whose s.l. points

are in B, (B) implies this is impossible. We conclude that there exists m

such that pEEmj.

To show that (d) is satisfied it is sufficient to prove that any closed set

in C(B) is contained in \Jl„i(Ei-t+i,t) for some i. Assume the contrary. Then

there exists a closed set CQC(B) and a sequence of points {pi} in C such

that p¡C£(Jtt^1(Ei-.t+i,t)- A limit point p of this sequence belongs to C, there-

fore to some Ij(B). It was just proved that—for some m—p£Emj. Hence, p

is interior to U¡e<_í+i,í when i^m+j—l. By definition of p,- there exists N

such that, for ¿5: N, pi(£Ut(EN-t+i,t). This leads to a contradiction and com-

pletes the proof of (d).

Proof of (e). Let p be an arbitrary point of Ir(F„, S). Then p belongs to

some component—say IV(S)—of C(S).

Casei. Iv(S)CIr(F„, S).

Ir(Fn, S)r\B*?¿0—since, by definition of B*, Iv(S)i^B*^0.
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Case ii. IviS)<X.IriFn, S).

First we note that F„W5 is a Q-set whose s.I. points are in B. Hence, if

IAFn, S)r\B=0—according to (Q—F{lr(Fn, 5)}C(FBU5). Then

F{lr(Fn, S))CS Uk iR*ník)) W, iRn-¿2) Ut •  •  ■   Uk iR*n\

Since J,(5)Ct:/r(F», 5), (A) implies that F[lr(Fn, S)}mv(S)^0. But

SC\IviS) =0. Therefore, we have to consider only the case where at least

one of these R*^j+1J's is a ring—say Rt—which was not omitted.

For some/, Rt<Z.Ij(B). We note that IriFn, S) lies outside Rt. From the

criteria for the non-omission of a ring we have that some point b* of B* in

0(i?i)n7,(5) is not separated from Rt by any Si. Clearly there exists a

point q of {iriFn, S)C\I¡iB)} not separated from Rt by any Sf and so not

separated from b* by any St.

If b*^IriFn, S), every Jordan arc joining q and b* meets F{lriFn, S)}.

Then (D) would imply that some component of F[lriFn, S)} separates b*

and q. For some k, Rt is an i?*i*J+u. Since b*, çGO(i?(). no other R*^j+1J can

separate b* and q. Since b*, cGÄ(-ß), no R*^—m^j—can separate b* and

q. We conclude that any component of F{lriFn, S)} which separates b* and

q must be contained in some 5,-. But then q and b* would be separated by this

Si. This gives a contradiction and completes the proof that b*ÇEIriFn, S).

Corollary. The sequence {Fi} of the theorem can be chosen so that every Fi

contains at least one component of S.

Proof. According to (d) any preassigned component Sk is interior to some

Fnk of the sequence {Fi}. We now take Fni as Fi, Fni-n as F2, and so on.

The conclusions expressed in the following lemma are included in some

topological results obtained by Walsh [6, pp. 7-10].

Lemma. Let R be an arbitrary region—not the entire plane. Then there exists

a sequence of regions {Rk} with the following properties :

(a) RnCR;

(b) RnCRn+i;

(c) Any closed set CC1R is interior to some Rk;

(d) The connectivity of Rn is not greater than that of R.

The next theorem is applied in the proof of Theorem 7. We let G denote an

open set whose components are G\, G2, • • • . By an FG-set we shall mean a set

FQG such that—for every i—the subset Fí = FÍ^\Gí is a closed set.

Theorem 2. Let G be an open set—not the entire plane—and let B* be any

B*iG)-set. Suppose F is a given FG-set. Then there exists a sequence of Q-sets

S(1\ S(2\ • • • , 5<n), ■ • • such that—for every j—

(a) FCS&CG;
(b) 5(î) is interior to SW+1> ;
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(c) For any closed set CQG there exists N such that C is interior to 5())

forj>N;
(d) B* contains a B*iSa))-set, and every SU)-s.l. point is a G-s.l. point.

Proof. The lemma implies that for each component Gt of G there exists a

sequence of regions Rf, Rf, ■ ■ • having the properties listed in the lemma.

Since—by definition of F—F¿ is a closed set, it follows from (c) of the lemma

that we may suppose these R®'s chosen so that FidRk\ for every k.

Next let us define sets 5(1), 5(2), • • • thus:

sw - U (11°),

5W = U (R?),

Now for every/, F(ZS(i), which is a Ç-set, and 50>CG. Clearly SU) is

interior to S(i+l). Thus conditions (a) and (b) are satisfied.

If (c) were not true there must exist a closed set CCG and a sequence of

points {pic} such that pkCC but pic^S^K A limit point p of this sequence

belongs to C, therefore to some G;. It follows from (c) of the lemma that—

for some/—p is interior to S'-'K But this leads us toa contradiction and we

conclude that (c) is satisfied.

We have yet to verify (d). Clearly any 5(,)-s.l. point is a G-s.l. point and

so belongs to B*. Hence, to prove that B*, which was defined as a B*(G)-set,

contains a 5*(S(j))-set, it is sufficient to show that IkiS(i))r\B*5¿0 for an

arbitrary component IkiS(i)) of CiSU)).

It is evident from (d) of the lemma and the definition of Sa) that

there is a component—say 7((G)—of CiG) such that ItiG)nikiS(>))^0.

Since—if /*(SW>) contains an 5(!)-s.l. point—IkiSu))r\B*¿¿0, the only case

that remains to be considered is that where IkiS(i)) contains no 50)-s.l.

point. In this case (C) implies that F{/*(S<'>)} CS™, and hence F{lkiS(»)}

CG. Now, if ItiG)<tIkiS<»), (A) implies that F{ I*(S«>) )n/i(G)^0. But
this would give a contradiction to the conclusion that F{lkiSu))} CG. We

conclude that IAG)ChiSi')).
Then, since ItiG)r\B*^0, IkiS(i))r\B*^0. This completes the proof

that in no case is IkiS^)C\B* = 0.

3. Approximation theorems. Throughout this paper it is to be understood

that the functions are single-valued. A function is said to be analytic on a set

if it is analytic in a neighborhood of every point of the set. We note that a

function analytic on a Ç-set 5 may be defined by a different analytic function

on each component of 5.
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Theorem 3. Let S be a Q-set, B the set of S-s.l. points, and B* any B*(S)-

set. Suppose M(z) is any function analytic on S. Then, for any sequence {ô,j

of positive constants, there exists a function L(z) analytic in C(B*) and mero-

morphic in C(B) such that—for every i—

| M(z) - L(z) | < h

when z is any point of the component 5,-.

Proof. If 5 is the null set or the whole extended plane, the conclusion is

trivial. If S has only a finite number of components, S is a closed set and the

desired result follows directly from Runge's Theorem.

Otherwise, there exists a sequence of closed sets {F,} as described in

Theorem 1. Let us choose such a sequence as specified in the corollary. We

note that "Fn(ZC(B)" implies F„ intersects only a finite number of Si's.

Denote the components of S contained in Fi by Si, S2, • • ■ , Smi and

those in Fn^\C(Fn-i) by Sm„_I+i, • • ■ , 5m„. Change the subscripts for 5,'s of

the given {5,} so that each ô,- corresponds to its original Si. Then let Sfn) de-

note the minimum of Si, 52, ■ ■ ■ , 5m„.

M(z) is analytic on the closed set U™=i 5¿ and every component of 0(0"^^,)

contains a point of 73*. Then Runge's Theorem as generalized by Walsh

implies there exists a rational function ri(z) whose poles lie in B* such that

| M(z) — ri(z) I <- when z £ U St.
2 ¿=i

For any integer k>\ there exists an open set Gk-i containing Fk-i and

disjunct from some open set OiO>^i~imk-lSmk_1+q in which {M(z) — £*ljr,(z)}

is analytic. Let us define

Mk(z) = 0 in Gu-i

=  ¡M(z) - £ r,<z)|   in Ok.

Now Mk(z) is analytic on the closed set Fk^i\J^mk-1(Smk_i+g) and a point of

B* lies in each region into which this set separates the plane—by (e) of

Theorem 1. Hence, according to Walsh's generalization of Runge's

Theorem, there exists a rational function rk(z) whose poles lie in B*

nC{F*_iUj*r"**-l5M4_1+ff} such that

| Mk(z) - rk(z) | < «<«/2*

for z any point of Fk-X or of Smk_1+q—q = \, 2, ■ ■ ■ , (mk — mk-i).

Let D be any region in C(B) such that D(ZC(B). According to (d) of

Theorem 1—for some integer /—D is interior to F(-i. Then, for all j^t, r¡(z)

is analytic on D and
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rj(z) | < 6W/2*

[January

when z G Z).

Since £7.1 5(¡)/2' converges, £" r¡(z) converges uniformly in D—hence is

analytic in D.  Except possibly for a finite number of poles in (73* — B),

L(z) = £1°° rj(z) is analytic in D. Since D was chosen as any closed region in

C(B), L(z) is analytic in C(B) except possibly for poles in (73* —73).

We wish to prove that—for any n—

I M(z) - L(z) I < Ó,

For some k, mk_i<n^mk. We have that

5(t)

when z G S».

M(z) - £ r,{z)
2k       2k

when S».

Now

M(z) - L(z)   g M(z)

5,

£ rj(z)

On

£
y-«r+i

rj(z)

< — +   £    — á 5b
2*     ¡Xi   2'

yhen Sn.

Corollary 1. If M(z) is any function analytic on a Q-set S which has no

s.l. point in the finite plane, then—for any {S,\—there exists a meromorphic

function L(z) such that, for every i,

M(z) - L(z) I < Si when z G Si.

If points are preassigned, one in each of the bounded components of C(S), L(z)

can be chosen so that its poles lie in these points.

In particular, if S does not divide the plane and does not contain the point at

infinity, L(z) can be required to be an integral function.

Corollary 2. Let G(z) >0 be any function bounded away from zero on each

component of a Q-set S. Let B be the set of S-s.l. points and B* any B*(S)-set.

Then, if M(z) is any function which is analytic on S, there exists a function L(z)

meromorphic in C(B) such that

I M(z) — L(z) j < G(z) when

Furthermore, L(z) can be chosen so that its poles lie in (B* — B).

S.

Proof. This follows directly from the theorem when St- is chosen as G.L.B.

G(z) on the component Si.

The next theorem shows that in order that every function analytic on a

given Q-set can be even uniformly approximated on that set it is actually

necessary to allow the approximating function a possible singularity in each

component of C(S).



1952 GENERALIZATION OF RUNGE'S THEOREM 157

Lemma. Let R be a region of finite connectivity such that R is not the entire

extended plane. Let Miz) be a function analytic on FiR). Then, if there exists a

sequence of functions {/«(z)} analytic on R which converges uniformly to Miz)

on FiR), Miz) can be continued analytically from FiR) to all of R.

Proof (5). Let R' denote the region obtained by suppressing all components

of FiR) which are isolated points. Now RCR', R'= R, and FiR')CFiR).

Since R has finite connectivity so does R'.

By hypothesis, there exists a sequence of functions {/„(z)} analytic on

R' which converges uniformly to M(z) on FiR'). By a well known theorem,

such a sequence converges uniformly on R' to some function M*iz) which

is analytic in R' and continuous in R'. On FiR'), M*iz)=Miz). The function

/(z) =M*(z)— Miz) is single-valued and analytic interior to R' in the neigh-

borhood of FiR') and \\mz^F{R-, /(z) =0 for z interior to R'. It follows from a

theorem given by Walsh [6, p. 23] that/(z) vanishes identically interior to R'

in the neighborhood of FiR').

Thus M*iz) gives an analytic extension of Miz) from FiR') to all of R',

hence from FiR) to all of R.

Theorem 4. Let S be a Q-set iwhich consists of more than one point), B

the set of S-s.l. points, and E a set in CiS) such that BÇZE. Then a necessary

and sufficient condition that every function which is analytic on S can be uni-

formly approximated on S by some function analytic in C(£) is that every com-

ponent of CiS) contain a point of E.

Proof. The sufficiency of the condition follows directly from Theorem 3

when the sequence e, e, • • • is taken for {ô,} of the theorem. We proceed to

the proof of the necessity.

For the sake of argument, let us suppose that there is a component—say

hiS)—of CiS) such that Jfc(S)r\E = 0. Since BQE, hiS)C\B = 0. Then
(C) implies that F{ IkiS)} C.S and that IkiS) is a region of finite connectivity.

Case I. 7kiS) is the entire plane.

The hypothesis implies that, for any preassigned function Miz) as de-

scribed, there exists a sequence of functions analytic in the entire plane, that

is, a sequence of constants, which converges uniformly to Miz) on 5. This

is impossible for an arbitrary function Miz).

Case II. I ¡AS) is not the entire plane.

Let us choose Miz) =l/(z — p), where pdlkiS). It follows from the hy-

pothesis that—for every positive integer n and for any e>0—there exists

a function /„(z) analytic in C(£) such that

| Miz) - Aiz) | < e/n

on S, hence on F{lkiS)}.

(6) This proof is essentially the same as that of a similar statement by Walsh [6, p. 25].
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Now for the function M(z), which is analytic on F{lk(S)}—where Ik(S)

is a region of finite connectivity—we have the sequence of functions {fn(z)}

analytic on 7k(S) which converges uniformly to M(z) on F{lk(S)}. Then the

lemma implies that M(z) can be extended analytically from F{lk(S)} to all

of Ik(S). But this is impossible since M(z) = \/(z — p) has a pole at p, a point

of Ik(S). This completes the proof of the theorem.

The approximating function of the next theorem is required to be not

only analytic but also nonvanishing in the complement of a preassigned

73*(5)-set.

Theorem 5. Let S be a Q-set and 73* a B*(S)-set. Suppose M(z) is any

function which is analytic and nonvanishing on S and such that log M(z) can

be chosen as single-valued and continuous on S. Then, for any {e¿}, there exists a

function f(z) nonvanishing and analytic in C(B*) such that—for every i—

I M(z) — f(z) | < ti when z G Si.

Proof. For each * choose S,- so that when zÇL-Si and \w — log Af(z)| <S,-,

then \ew-M(z)\ <e,.

According to Theorem 3—when log M(z) is chosen as the function to be

approximated—there exists a function L(z) analytic in C(73*) such that, for

every i,

| log M(z) — L(z) | < ôi when z G Si.

Then, for every *',

| M(z) — eL(2) | < ti when z G St.

Clearly eLU) is analytic and nonvanishing in C(B*). Hence, eLU) may be

taken as the required function/(z).

Corollary. Suppose M(z) is analytic and nonvanishing on a Q-set S

which does not separate the plane. Then—for any {e;}—there exists a function

f(z) which is nonvanishing and analytic except possibly at S-s.l. points (provided

S has an infinite number of components) such that, for every i,

| M(z) — f(z) | < ti when z G Si.

In particular, if S has no finite s.l. point and does not contain the point at in-

finity, f(z) can be required to be a nonvanishing integral function. If S has

only a finite number of components, we allow f(z) a singularity at an arbitrary

preassigned point of C(S).

It is easy to show that the singularities of an approximating function satis-

fying the conditions required in Theorem 5 cannot in general be restricted to

at most poles at points of 73* which are not 5-8.1. points.

Theorem 6. Let S be a closed set and let B* be any set of points chosen one
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from each component of CiS). Suppose Miz) is any function such that log Miz)

can be chosen as single-valued and analytic on S. Then Miz) can be uniformly

approximated on S by a function /(z) which is analytic and nonvanishing in the

entire plane except at a finite number of points of B*.

Proof. Given e>0, choose ô>0 so that when zG-S and | w — log Miz) \ <b,

then \ew-Miz)\ <e.

According to Walsh's theorem on approximation on a closed set [6, p. 15]

—when log Miz) is chosen as the function to be approximated—there exists a

rational function r(z) whose poles lie in B* such that

| log Miz) - riz) I < 5, zE-S.

Then

| Miz) - e'M | < 6 when t G S

and er(z) satisfies the conditions required of/(z).

In the next theorem our approximation results are expressed in terms

of expansion of a function analytic in an open set G in a sequence of functions

analytic (or analytic and nonvanishing) except possibly at preassigned points

of CiG). Our definitions of an Fo-set and of F,- were previously given for

Theorem 2.

Theorem 7. Let G be an open set, B the set of G-s.l. points, and B* any

B*iG)-set. Suppose Miz) is any function analytic in G. Then there exists a

sequence of functions {fjiz)} meromorphic in C(2?) and analytic in CiB*) which

converges to Miz) in G, uniformly on any closed set interior to G(6). // F is a

preassigned FG-set, {fjiz)} can be chosen so that—when zGF,—

| Mit) - fjiz) | < ¿"

for any preassigned {¿P}.

If log Miz) can be chosen as single-valued and continuous in G the functions

fjiz) can be required to be analytic and nonvanishing in C(5*)(7).

Proof. If G is the null set or the whole extended plane, the conclusions

are trivial. These cases are henceforth disregarded.

In order to avoid the consideration of special cases, if an FG-set is not

preassigned we choose one arbitrarily—which may be the null set.

For fixed i, we may suppose each ef ^ i/j.

Let us choose a sequence of Ç-sets 5(1), 5(2), • • ■ satisfying the conditions

(6) When no further restriction is made, the/,(2) can be required to be rational functions

with their poles in B* [6, p. 16].

(7) In this case the/,(z) are not required to be meromorphic in C(B).

The proof of this statement is similar to that of the first part of the theorem. Necessary

modifications in the proof are indicated in parentheses.
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listed in Theorem 2.

We note that M(z) is analytic on each 5(,). Then according to Theorem 3

(Theorem 5)—when applied successively—there exist functions f¡(z) analytic

in C(73*) and meromorphic in C(73) (nonvanishing and analytic in C(73*))

such that, for every i,

I M(z) — fi(z) | < ti      when    z G S,   ;    hence when    z G F¿,

M(z) — fn(z) | < e;      when    z G Si   ;    hence when    z G F,-,

By applying (c) of Theorem 2 we see that by taking {e'1'} = 1, 1, • • • and,

in general, {e^} =l/j, 1/j, ■ • • , a sequence \fj(z)} can be obtained which

converges uniformly to M(z) on any closed set interior to G. Since we sup-

posed that each £•■" í= í/j, the original {/y(z)} obtained converges uniformly to

M(z) on any closed set CCG.

Corollary. If the components of the open set G are simply connected and

bounded, if G has no finite s.l. point, and if M(z) has no zero in G, the functions

of the sequence {fj(z)} in the theorem can be chosen as integral nonvanishing

functions.

We next obtain what might be called a Weierstrass factor-approximation-

theorem. We let J denote an isolated set and suppose a positive integer as-

signed each point of J. According to the Weierstrass-factor-theorem [2],

there exists a function g(z) analytic except at limit points of J which has zeros

of the prescribed orders at precisely the prescribed points.

Let us suppose that M(z) is any function which is analytic in a neighbor-

hood of each point of J and which has zeros of the prescribed orders at points

of /. (Of course, M(z) may be defined by as many different analytic functions

as there are points in the set J.) Then, according to Theorem 9, there exists

a function h(z) analytic except at limit points of /which not only satisfies the

conditions required in the Weierstrass theorem but which also approximates

M(z) arbitrarily closely in a neighborhood of each point of J, where the close-

ness of approximation may be preassigned independently for each point of /.

Theorem 8. Let S be a Q-set which does not separate the plane. If S has an

infinite number of components, we let B denote the set of S-s.l. points; if S has

only a finite number of components, we let B consist of an arbitrary point of C(S).

Suppose M(z) is analytic on S and not identically zero on any component S¡.

Then, for any {e,}' l^ere exists a function h(z) such that

(a) h(z) is nonvanishing in C(5U73) and is analytic in C(B);

(b) The zeros of h(z) coincide with the zeros of M(z) on S and are of the same

orders ;
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(c) For every i,

Mit) - hit)    < u when z G Si.

Proof. The set J= {z\ Miz) =0; zGS} is an isolated set. Hence, Weier-

strass's factor-theorem [2] implies the existence of a function g(z) analytic

in CiB) which has zeros at precisely the points of J of the same orders as the

zeros of Miz).

We let Afi = L.U.B. giz) on 5,-.

The function F(z) = Af(z)/g(z) is analytic and nonvanishing on S. Then

by the corollary of Theorem 5 there exists a function /(z) nonvanishing and

analytic in CiB) such that, for every i,

Fit) - fit) | < ti/Mi when z G Si.

Now

Miz) -f(t)-git)] =
(Miz) )

giz

Miz)

giz)
fiz)

giz)

giz)    <—   giz) I ^ ti
Mi

when zESi.

The function/(z) -giz) satisfies the conditions required of the function &(z).

The following lemma is easily verified. Modifications in the statement for

u similar lemma are indicated in parentheses.

Lemma. Let Miz) be any function which is meromorphic ianalytic and not

identically zero) in a neighborhood of each point of a given isolated set J. Then

there exists a neighborhood N¡ for each point j of I such that

(a) Ñir\Ñj_=0 fori^j;
(b) N = i)Nj is a Q-set which does not separate the plane and whose set of

s.I. points is just the set of limit points of J.

(c) M(z) is meromorphic ianalytic) on N and is analytic inonvanishing) on

N except possibly at points of J.

Such a set of neighborhoods for the points of an isolated set / and a given

function Miz) will be called an M.J.-collection of neighborhoods.

The following theorem, which is an extension of the Weierstrass-factor-

theorem, follows directly from Theorem 8 when the Ç-set 5 of the theorem is

chosen as UX,-.

Theorem 9. Let J be any isolated set. Assign to each point of J a positive

integer as order. Let Miz) be any function which is analytic in a neighborhood

of each point of J and which has zeros of the prescribed orders at these points.

Then, for any M.J.-collection of neighborhoods {Ni} and for any {e¡} there

exists a function A(z) analytic except at limit points of J (or—in case J has only
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a finite number of points—analytic except at a preassigned point of C(UAr,))

such that

(a) h(z) has zeros to the prescribed orders at the points of J and is nonvanish-

ing elsewhere;

(b) For every i,

| M(z) — h(z) | < e¿ when z G Ni.

We note that such a function h(z) necessarily has an essential singularity

at each limit point of /.

Next we obtain an extension of the Mittag-Leffler partial-fractions

theorem [2] analogous to our extension of the Weierstrass factor-theorem.

We prove the existence of a function which not only has poles with assigned

principal parts at prescribed points but which also satisfies a preassigned ap-

proximation condition arbitrarily closely in a neighborhood of each pre-

scribed point.

Theorem 10. We define sets S and B as in Theorem 8. Let M(z) be any

function which is meromorphic on S. Then, for any {«,}, there exists a function

N(z) such that

(a) N(z) is analytic in C(B) except at poles of M(z) on S;

(b) The poles of N(z) coincide with those of M(z) on S and have the same

principal parts;

(c) For every i

| M(z) - N(z) | < u when z G S;,

except at poles of M(z) on 5».

Proof. The set of points at which M(z) has poles on 5 is an isolated set.

Hence, Mittag-Leffler's partial-fractions theorem [2] implies the existence

of a function g(z) analytic in C(73) which has poles at precisely the same

points as M (z) on S with the same principal parts.

The function F(z) =M(z)—g(z) is analytic on S. Hence, Theorem 3 im-

plies the existence of a function L(z) analytic in C(73) such that—when

zES~

I F(z) - L(z) | < ti

or

\M(z) - [g(z)+L(z)}\ <ti.

We take g(z)-\-L(z) for the required function N(z).

The following theorem, which is an extension of the Mittag-Leffler partial-

fractions theorem, follows directly from Theorem 10 when the Q-set 5 of the

theorem is chosen as UA7,-.

Theorem 11. Let J be any isolated set. Assign to each point of J a principal
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part. Let Miz) be any function which is meromorphic in a neighborhood of each

point of J and which has a pole at each point of J with the assigned principal

part. Then, for any M.J.-collection of neighborhoods {X,} and for any {e,},

there exists a function X(z) meromorphic except at limit points of J ior—in case

J has only a finite number of points—meromorphic except at a preassigned

point of C(UXi) such that
(a) X(z) has poles at precisely the points of J with the prescribed principal

parts ;

(b) For every i,

| Miz) — X(z) | < «, when z G X,

except at points of J.

We note that such a function X(z) necessarily has an essential singu-

larity at each limit point of /.

4. On the order of the approximating function. One might expect that,

when the "rate of growth" of the function Miz) to be approximated on S in

the corollary of Theorem 5 is properly restricted, the approximating function

could be required to be of finite order. We next determine a necessary restric-

tion on Miz) when 5 is unbounded.

Theorem 12. Let Miz) be analytic and nonvanishing on an unbounded Q-set

S which does not separate the plane. Suppose that, for any given {e«}, there

exists an integral nonvanishing function /(z) of finite order such that—for every

i—

I Miz) — /(z) | < €i when z G -S1;.

Then Miz) is necessarily an integral nonvanishing function of finite order.

Proof. For any b > 0 and for any i we can choose e, so that when | w — Miz) |

<e¿ and zCSi, then | log w — log Af(z)| <ô. By hypothesis there exists an

integral nonvanishing function/(z) of finite order such that, when zG^,,

| fiz) - Miz) | < e<

holds for every i. We may, according to Hadamard's Theorem [5, p. 250],

write/(z) =eLiz) where Liz) is some polynomial. Since—for every i—

| eLM — Miz) | < a when z G Si,

it follows from the choice of e, that

| I it) — log Miz) | < 5 when z G Si.

Now the function log Miz) has been uniformly approximated on the un-

bounded set 5 by the polynomial Liz). Walsh [6, p. 25] has observed that a

function which can be uniformly approximated on an unbounded point set

by a polynomial is itself a polynomial. Hence, we conclude that log M(z) is a
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polynomial. Then M(z) (=e]oeM(z'>) is an integral nonvanishing function of

finite order.
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